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Foreword

VALENTIN TURCHIN presents in The Phenomenon of Science an evolutionary
scheme of the universe—one that begins on the level of individual atoms and
molecules, continues through the origin of life and the development of plants and
animals, reaches the level of man and self-consciousness, and develops further in the
intellectual creations of man, particularly in scientific knowledge. He does not see this
development as a purposeful or preordained one, since he accepts entirely the
Darwinian law of trial and error. Selection occurs within a set of random variations,
and survival of forms is a happenstance of the relationship between particular forms
and particular environments. Thus, there are no goals in evolution. Nonetheless, there
are discernible patterns and, indeed, there is a “law of evolution” by which one can
explain the emergence of forms capable of activities which are truly novel. This law is
one of the formation of higher and higher levels of cybernetic control. The nodal
points of evolution for Turchin are the moments when the most recent and highest
controlling subsystem of a large system is integrated into a metasystem and brought
under a yet higher form of control. Examples of such transitions are the origin of life,
the emergence of individual selfconsciousness, the appearance of language, and the
development of the scientific method.

Many authors in the last century have attempted to sketch schemes of cosmic
evolution, and Turchin's version will evoke memories in the minds of his readers. The
names of Spencer, Haeckel, Huxley, Engels, Morgan, Bergson, Teilhard de Chardin,
Vernadsky, Bogdanov, Oparin, Wiener and many others serve as labels for concepts
similar to some of those discussed by Turchin. Furthermore, it is clear that Turchin
knows many of these authors, borrows from some of them, and cites them for their
achievements. It is probably not an accident that the title of Turchin's book, “The
Phenomenon of Science,” closely parallels the title of Teilhard's, “The Phenomenon of
Man.” Yet it is equally clear that Turchin does not agree entirely with any of these
authors, and his debts to them are fragmentary and selective. Many of them assigned a
place either to vitalistic or to theological elements in their evolutionary schemes, both
of which Turchin rejects. Others relied heavily on mechanistic, reductionist principles
which left no room for the qualitatively new levels of biological and social orders that
are so important to Turchin. And all of them—with the possible exception of Wiener,
who left no comprehensive analysis of evolution—wrote at a time when it was
impossible to incorporate information theory into their accounts.

The two aspects of Turchin's scheme of cosmic evolution which distinguish it from its
well-known predecessors are its heavy reliance on cybernetics and its inclusion of the
development of scientific thought in evolutionary development that begins with the
inorganic world. The first aspect is one which is intimately tied to Turchin's own field
of specialization, since for many years he was a leader in the theory and design of
Soviet computer systems and is the author of a system of computer language. Turchin
believes that he gained insights from this experience that lead to a much more rigorous
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discussion of evolution than those of his predecessors. The second aspect of Turchin's
account—the treatment of scientific concepts as “objects” governed by the same
evolutionary regularities as chemical and biological entities—is likely to raise
objections among some readers. Although this approach is also not entirely
original—one thinks of some of the writings of Stephen Toulmin, for example—I
know of no other author who has attempted to integrate science so thoroughly into a
scheme of the evolution of physical and biological nature. Taking a thoroughly
cybernetic view, Turchin maintains that it is not the “substance” of the entities being
described that matters, but their principles of organization.

For the person seeking to analyze the essential characteristics of Turchin's system of
explanation, two of his terms will attract attention: “representation” and “metasystem
transition.” Without a clear understanding of what he means by these terms, one
cannot comprehend the overall developmental picture he presents. A central issue for
critics will be whether a clear understanding of these terms can be gained from the
material presented here. One of the most difficult tasks for Mr. Frentz, the translator,
was connected with one of these central terms. This problem of finding an English
word for the Russian term predstavlenie was eventually resolved by using the term
“representation.” In my opinion, the difficulty for the translator was not simply a
linguistic one, but involved a fundamental, unresolved philosophical issue. The term
predstavlenie is used by Turchin to mean “an image or a representation of a part of
reality.” It plays a crucial role in describing the situations in which an organism
compares a given circumstance with one that is optimal from the standpoint of its
survival. Thus, Turchin, after introducing this term, speaks of a hypothetical animal
that “loves a temperature of 16 degrees Centigrade” and has a representation of this
wonderful situation in the form of the frequency of impulses of neurons. The animal,
therefore, attempts to bring the given circumstances closer and closer into
correspondence with its neuronal representation by moving about in water of different
temperatures. This same term predstavlenie is also used to describe human behavior
where the term “mental image” would seem to be a more felicitous translation. If we
look in a good Russian-English dictionary, we shall find predstavlenie defined as
“presentation, idea, notion, representation.” At first Dr. Turchin, who knows English
well and was consulted by the translator, preferred the translation “notion.” Yet it
seemed rather odd, even vaguely anthropomorphic, to attribute a “notion” to a
primitive organism, an amoeba, or even a fish. On the other hand, the term
“representation” seemed too rudimentary for human behavior where “idea” or “mental
image” was clearly preferable. This difficulty arose from the effort to carry a constant
term through evolutionary stages in which Turchin sees the emergence of qualitatively
new properties. The problem is, therefore, only secondarily one of language. The basic
issue is the familiar one of reductionism and nonreductionism in descriptions of
biological and psychological phenomena. Since the Russian language happens to
possess a term that fits these different stages better than English, we might do better to
retain the Russian predstavlenie. In this text for a wide circle of English readers,
however, the translator chose the word “representation,” probably the best that can be
done. The difficulties of understanding the term “metasystem transition” arise from its
inclusion of a particular interpretation of logical attributes and relations. Turchin
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believes that it is impossible to describe the process by which a particular system
develops into a metasystem in the terms of classical logic. Classical logic, he says,
describes only attributes, not relations. For an adequate description of relations, one
must rely on the Hegelian dialectic, which permits one to see that the whole of a
metasystem is greater than the sum of its subsystems. The Hegelian concept of
quantitative change leading to qualitative change is thus not only explicitly contained
within Turchin's scheme, but plays an essential role in it. The behavior of human
society is qualitatively different from the behavior of individual humans. And social
integration, through the “law of branching growth of the penultimate level,” may lead
eventually to a concept of “The Super-Being.” These concepts show some affinities to
Marxist dialectical materialism, in which a similar differentiation of qualitatively
distinct evolutionary levels has long been a characteristic feature. The British scientist
J. D. Bernal once went so far as to claim that this concept of dialectical levels of
natural laws was uniquely Marxist, when he wrote about “the truth of different laws
for different levels, an essentially Marxist idea.” However, many non-Marxists have
also advanced such a view of irreducible levels of laws; one should therefore be
careful about terming a system of thought Marxist simply because it possesses this
feature. Most Marxists would reject, at a minimum, Turchin's discussion of the
concept of the Super-Being (although even in early Soviet Marxism “God-building”
had a subrosa tradition). In Turchin's case we are probably justified in linking the
inclusion of Hegelian concepts in his interpretation of nature to the education in
philosophy he received in the Soviet Union. Soviet Marxism was probably one of
several sources of Turchin's philosophic views; others are cybernetics and the thought
of such earlier writers on cosmic evolution as Chardin and Vernadsky.

In view of the links one can see between the ideas of Turchin and Marxism, it is
particularly interesting to notice that Turchin is now in political difficulty in the Soviet
Union. Before I give some of the details of his political biography, however, I shall
note that in this essentially nonpolitical manuscript Turchin gives a few hints of
possible social implications of his interpretation. He remarks that the cybernetic view
he is presenting places great emphasis on “control” and that it draws an analogy
between society and a multicellular organism. He then observes, “This point of view
conceals in itself a great danger that in vulgarized form it can easily lead to the
conception of a fascist-type totalitarian state.” This possibility of a totalitarian state, of
whatever type, is clearly repugnant to Turchin, and his personal experience is a
witness that he is willing to risk his own security in order to struggle against such
state. As for his interpretation of social evolution, he contends that “the possibility that
a theory can be vulgarized is in no way an argument against its truth.” In the last
sections of his book he presents suggestions for avoiding such vulgarizations while
still working for greater social integration.

Turchin is wrestling in this last part of his interpretation with a problem that has
recently plagued many thinkers in Western Europe and America as well: Can one
combine a scientific explanation of man and society with a commitment to individual
freedom and social justice? Turchin is convinced that such combination of goals is
possible; indeed, he sees this alliance as imperative, since he believes there is no
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conceptual alternative to the scientific worldview and no ethical alternative to the
maintenance of individual freedom. It is the steadfastness of his support of science that
will seem surprising to some of his readers in the West, where science is often seen as
only a partial worldview, one to be supplemented with religious or nonscientific
ethical or esthetic principles. Turchin, however, believes that humans can be explained
within an entirely naturalistic framework. His belief that ethical and altruistic modes
of behavior can emerge from an evolutionary scheme is, therefore, one that brings him
in contact with recent writers in the West on sociobiology, physical anthropology, and
evolutionary behavior. His emphases on information theory, on irreducible levels, and
on the dangers of vulgarizations of scientific explanations of human behavior while
nonetheless remaining loyal to science may make contributions to these already
interesting discussions.

Valentin Fedorovich Turchin, born in 1931, holds a doctor's degree in the physical and
mathematical sciences. He worked in the Soviet science center in Obninsk, near
Moscow, in the Physics and Energetics Institute and then later became a senior
scientific researcher in the Institute of Applied Mathematics of the Academy of
Sciences of the USSR. In this institute he specialized in information theory and the
computer sciences. While working in these fields he developed a new computer
language that was widely applied in the USSR, the “Refal” system. After 1973 he was
the director of a laboratory in the Central Scientific-Research Institute for the Design
of Automated Construction Systems.  During his years of professional employment
Dr. Turchin published over 65 works in his field. In sum, in the 1960s and early
1970s, Valentin Turchin was considered one of the leading computer specialists in the
Soviet Union. Dr. Turchin's political difficulties began in 1968, when he was one of
hundreds of scientists and other liberal intellectuals who signed letters protesting the
crackdown on dissidents in the Soviet Union preceding and accompanying the Soviet-
led invasion of Czechoslovakia. In the same year he wrote an article entitled “The
Inertia of Fear” which circulated widely in samizdat, the system of underground
transmission of manuscripts in the Soviet Union. Later the same article was expanded
into a book-length manuscript in which Dr. Turchin criticized the vestiges of Stalinism
in Soviet society and called for democratic reform.

In September 1973 Dr. Turchin was one of the few people in the Soviet Union who
came to the defense of the prominent Soviet physicist Andrei D. Sakharov when the
dissident scientist was attacked in the Soviet press. As a result of his defense of
Sakharov, Turchin was denounced in his institute and demoted from chief of
laboratory to senior research associate. The computer scientist continued his defense
of human rights, and in July 1974, he was dismissed from the institute. In the ensuing
months Dr. Turchin found that he had been blacklisted at other places of employment.
In the last few years Professor Turchin has been chairman of the Moscow chapter of
Amnesty International, an organization that has worked for human rights throughout
the world. When other Soviet scholars were persecuted, including Andrei
Tverdokhlebov and Sergei Kovalev, Dr. Turchin helped publicize their plight. During
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this period, his wife, a mathematician, has financially supported her husband and their
two sons.

In 1974 and 1975 Dr. Turchin received invitations to teach at several American
universities, but the Soviet government refused to grant him an exit visa. Several
writers in the West speculated that he would soon be arrested and tried, but so far he
has been able to continue his activity, working within necessary limits. His apartment
has been searched by the police and he has been interrogated.

Dr. Turchin wrote The Phenomenon of Science before these personal difficulties
began, and he did not intend it to be a political statement. Indeed, the manuscript was
accepted for publication by a leading Soviet publishing house, and preliminary Soviet
reviewers praised its quality. Publication of the book was stopped only after Dr.
Turchin was criticized on other grounds. Therefore, that the initial publication of The
Phenomenon of Science is outside the Soviet Union, should not be seen as a result of
its content, but of the nonscientific activities of its author after it was written.

LOREN R. GRAHAM

Columbia University
June 1977
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Preface

WHAT IS scientific knowledge of reality? To answer this question from a scientific
point of view means to look at the human race from outside, from outer space so to
speak. Then human beings will appear as certain combinations of matter which
perform certain actions, in particular producing some kind of words and writing some
kind of symbols. How do these actions arise in the process of life's evolution? Can
their appearance be explained on the basis of some general principles related to the
evolutionary process? What is scientific activity in light of these general principles?
These are the questions we shall attempt to answer in this book.

Principles so general that they are applicable both to the evolution of science and to
biological evolution require equally general concepts for their expression. Such
concepts are offered by cybernetics, the science of relationships, control, and
organization in all types of objects. Cybernetic concepts describe physicochemical,
biological, and social phenomena with equal success. It is in fact the development of
cybernetics, and particularly its successes in describing and modeling purposeful
behavior and in pattern recognition, which has made the writing of this book possible.
Therefore it would be more precise to define our subject as the cybernetic approach to
science as an object of study.

The intellectual pivot of the book is the concept of the metasystem transition—the
transition from a cybernetic system to a metasystem, which includes a set of systems
of the initial type organized and controlled in a definite manner. I first made this
concept the basis of an analysis of the development of sign systems used by science.
Then, however, it turned out that investigating the entire process of life's evolution on
earth from this point of view permits the construction of a coherent picture governed
by uniform laws. Actually it would be better to say a moving picture, one which
begins with the first living cells and ends with present-day scientific theories and the
system of industrial production. This moving picture shows, in particular, the place of
the phenomenon of science among the other phenomena of the world and reveals the
significance of science in the overall picture of the evolution of the universe. That is
how the plan of this book arose. How convincingly this picture has been drawn I
propose to leave to the reader's judgment.

In accordance with the plan of the book, many very diverse facts and conceptions are
presented. Some of the facts are commonly known; I try to limit my discussion of
them, fitting them into the system and relating them to my basic idea. Other facts are
less well known, and in such cases I dwell on them in more detail. The same is true for
the conceptions; some are commonly recognized while others are less well known and,
possibly, debatable. The varied nature of the material creates a situation where
different parts of the book require different efforts from the reader. Some parts are
descriptive and easy to read, in other places it is necessary to go deeply into quite
specialized matters. Because the book is intended for a broad range of readers and
does not assume knowledge beyond the secondary school level, I provide the
necessary theoretical
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information in all such cases. These pages will require a certain effort of the untrained
reader.

The book gives an important place to the problems of the theory of knowledge and
logic. They are, of course, treated from a cybernetic point of view. Cybernetics is now
waging an attack on traditional philosophical epistemology, offering a new natural-
science interpretation of some of its concepts and rejecting others as untenable. Some
philosophers oppose the rise of cybernetics and consider it an infringement on their
territory. They accuse cyberneticists of making the truth “crude” and “simplifying” it;
they claim cyberneticists ignore the “fundamental difference” between different forms
of the movement of matter (and this is despite the thesis of the world's unity!). But the
philosopher to whom the possessive attitude toward various fields of knowledge is
foreign should welcome the attacks of the cyberneticists. The development of physics
and astronomy once destroyed natural philosophy, sparing philosophers of the need to
talk approximately about a subject which scientists could discuss exactly. It appears
that the development of cybernetics will do the same thing with philosophical
epistemology or, to be more cautious, with a significant part of it. This should be
nothing but gratifying. Philosophers will always have enough concerns of their own;
science rids them of some, but gives them others. Because the book is devoted to
science in toto as a definite method of interaction between human society and its
environment, it contains practically no discussion of concrete natural-science
disciplines. The presentation remains entirely at the level of the concepts of
cybernetics, logic, and mathematics, which are equally significant for all modern
science. The only exception is for some notions of modern physics which are
fundamentally important for the theory of sign systems. A concrete analysis of
science's interaction with production and social life was also outside the scope of the
problem. This is a distinct matter to which a vast literature has been devoted; in this
book I remain at the level of general cybernetic concepts.

It is dangerous to attempt to combine a large amount of material from different fields
of knowledge into a single, whole picture; details may become distorted, for a person
cannot be a specialist in everything. Because this book attempts precisely to create
such a picture, it is very likely that specialists in the fields of science touched on here
will find omissions and inaccuracies; such is the price which must be paid for a wide
scope. But such pictures are essential. It only remains for me to hope that this book
contains nothing more than errors in detail which can be eliminated without detriment
to the overall picture.

V.F. TURCHIN
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CHAPTER ONE

The Initial Stages of Evolution

 THE BASIC LAW OF EVOLUTION

IN THE PROCESS of the evolution of life, as far as we know, the totalmass of living
matter has always been and is now increasing and growing more complex in its
organization. To increase the complexity of the organization of biological forms, nature
operates by trial and error. Existing forms are reproduced in many copies, but these are
not identical to the original. Instead they differ from it by the presence of small random
variations. These copies then serve as the material for natural selection. They may act as
individual living beings, in which case selection leads to the consolidation of useful
variations, or elements of more complex forms, in which case selection is also directed to
the structure of the new form (for example, with the appearance of multicellular
organisms). In both cases selection is the result of the struggle for existence, in which
more viable forms supplant less viable ones.

This mechanism of the development of life, which was discovered by Charles Darwin,
may be called the basic law of evolution. It is not among our purposes to substantiate or
discuss this law from the point of view of those laws of nature, which could be declared
more fundamental. We shall take the basic law of evolution as given.

 THE CHEMICAL ERA

THE HISTORY OF LIFE before the appearance of the human being can be broken into
two periods, which we shall call the “chemical” era and the “cybernetic” era. The bridge
between them is the emergence of animals with distinct nervous systems, including sense
organs, nerve fibers for transmitting information, and nerve centers (nodes) for
converting this information. Of course, these two terms do not signify that the concepts
and methods of cybernetics are inapplicable to life in the “chemical” era; it is simply that
the animal of the “cybernetic” era is the classical object of cybernetics, the one to which
its appearance and establishments a scientific discipline are tied.

We shall review the history and logic of evolution in the pre cybernetic period only in
passing, making reference to the viewpoints of present-day biologists.[1]Three stages can
be identified in this period.

In the first stage the chemical foundations of life are laid. Macromolecules of nucleic
acids and proteins form with the property of replication, making copies or “prints” where
one macromolecule serves as a matrix for synthesizing a similar macromolecule from
elementary radicals. The basic law of evolution, which comes into play at this stage,
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causes matrices which have greater reproductive intensity to gain an advantage over
matrices with lesser reproductive intensity, and as a result more complex and active
macromolecules and systems of macromolecules form. Biosynthesis demands free
energy. Its primary sources solar radiation. The products of the partial decay of life forms
that make direct use of solar energy (photosynthesis) also contain a certain reserve of free
energy which may be used by the already available chemistry of the macromolecule.
Therefore, this reserve is used by special forms for which the products of decay serve as a
secondary source of free energy. Thus the division of life into the plant and animal
worlds arises.

The second stage of evolution is the appearance and development of the motor apparatus
in animals.

Plants and animals differ fundamentally in the way they obtain energy. With a given level
of illumination the intensity of absorption of solar energy depends entirely on the amount
of plant surface, not on whether it moves or remains stationary. Plants were refined by
the creation of outlying light catchers—green leaves secured to a system of supports and
couplings (stems, branches, and the like). This design works very well, ensuring a slow
shift in the green surfaces toward the light which matches the slow change in
illumination.

The situation is entirely different with animals, in particular with the most primitive types
such as the amoeba. The source of energy— food—fills the environment around it. The
intake of energy is determined by the speed at which food molecules are diffused through
the shell that separates the digestive apparatus from the external environment. The speed
of diffusion depends less on the size of the surface of the digestive apparatus than on the
movement of this surface relative to the environment; therefore it is possible for the
animal to take in food from different sectors of the environment. Consequently, even
simple, chaotic movement in the environment or, on the other hand, movement of the
environment relative to the organism (as is done, for example, by sponges which force
water through themselves by means of their cilia) is very important for the primitive
animal and, consequently, appears in the process of evolution. Special forms emerge
(intracellular formations in one-celled organisms and ones containing groups of cells in
multicellular organisms) whose basic function is to produce movement.

In the third stage of evolution the movements of animals become directed and the
incipient forms of sense organs and nervous systems appear in them. This is also a natural
consequence of the basic law. It is more advantageous for the animal to move in the
direction where more food is concentrated, and in order for it to do so it must have
sensors that describe the state of the external environment in all directions (sense organs)
and information channels for communication between these sensors and the motor
apparatus (nervous system). At first the nervous system is extremely primitive. Sense
organs merely distinguish a few situations to which the animal must respond differently.
The volume of information transmitted by the nervous system is slight and there is no
special apparatus for processing the information. During the process of evolution the
sense organs become more complex and deliver an increasing amount of information
about the external environment. At the same time the motor apparatus is refined, which
makes ever-increasing demands on the carrying capacity of the nervous system. Special
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formations appear—nerve centers which convert information received from the sense
organs into information controlling the organs of movement. A new era begins: the
“cybernetic” era.

 CYBERNETICS

TO ANALYZE evolution in the cybernetic period and to discover the laws governing the
organization of living beings in this period (for brevity we will call them “cybernetic
animals”) we must introduce certain fundamental concepts and laws from cybernetics.

The term “cybernetics” itself was, of course, introduced by Norbert Wiener, who defined
it descriptively as the theory of relationships and control in the living organism and the
machine. As is true in any scientific discipline, a more precise definition of cybernetics
requires the introduction of its basic concepts. Properly speaking, to introduce the basic
concepts is the same as defining a particular science, for all that remains to be added is
that a description of the world by means of this system of concepts is, in fact, the
particular, concrete science.

Cybernetics is based above all on the concept of the system, a certain material object
which consists of other objects which are called subsystems of the given system. The
subsystem of a certain system may, in its turn, be viewed as a system consisting of other
subsystems. To be precise, therefore, the meaning of the concept we have introduced
does not lie in the term “system” by itself, that is, not in ascribing the property of “being
a system” to a certain object (this is quite meaningless, for any object may be considered
a system), but rather in the connection between the terms “system” and “subsystem,”
which reflects definite relationship among objects.

The second crucial concept of cybernetics is the concept of the state of a system (or
subsystem). Just as the concept of the system relies directly on our spatial intuition, the
concept of state relies directly on our intuition of time and it cannot be defined except by
referring to experience. When we say that an object has changed in some respect we are
saying that it has passed into a different state. Like the concept of system. The concept of
state is a concealed relationship: the relationship between two moments in time. If the
world were immobile the concept of state would not occur, and in those disciplines where
the world is viewed statically, for example in geometry, there is no concept of state.

Cybernetics studies the organization of systems in space and time, that is, it studies how
subsystems are connected into a system and how change in the state of some subsystems
influences the state of other subsystems. The primary emphasis, of course, is on
organization in time which, when it is purposeful, is called control. Causal relations
between states of a system and the characteristics of its behavior in time which follow
from this are often called the dynamics of the system, borrowing a term from physics.
This term is not applicable to cybernetics because when we speak of the dynamics of a
system we are inclined to view it as something whole, whereas cybernetics is concerned
mainly with investigating the mutual influences of subsystems making up the particular



18

system. Therefore, we prefer to speak of organization in time, using the term dynamic
description only when it must be juxtaposed to the static description which considers
nothing but spatial relationships among subsystems.

A cybernetic description may have different levels of detail. The same system may be
described in general outline, in which it is broken down into a few large subsystems or
“blocks,” or in greater detail, in which the structure and internal connections of each
block are described. But there is always some final level beyond which the cybernetic
description does not apply. The subsystems of this level are viewed as elementary and
incapable of being broken down into constituent parts. The real physical nature of the
elementary subsystems is of no interest to the cyberneticist, who is concerned only with
how they are interconnected. The nature of two physical objects may be radically
different, but if at some level of cybernetic description they are organized from
subsystems in the same way (considering the dynamic aspect!), then from the point of
view of cybernetics they can be considered, at the given level of description, identical.
Therefore, the same cybernetic considerations can be applied to such different objects as
a radar circuit, a computer program, or the human nervous system.

 DISCRETE AND CONTINUOUS SYSTEMS

THE STATE OF A SYSTEM is defined through the aggregate of states of all its
subsystems, which in the last analysis means the elementary subsystems. There are two
types of elementary subsystems: those with a finite number of possible states, also called
subsystems with discrete states, and those with an infinite number, also called subsystems
with continuous states. The wheel of a mechanical calculator or taxi meter is an example
of a subsystem with discrete states. This wheel is normally in one of 10 positions which
correspond to the 10 digits between 0 and 9. From time to time it turns and passes from
one state into another. This process of turning does not interest us. The correct
functioning of the system (of the calculator or meter) depends entirely on how the
“normal” positions of the wheels are interconnected, while how the change from one
position (state) to another takes place is inconsequential. Therefore we can consider the
calculator as a system whose elementary subsystems can only be in discrete states. A
modern high-speed digital computer also consists of subsystems (trigger circuits) with
discrete states. Everything that we know at the present time regarding the nervous
systems of humans and animals indicates that the interaction of subsystems (neurons)
with discrete states is decisive in their functioning.

On the other hand, a person riding a bicycle and an anal computer are both examples of
systems consisting of subsystems with continuous states. In the case of the bicycle rider
these subsystems are all the parts of the bicycle and human body which are moving
relative to one another: the wheels, pedals, handlebar, legs, arms, and so on. Their states
are their positions in space. These positions are described by coordinates (numbers)
which can assume continuous sets of values.
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If a system consists exclusively of subsystems with discrete states then the system as a
whole must be a system with discrete states. We shall simply call such systems “discrete
systems,” and we shall call systems with continuous sets of states “continuous systems.”
In many respects discrete systems are simpler to analyze than continuous ones. Counting
the number of possible states of a system, which plays an important part in cybernetics,
requires only a knowledge of elementary arithmetic in the case of discrete systems.
Suppose discrete system A consists of two subsystems a1 and a2; subsystem a1 may have
n1 possible states, while subsystem a2 may have n2. Assuming that each state of system a1

can combine with each state of system a2 we find that N, the number of possible states of
system A, is n1n2. If system A consists of m subsystems a1 where i  = 1, 2, . . .,  m, then

N = n1n2, . . . nm

From this point on we shall consider only discrete systems. In addition to the pragmatic
consideration that they are simpler in principle than continuous systems, there are two
other arguments for such a restriction.

First, all continuous systems can in principle be viewed as discrete systems with an
extremely large number of states. In light of the knowledge quantum physics has given
us, this approach can even be considered theoretically more correct. The reason why
continuous systems do not simply disappear from cybernetics is the existence of a very
highly refined apparatus for consideration of such systems: mathematical analysis, above
all, differential equations.

Second, the most complex cybernetic systems, both those which have arisen naturally and
those created by human hands, have invariably proved to be discrete. This is seen
especially clearly in the example of animals. The relatively simple biochemical
mechanisms that regulate body temperature, the content of various substances in the
blood, and similar characteristics are continuous, but the nervous system is constructed
according to the discrete principle.

 THE RELIABILITY OF DISCRETE SYSTEMS

WHY DO DISCRETE SYSTEMS prove to be preferable to continuous ones when it is
necessary to perform complex functions? Because they have a much higher reliability.  In
a cybernetic device based on the principle of discrete states each elementary subsystem
may be in only a small number of possible states, and therefore the system ordinarily
ignores small deviations from the norm of various physical parameters of the system,
reestablishing one of its permissible states in its “primeval purity.” In a continuous
system, however, small disturbances continuously accumulate and if the system is too
complex it ceases functioning correctly. Of course, in the discrete system too there is
always the possibility of a breakdown, because small changes in physical parameters do
lead to a finite probability that the system will switch to an “incorrect” state. Nonetheless,
discrete systems definitely have the advantage. Let us demonstrate this with the following
simple example.



20

Suppose we must transmit a message by means of electric wire over a distance of, say,
100 kilometers (62 miles). Suppose also that we are able to set up an automatic station for
every kilometer of wire and that this station will amplify the signal to the power it had at
the previous station and, if necessary, convert the signal.

Figure 1.1. Transmission of a signal in continuous and discrete systems (The
shaded part shows the area of signal ambiguity.)

We assume that the maximum signal our equipment permits us to send has a magnitude
of one volt and that the average distortion of the signal during transmission from station
to station (noise) is equal to 0.1 volt.

First let us consider the continuous method of data transmission. The content of the
message will be the amount of voltage applied to the wire at its beginning. Owing to
noise, the voltage at the other end of the wire—the message received—will differ from
the initial voltage. How great will this difference be? Considering noise in different
segments of the line to be independent, we find that after the signal passes the 100
stations the root-mean square magnitude of noise will be one volt (the mean squares of
noise are summed). Thus, average noise is equal to the maximum signal, and it is
therefore plain that we shall not in fact receive any useful information. Only by accident
can the value of the voltage received coincide with the value of the voltage transmitted.
For example, if a precision of 0.1 volt satisfies us the probability of such a coincidence is
approximately 1/10.

Now let us look at the discrete variant. We shall define two “meaningful’ states of the
initial segment of the wire: when the voltage applied is equal to zero and when it is
maximal (one volt). At the intermediate stations we install automatic devices which
transmit zero voltage on if the voltage received is less than 0.5 volt and transmit a normal
one-volt signal if the voltage received is more than 0.5 volt. In this case, therefore, for
one occasion (one signal) information of the “yes/no” type is transmitted (in cybernetics
this volume of information is called one “bit”). The probability of receiving incorrect
information depends strongly on the law of probability distribution for the magnitude of
noise. Noise ordinarily follows the so-called normal law. Assuming this law we can find
that the probability of error in transmission from one station to the next (which is equal to
the probability that noise will exceed 0.5 volt) is 0.25 . 10-6. Thus the probability of an
error in transmission over the full length of the line is 0.25 . 10-4. To transmit the same
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message as was transmitted in the previous case—that is, a value between 0 and 1 with a
precision of 0.1 of a certain quantity lying between 0 and l—all we have to do is send
four “yes/no” type signals. The probability that there will be error in at least one of the
signals is 10-4. Thus, with the discrete method the total probability of error is 0.01
percent, as against 90 percent for the continuous method.

 INFORMATION

WHEN WE BEGAN describing a concrete cybernetic system it was impossible not to
use the term information—a word familiar and understandable in its informal
conversational meaning. The cybernetic concept of information, however, has an exact
quantitative meaning.

Let us imagine two subsystems A and B

The two subsystems are interconnected in such a way that a change in the state of A leads
to a change in the state of B. This can also be expressed as follows: A influences B. Let
us consider the state of B at a certain moment in time t1and at a later moment t2. We shall
signify the first state as S1 and the second as S2. StateS2 depends on state S1. The relation
of S2 to S1 is probabilistic, however, not unique. This is because we are not considering an
idealized theoretical system governed by a deterministic law of movement but rather a
real system whose states S1 are the results of experimental data. With such an approach
we may also speak of the law of movement, understanding it in the probabilistic
sense—that is, as the conditional probability of state S2 at moment t2 on the condition that
the system was instate S1 at moment t1. Now let us momentarily ignore the law of
movement. We shall use N to designate the total number of possible states of subsystem
B and imagine that conditions are such that at any moment in time system B can assume
any of N states with equal probability, regardless of its state at the preceding moment. Let
us attempt to give a quantitative expression to the degree(or strength) of the cause-effect
influence of system A on such an inertialess and “lawless” subsystem B.  Suppose B acted
upon by A switches to a certain completely determinate state. It is clear that the “strength
of influence” which’s required from A for this depends on N, and will be larger as N is
larger. For example, if N= 2 then B, even if it is completely unrelated to A, when acted
upon by random factors can switch with a probability of .5 to the very state A
“recommends.” But if N = 109, when we have noticed such a coincidence we shall hardly
doubt the influence of A on B. Therefore, some monotonic increasing function of N



22

should serve as the measure of the 'strength of the influence” of A on B. What this
essentially means is that it serves as a measure of the intensity of the cause-effect
relationship between two events, the state of A in the time interval from t1 to t2 and the
state of B at t2. In cybernetics this measure is called the quantity of information
transmitted from A to B between moments in time t1 and t2, and a logarithm serves as the
monotonic increasing function. So, in our example, the quantity of information I passed
from A to B is equal to log N.

Selection of the logarithmic function is determined by its property according to which

log N1N2 = log N1+ log N2

Suppose system A influences system B which consists of two independent subsystems B1

and B2 with number of possible states N1 and N2 respectively.

Then the number of states of system B is N1N2and the quantity of information I that must
be transmitted to system B in order for it to assume one definite state is, owing to the
above-indicated property of the logarithm, the sum

I = log N1N2 = logN1  + log N2 = I1 + I2

where I1 and I2 are the quantities of information required by subsystems B1 +B2. Thanks to
this property the information assumes definite characteristics of a substance; it spreads
over the independent subsystems like a fluid filling a number of vessels. We are speaking
of the joining and separation of information flows, information capacity, and information
processing and storage.

The question of information storage is related to the question of the law of movement.
Above we mentally set aside the law of movement in order to define the concept of
information transmission. If we now consider the law of movement from this new point
of view, it can be reduced to the transmission of information from system B at moment t1

to the same system B at moment t1. If the state of the system does not change with the
passage of time, this is information storage. If state S2 is uniquely determined by S1 at a
preceding moment in time the system is called fully deterministic. If S1 is uniquely
determined by S2the system is called reversible; for a reversible system it is possible in
principle to compute all preceding states on the basis of a given state because information
loss does not occur. If the system is not reversible information is lost. The law of
movement is essentially something which regulates the flow of information in time from
the system and back to itself.
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Figure 1.4 shows the chart of information transmission from system A to system C
through system B.

B is called the communication channel. The state of B can be influenced not only by the
state of system A, but also by a certain uncontrolled factor X, which is called noise. The
final state of system C in this case depends not only on the state of A, but also on factor X
(information distortion). One more important diagram of information exchange is shown
in figure 1.5.

This is the so-called feedback diagram. The state of system A at t1 influences the state of
B at t2, then the latter influences the state of A at t3. The circle of information movement is
completed.

With this we conclude for now our familiarization with the general concepts of
cybernetics and turn to the evolution of life on earth.

 THE NEURON

THE EXTERNAL APPEARANCE of a nerve cell (neuron) is shown schematically in
figure 1.6.
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Figure 1.6. Diagram of the structure of a neuron.

A neuron consists of a fairly large (up to 0.1 mm) cell body from which several processes
called dendrites spread, giving rise to finer and finer processes like the branching of a
tree. In addition to the dendrites one other process branches out from the body of the
nerve cell. This is the axon, which resembles a long, thin wire. Axons can be very long,
up to a meter, and they end in treelike branching systems as do the dendrites. At the ends
of the branches coming from the axon one can see small plates or bulblets. The bulblets
of one neuron approach close to different segments of the body or dendrites of another
neuron, almost touching them.

These contacts are called synapses and it is through them that neurons interact with one
another. The number of bulblets approaching the dendrites of the single neuron may run
into the dozens and even hundreds. In this way the neurons are closely interconnected
and form a nervenet.

When one considers certain physicochemical properties (above all the propagation of
electrical potential over the surface of the cell) one discovers the neurons can be in one of
two states—the state of dormancy or the state of stimulation. From time to time,
influenced by other neurons or outside factors, the neuron switches from one state to the
other. This process takes a certain time, of course, so that an investigator who is studying
the dynamics of the electrical state of a neuron, for example, considers it a system with
continuous states. But the information we now have indicates that what is essential for
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the functioning of the nervous system as a whole is not the nature of switching processes
but the very fact that the particular neurones are in one of these two states. Therefore, we
may consider that the nerve net is a discrete system which consists of elementary
subsystems (the neurons) with two states.

When the neuron is stimulated, a wave of electrical potential runs along the axon and
reaches the bulblets in its branched tips. From the bulblets the stimulation is passed
across the synapses to the corresponding sectors of the cell surface of other neurons. The
behavior of a neuron depends on the state of its synapses. The simplest model of the
functioning of the nerve net begins with the assumption that the state of the neuron at
each moment in time is a single-valued function of the state of its synapses. It has been
established experimentally that the stimulation of some synapses promotes stimulation of
the cell, whereas the stimulation of other synapses prevents stimulation of the cell.
Finally, certain synapses are completely unable to conduct stimulation from the bulblets
and therefore do not influence the state of the neuron. It has also been established that the
conductivity of a synapse increases after the first passage of a stimulus through it.
Essentially a closing of the contact occurs. This explains how the system of
communication among neurones, and consequently the nature of the nervenet's
functioning, can change without a change in the relative positions of the neurons.

The idea of the neuron as an instantaneous processor of information received from the
synapses is, of course, very simplified. Like any cell the neuron is a complex machine
whose functioning has not yet been well understood. This machine has a large internal
memory, and therefore its reactions to external stimuli may show great variety. To
understand the general rules of the working of the nervous system, however. we can
abstract from these complexities (and really, we have no other way to go!) and begin with
the simple model outlined above.

 THE NERVE NET

A GENERALIZED DIAGRAM of the nerve system of the “cybernetic animal” in its
interaction with the environment is shown in figure 1.7.

Figure 1.7. Nervous system of the “cybernetic animal”
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Those sensory nerve cells which are stimulated by the action of outside factors are called
receptors (that is, receivers) because they arête first to receive information about the state
of the environment. This information enters the nerve net and is converted by it. As a
result certain nerve cells called effectors are stimulated. Branches of the effector cells
penetrate those tissues of the organism which the nervous system affects directly.
Stimulation of the effector causes a contraction of the corresponding muscle or the
stimulation of the activity of the appropriate gland. We shall call the state of all receptors
at a certain moment in time the situation at that moment. (It would be more precise—if
more cumbersome—to say the “result of the effect of the situation on the sense organs.”)
We will call the state of all the effectors the “action.”  Therefore, the role of the nerve net
is to convert a situation into an action.

It is convenient to take the term “environment” from figure 1.7 to mean not just the
objects which surround the animal, but also its bone and muscle system and generally
everything that is not part of the nervous system. This makes it unnecessary to give
separate representations in the diagram to the animal body and what is not the body,
especially because this distinction is not important in principle for the activity of the
nervous system. The only thing that is important is that stimulation of the effectors leads
to certain changes in the “environment.” With this general approach to the problem as the
basis of our consideration, we need only classify these changes as “useful” or “harmful”
for the animal without going into further detail.

The objective of the nervous system is to promote the survival and reproduction of the
animal. The nervous system works well when stimulation of the effectors leads to
changes in the state of the environment that help the animal survive or reproduce, and it
works badly when it leads to the reverse. With its increasing refinement in the process of
evolution, the nervous system has performed this task increasingly well. How does it
succeed in this? What laws does this process of refinement follow?

We will try to answer these questions by identifying in the evolution of the animal
nervous system several stages that are clearly distinct from a cybernetic point of view and
by showing that the transition from each preceding stage to each subsequent stage
follows inevitably from the basic law of evolution. Because the evolution of living beings
in the cybernetic era primarily concerns the evolution of their nervous systems, a
periodization of the development of the nervous system yields a periodization of the
development of life as a whole.

 THE SIMPLE REFLEX (IRRITABILITY)

THE SIMPLEST VARIANT of the nerve net is when there is no net at all. In this case
the receptors are directly connected to the effectors and stimulation from one or several
receptors is transmitted to one or several effectors. We shall call such a direct connection
between stimulation of a receptor and an effector the simple reflex.
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This stage, the third in our all-inclusive enumeration of the stages of evolution, is the
bridge between the chemical and cybernetic eras. The Coelenterata are animals fixed at
the level of the simple reflex. As an example let us take the hydra, which is studied in
school as a typical representative of the Coelenterata. The body of a hydra has the shape
of an elongated sac. Its interior, the coelenteron, is connected to the environment through
a mouth, which is surrounded by several tentacles. The walls of the sac consist of two
layers of cells: the inner layer (entoderm) and the outer layer (ectoderm). Both the
ectoderm and the entoderm have many muscle cells which contain small fibers that are
able to contract. thus setting the body of the hydra in motion. In addition, there are nerve
cells in the ectoderm; the cells located closest to the surface are receptors and the cells
which are set deeper, among the muscles, are effectors. If a hydra is pricked with a needle
it squeezes itself into a tiny ball. This is a simple reflex caused by transmission of the
stimulation from the receptors to the effectors.

Figure 1.8. The structure of the hydra.

But the hydra is also capable of much more complex behavior. After it has captured prey,
the hydra uses its tentacles to draw the prey to its mouth and then swallows the prey. This
behavior can also be explained by the aggregate action of simple reflexes connecting
effectors and receptors locally within small segments of the body. For example, the
following model of a tentacle explains its ability to wrap itself around captured objects.
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Figure 1.9. Model of a tentacle

Let us picture a certain number of links connected by hinges (for simplicity we shall
consider a two-dimensional picture). Points A and B, A ' and B', B and C, and B' and C',
etc. are interconnected by strands which can contract (muscles). All these points are
sensitive and become stimulated when they touch an object (receptors). The stimulation
of each point causes a contraction of the two strands connected to it (reflex).

 THE COMPLEX REFLEX

THE SIMPLE REFLEX relationship between the stimulated cell and the muscle cell
arises naturally, by the trial and error method, in the process of evolution. If the
correlation between stimulation of one cell and contraction of another proves useful for
the animal, then this correlation becomes established and reinforced. Where
interconnected cells are mechanically copied in the process of growth and reproduction,
nature receives a system of parallel-acting simple reflexes resembling the tentacle of the
hydra. But when nature has available a large number of receptors and effectors which are
interconnected by pairs or locally, there is a “ temptation” to make the system of
connections more complex by introducing intermediate neurons. This is advantageous
because where there is a system of connections among all neurons, forms of behavior that
are not possible where all connections are limited to pairs or localities now become so.
This point can be demonstrated by a simple calculation of all the possible methods of
converting a situation into an action with each method of interconnection. For example,
assume that we have n receptors and effectors connected by pairs. In each pair the
connection may be positive (stimulation causes stimulation and dormancy evokes
dormancy) or negative (stimulation evokes dormancy and dormancy causes stimulation).
In all, therefore, 2n variants are possible, which means 2n variants of behavior. But if we
assume that the system of connections can be of any kind, which into say that the state of
each effector (stimulation or dormancy) can depend in any fashion on the state of all the
receptors, then a calculation of all possible variants of behavior yields the number
*2(2^n)n, which is immeasurably larger than 2n .
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Exactly the same calculation leads to the conclusion that joining any subsystems which
join independent groups of receptors and effectors into single system always leads to an
enormous increase in the number of possible variants of behavior. Throughout the entire
course of the history of life, therefore, the evolution of the nervous system has progressed
under the banner of increasing centralization.

But 'centralization” can mean different thins. If all neurons are connected in one
senselessly confused clump, then the system—despite its extremely “centralized”
nature—will hardly have a chance to survive in the struggle for existence. Centralization
poses the following problem: how to select from all the conceivable ways of joining
many receptors with many effectors (by means of intermediate neurons if necessary) that
way which will correlate a correct action (that is, one useful for survival and
reproduction) to each situation? After all, a large majority of the ways of interconnection
do not have this characteristic.

We know that nature takes every new step toward greater complexity in living structures
by the trial and error method. Let us see what direct application of the trial and error
method to our problem yields. As an example we shall consider a small system consisting
of 100 receptors and100 effectors. We shall assume that we have available as many
neurons as needed to create an intermediate nerve net and that we are able to determine
easily whether the particular method of connecting neurons produces a correct reaction to
each situation. We shall go through all conceivable ways of connection until we find the
one we need. Where n = 100 the number of functionally different nerve nets among n
receptors and n effectors is

2(2^n)n  10(10^32)

This is an inconceivably large number. We cannot sort through such a number of variants
and neither can Mother Nature. If every atom in the entire visible universe were engaged
in examining variants and sorting them at a speed of I billion items a second, even after
billions of billions of years (and our earth has not existed for more than 10 billion years)
not even one billionth of the total number of variants would have been examined.

But somehow an effectively functioning nerve net does form! And higher animals have
not hundreds or thousands but millions of receptors and effectors. The answer to the
riddle is concealed in the hierarchical structure of the nervous system. Here again we
must make an excursion into the area of general cybernetic concepts. We shall call the
fourth stage of evolution the stage of the complex reflex, but we shall not be able to
define this concept until we have familiarized ourselves with certain facts about
hierarchically organized nerve nets.

[1]I am generally following the report by S. E. Schnoll entitled “The Essence of Life.
Invariance in the General Direction of Biological Evolution,” in Materialy seminara
“Dialektika i sovremennoe estestvoznanie”(Materials of the '“Dialectics and Modern
Natural Science” Seminar), Dubna, 1967.



30

CHAPTER TWO

Hierarchical Structures

 THE CONCEPT OF THE CONCEPT

LET US LOOK at a nerve net which has many receptors at the input but just one effector
at the output. Thus, the nerve net divides the set of all situations into two subsets:
situations that cause stimulation of the effector and situations that leave it dormant. The
task being performed by the nerve net in this case is called recognition (discrimination),
recognizing that the situation belongs to one of the two sets. In the struggle for existence
the animal is constantly solving recognition problems, for example, distinguishing a
dangerous situation from one that is not, or distinguishing edible objects from inedible
ones. These are only the clearest examples. A detailed analysis of animal behavior leads
to the conclusion that the performance of any complex action requires that the animal
resolve a large number of “small” recognition problems continuously.

In cybernetics a set of situations is called a concept.[1] To make clear how the cybernetic
understanding of the word “concept” is related to its ordinary meaning let us assume that
the receptors of the nerve net under consideration are the light-sensitive nerve endings of
the retina of the eye or, speaking in general, some light-sensitive points on a screen which
feed information to the nerve net. The receptor is stimulated when the corresponding
sector of the screen is illuminated (more precisely, when its illumination is greater than a
certain threshold magnitude) and remains dormant if the sector is not illuminated. If we
imagine a light spot in place of each stimulated receptor and a dark spot in place of each
unstimulated one, we shall obtain a picture that differs from the image striking the screen
only by its discrete nature (the fact that it is broken into separate points) and by the
absence of semitones. We shall consider that there are a large number of points
(receptors) on the screen and that the images which can appear on the screen (“pictures”)
have maximum contrasts—that is, they consist entirely of black and white. Then each
situation corresponds to a definite picture.

According to traditional Aristotelian logic, when we think or talk about a definite picture
(for example the one in the upper left corner of figure2.1) we are dealing with a particular
concept. In addition to particular concepts there are general or abstract concepts. For
example, we can think about the spot in general—not as a particular, concrete spot (for
example, one of those represented in the top row in figure 2.1) but about the spot as such.
In the same way we can have an abstract concept of a straight line, a contour, a rectangle,
a square, and so on.[2]
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Figure 2.1. Pictures representing various concepts.

But what exactly does “possess an abstract concept” mean? How can we test whether
someone possesses a given abstract concept—for example the concept of “spot”? There is
plainly just one way: to offer the person being tested a series of pictures and ask him in
each case whether or not it is a spot. If he correctly identifies each and every spot (and
keep in mind that this is from the point of view of the test-maker) this means that he
possesses the concept of spot. In other words, we must test his ability to recognize the
affiliation of any picture offered with the set of pictures which we describe by the word
“spot.” Thus the abstract concept in the ordinary sense of the word (in any case, when we
are talking about images perceived by the sense organs) coincides with the cybernetic
concept we introduced—namely, that the concept is a set of situations. Endeavoring to
make the term more concrete, we therefore call the task of recognition the task of pattern
recognition, if we have in mind “generalized patterns” or the task of recognizing
concepts, if we have in mind the recognition of particular instances of concepts.

In traditional logic the concrete concept of the “given picture” corresponds to a set
consisting of one situation (picture). Relationships between sets have their direct analogs
in relationships between concepts. If capital letters are used to signify concepts and small
ones are used for the respective sets, the complement of set a, that is, the set of all
conceivable situations not included in a, corresponds to the concept of “not A. “The
intersection of sets a, and b, that is, the set of situations which belong to both a and b,
corresponds to the concept of “A and B simultaneously.” For example, if A is the concept
of “rectangle” and B is the concept of “rhombus”,  then “A and B simultaneously” is the
concept of “square.” The union of sets a and b, that is, the set of situations which belong
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to at least one of sets a and b, corresponds to the concept “either A, B or A and B.” If set a
includes set b, that is, each element of b is included in a but the contrary is not true, then
the concept B is a particular case of the concept A. In this case it is said that the concept A
is more general (abstract) than the concept B, and the concept B is more concrete than A.
For example, the square is a particular case of the rectangle. Finally, if sets a and b
coincide then the concepts A and B are actually identical and distinguished, possibly, by
nothing but the external form of their description, the method of recognition. Having
adopted a cybernetic point of view, which is to say having equated the concept with a set
of situations, we should consider the correspondences enumerated above not as
definitions of new terms but simply as an indication that there are several pairs of
synonyms in our language.

 DISCRIMINATORS AND CLASSIFIERS

WE SHALL CALL a nerve net that performs the task of recognition a discriminator
(recognizer), and the state of the effector at its output will simply be called the state of the
discriminator. Moving on from the concept of discriminator, we shall introduce the
somewhat more general concept of classifier. The discriminator separates the set of all
conceivable situations into two nonintersecting subsets: A and not -A. It is possible to
imagine the division of a complete set of situations into an arbitrary number n of
nonintersecting subsets. Such subsets are ordinarily called classes. Now let us picture a
certain subsystem C which has n possible states and is connected by a nerve net
containing receptors in such a way that when a situation belongs to class i (concept i) the
subsystem C goes into state i. We shall call such a subsystem and its nerve net a classifier
for a set of n concepts (classes), and when speaking of the state of a classifier it will be
understood that we mean the state of subsystem C (output subsystem). The discriminator
is, obviously, a classifier with number of states n= 2.

In a system such as the nervous system, which is organized on the binary principle, the
subsystem C with n sets will, of course, consist of a certain number of elementary
subsystems with two stages that can be considered the output subsystems (effectors) of
the discriminators. The state of the classifier will, therefore, be described by indicating
the states of a number of discriminators. These discriminators, however, can be closely
interconnected by both the structure of the net and the function performed in the nervous
system; in this case they should be considered in the aggregate as one classifier.

If no restrictions are placed on the number of states n the concept of the classifier really
loses its meaning. In fact, every nerve net correlates one definite output state to each
input state, and therefore a set of input states corresponds to each output state and these
sets do not intersect. Thus, any cybernetic device with an input and an output can be
formally viewed as a classifier. To give this concept a narrower meaning we shall
consider that the number of output states of a classifier is many fewer than the number of
input states so that the classifier truly “classifies’ the input states (situations) according to
a relatively small number of large classes.
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 HIERARCHIES OF CONCEPTS

Figure 2.2. Hierarchy of classifiers.

FIGURE 2.2 shows a diagram of a classifier organized on the hierarchical principle. The
hierarchy is, in general, that structure of a system made up of subsystems in which each
subsystem is given a definite whole number, called its level, and the interaction of
subsystems depends significantly on the difference in their levels according to some
general principle. Ordinarily this principle is transmission of information in a definite
direction, from top to bottom or bottom to top, from a given level to the next. In our case
the receptors are called the zero level and the information is propagated from the bottom
up. Each first-level subsystem is connected to a certain number of receptors and its state
is determined by the states of the corresponding receptors. In the same way each second-
level subsystem is connected with a number of first-level subsystems and so on. At the
highest level (the fourth level in the diagram) there is one output subsystem, which gives
the final answer regarding the affiliation of the situations with a particular class.

All subsystems at intermediate levels are also classifiers. The direct input for a classifier
at level K is the states of the classifiers on level K - 1, the aggregate of which is the
situation subject to classification on level K. In a hierarchical system containing more
than one intermediate level, it is possible to single out hierarchical subsystems that bridge
several levels. For example, it is possible to consider the states of all first-level classifiers
linked to a third-level classifier as the input situation for the third-level classifier.
Hierarchical systems can be added onto in breadth and height just as it is possible to put
eight cubes together into a cube whose edges are twice as long as before. One can add
more cubes to this construction to make other forms.

Because there is a system of concepts linked to each classifier the hierarchy of classifiers
generates a hierarchy of concepts. Information is converted as it moves from level to
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level and is expressed in terms of increasingly “high-ranking” concepts. At the same time
the amount of information being transmitted gradually decreases, because information
that is insignificant from the point of view of the task given to the “supreme”(output)
classifier is discarded.

Let us clarify this process with the example of the pictures shown in figure 2.1. Suppose
that the assigned task is to recognize “houses”.  We shall introduce two intermediate
concept levels. We shall put the aggregate of concepts of “segment” on the first level and
the concept of “polygon” on the second. The concept of “house” comes on the third level.

By the concepts of “segment” we mean the aggregate of concepts of segments with
terminal coordinates x1, y1, and x2, y2, where the numbers x1, y1, and x2, y2, can assume any
values compatible with the organization of the screen and the system of coordinates. To
be more concrete, suppose that the screen contains1,000x 1,000 light-sensitive points.
Then the coordinates can be ten-digit binary numbers (210 = 1,024 > 1,000), and a
segment with given ends will require four such numbers, that is to say 40 binary orders,
for its description. Therefore, there are 240 such concepts in all. These are what the first-
level classifiers must distinguish.

One should not think that a segment with given ends is a concrete concept—a set
consisting of a single picture. When we classify this picture as a segment with given ends
we are abstracting from the slight curvature of the line, from variations in its thickness,
and the like (see figure 2.1). There are different ways to establish the criterion for
determining which deviations from the norm should be considered insignificant. This
does not interest us now.

Each first-level classifier should have at the output a subsystem of 40 binary orders on
which the coordinates of the ends of the segment are “recorded.” How many classifiers
are needed? This depends on what kind of pictures are expected at the input of the
system. Let us suppose that 400 segments are sufficient to describe any picture. This
means that 400 classifiers are enough. We shall divide the entire screen into 400 squares
of 50 × 50 points and link each square with a classifier which will fix a segment which is
closest to it in some sense (the details of the division of labor among classifiers are
insignificant). If there is no segment, let the classifier assume some conventional
“meaningless” state, for example where all four coordinates are equal to 1,023.

If our system is offered a picture that shows a certain number of segments then the
corresponding number of first-level classifiers will indicate the coordinates of the ends of
the segments and the remaining classifiers will assume the state “no segment.” This is a
description of the situation in terms of the concepts of “segment.” Let us compare the
amount of information at the zero level and at the first level. At the zero level of our
system 1,000 × 1,000 = 106 receptors receive 1 million bits of information. At the first
level there are 400 classifiers, each of which contains 40 binary orders, that is, 40 bits of
information; the total is 16,000 bits. During the transition to the first level the amount of
information has decreased 62.5 times. The system has preserved only the information it
considers “useful” and discarded the rest. The relativity of these concepts is seen from the
fact that if the picture offered does not correspond tithe hierarchy of concepts of the
recognition system the system's reaction will be incorrect or simply meaningless. For
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example, if there are more than 400 segments in the picture not all of them will be fixed,
and if a picture with a spot is offered the reaction to it will be the same as to any empty
picture.

We divide the aggregate of concepts of “polygon,” which occupies the second level of
the hierarchy, into two smaller aggregates: isosceles triangles and parallelograms. We
single out a special aggregate of rectangles from the parallelograms. Considering that
assigning the angle and length requires the same number of bits (10) as for the
coordinate, we find that 50 bits of information are needed to assign a definite isosceles
triangle, 60 bits for a parallelogram, and 50 bits for a rectangle. The second-level
classifiers should be designed accordingly. It is easy to see that all the information they
need is available at the first level. The existence of a polygon is established where there
are several segments that stand in definite relationships to one another. There is a further
contraction of the information during the transition to the second level. Taking one third
of the total of 400 segments for each type of polygon we obtain a system capable of
fixing 44 triangles, 33 rectangles, and 33 parallelograms (simultaneously). Its information
capacity is 5,830 bits, which is almost three times less than the capacity of the first level.
On the other hand, when faced with an irregular triangle or quadrangle, the system is
nonplussed!

It is easy to describe the concept of “house” in the language of second-level concepts. A
house consists of four polygons—one rectangle, one isosceles triangle, and two
parallelograms—which stand in definite relationships to one another. The base of the
isosceles triangle coincides with one side of the rectangle, and so on.

To avoid misunderstanding it should be pointed out that the hierarchy of concepts we are
discussing has a much more general meaning than the hierarchy of concepts by
abstractness (generality) which is often simply called the “hierarchy of concepts.” The
pyramid of concepts used in classifying animals is an example of a hierarchy by
generality. The separate individual animals (the “concrete” concepts) are set at the zero
level. At the first level are the species, at the second the genera, then the orders families,
classes, and phyla. At the peak of the pyramid is the concept of “animal.’ Such a pyramid
is a particular case of the hierarchy of concepts in the general sense and is distinguished
by the fact that each concept at level k is formed by joining a certain number of concepts
at level k - 1. This is the case of very simply organized classifiers. In the general case
classifiers can be organized any way one likes. The discriminators necessary to an animal
are closer to a hierarchy based on complexity and subtlety of concepts, not generality.

 HOW THE HIERARCHY EMERGES

LET US RETURN again to the evolution of the nervous system. Can a hierarchy of
classifiers arise through evolution? It is apparent that it can, but on one condition: if the
creation of each new level of the hierarchy and its subsequent expansion are useful to the
animal in the struggle for existence. As animals with highly organized nervous systems
do exist, we may conclude that such an expansion is useful. Moreover, studies of
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primitive animals show that the systems of concepts their nervous systems are capable of
recognizing are also very primitive. Consequently, we see for ourselves the usefulness of
the lowest level of the hierarchy of classifiers.

Let us sketch the path of development of the nervous system. In the initial stages we find
that the animal has just a few receptors. The number of possible methods of
interconnecting them (combinations) is relatively small and permits direct selection. The
advantageous combination is found by the trial and error method. That an advantageous
combination can exist even for a very small number of neurons can easily be seen in the
following example. Suppose that there are just two light-sensitive receptors. If they are
set on different sides of the body the information they yield (difference in illuminations)
is sufficient for the animal to be able to move toward or away from the light. When an
advantageous combination has been found and realized by means, we shall assume, of
one intermediate neuron (such neurons are called associative), the entire group as a whole
may be reproduced. In this way there arises a system of associative neurons which, for
example, register differences between the illumination of receptors and sum these
differences, as in Figure 2.3a.

Figure 2.3. Simplest types of connections among receptors.

Any part of a system of connected neurons may be reproduced, for example one or
several receptors. In this way there arises a system of connections of the type shown in
figure 2.3b. The diagrams of both types taken together form the first level of a hierarchy,
based on the concepts of the sum and difference of illuminations. Because it is very
important that animal movement be able to adjust to changes in illumination at a given
point, we may assume that neurons capable of being triggered by changes in illumination
must have appeared in the very early stages of evolution. They could have been either
receptors or associative neurons connected to one or several receptors. In general, first-
level classifiers can be described as registers of the sum and differences of the stimuli of
receptors in space and time.

Having proven their usefulness for the animal, first-level classifiers become an
established part of its capabilities in the struggle for existence. Then the next trial and
error series begins: a small number of first-level classifiers (to be more precise, their
output subsystems) are interconnected into one second-level trial classifier until a useful
combination is obtained. Then the reproduction of this combination is useful. It may be
assumed that on the second level of the hierarchy (pertaining to the organs of sight) there
appear such concepts as the boundary between light and shadow, the spot, the average
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illumination of a spot, and movement of the boundary between light and shadow. The
successive levels of the hierarchy will arise in the same way.

The scheme we have outlined leads one to think that any complex system which has
arisen by the method of trial and error in the process of evolution should have a
hierarchical organization. In fact, nature—unable to sort through all conceivable
combinations of a large number of elements—selects combinations from a few elements.
When it finds a useful combination, nature reproduces it and uses it (the whole of it) as an
element to be tentatively connected with a small number of other similar elements. This
is how the hierarchy arises. This concept plays an enormous role in cybernetics. In fact,
any complex system, whether it has arisen naturally or been created by human beings,
can be considered organized only if it is based on some kind of hierarchy or interweaving
of several hierarchies. At least we do not yet know any organized systems that are
arranged differently.

 SOME COMMENTS ON REAL HIERARCHIES

THUS FAR our conclusions have been purely speculative. How do they standup against
the actual structure of the nervous systems of animals and what can be said about the
concepts of intermediate levels of a hierarchy which has actually emerged in the process
of evolution?

When comparing our schematic picture with reality the following must be considered.
The division of a system of concepts into levels is not so unconditional as we have
silently assumed. There may be cases where concepts on level K are used directly on
level K + 2, bypassing level K + 1. In figure 2.2 we fitted such a possibility into the
overall diagram by introducing classifiers which are connected to just one classifier of the
preceding level and repeat its state; they are shown by the squares containing the x' s. In
reality, of course, there are no such squares, which complicates the task of breaking the
system up into levels. To continue, the hierarchy of classifiers shown in figure 2.2. has a
clearly marked pyramidal character; at higher levels there are fewer classifiers and at the
top level there is just one. Such a situation occurs when a system is extremely
“purposeful,” that is, when it serves some very narrow goal, some precisely determined
method of classifying situations. In the example we have cited this was recognition of '
houses.’ And we saw that for such a system even irregular triangles and quadrangles
proved to be “meaningless”; they are not included in the hierarchy of concepts. To be
more universal a system must resemble not one pyramid but many pyramids whose
apexes are arranged at approximately the same level and form a set of concepts (more
precisely, a set of systems of concepts) in whose terms control of the animal's actions
takes place and which are ordinarily discovered during investigation of the animal's
behavior. These concepts are said to form the basis of a definite “image” of the external
world which takes shape in the mind of the animal (or person). The state of the classifiers
at this level is direct information for the executive part of the nerve net (that is, in the end,
for the effectors). Each of these classifiers relies on a definite hierarchy of classifiers, a
pyramid in which information moves as described above. But the pyramids may overlap
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in their middle parts (and they are known to overlap in the lower part, the receptors).
Theoretically the total number of pyramid apexes may be as large as one likes, and
specifically it may be much greater than the total number of receptors. This is the case in
which the very same information delivered by the receptors is represented by a set of
pyramids in a set of different forms figured for all cases in life.

Let us note one other circumstance that should be taken into account in the search for
hierarchy in a real nerve net. If we see a neuron connected by synapses with a hundred
receptors, this by itself does not mean that the neuron fixes some simple first-level
concept such as the total number of stimulated receptors. The logical function that relates
the state of the neuron to the states of the receptors may be very complex and have its
own hierarchical structure.

 THE WORLD THROUGH THE EYES OF A FROG

FOUR SCIENTISTS from the Massachusetts Institute of Technology (J. Lettvinet al.)
have written an article entitled “What the Frog's Eye Tells the Frog’s Brain” which is
extremely interesting for an investigation of the hierarchy of classifiers and concepts in
relation to visual perception in animals.[3] The authors selected the frog as their test
animal because its visual apparatus is relatively simple, and therefore convenient for
study. Above all, the retina of the frog eye is homogeneous; unlike the human eye it does
not have an area of increased sensitivity to which the most important part of the image
must be projected. Therefore, the glance of the frog is immobile; it does not follow a
moving object with its eyes the way we do. On the other hand, if a frog sitting on a water
lily rocks with the motion of the plant, its eyes make the same movements, thus
compensating for the rocking, so that the image of the external world on the retina
remains immobile. Information is passed from the retina alone the visual nerve to the so-
called thalamus opticus of the brain. In this respect the frog is also simpler than the
human being; the human being has two channels for transmitting information from the
retina to the brain.

Vision plays a large part in the life of the frog, enabling it to hunt and to protect itself
from enemies. Study of frog behavior shows that the frog distinguishes its prey from its
enemies by size and state of movement. Movement plays the decisive part here. Having
spotted a small moving object (the size of an insect or worm) the frog will leap and
capture it. The frog can be fooled by a small inedible object wiggled on a thread, but it
will not pay the slightest attention to an immobile worm or insect and can starve to death
in the middle of an abundance of such food if it is not mobile. The frog considers large
moving objects to be enemies and flees from them.

The retina of the frog's eye, like that of other vertebrates, has three layers of nerve cells.
The outermost layer is formed by light sensitive receptors, the rods and cones. Under it is
the layer of associative neurons of several types. Some of them (the biopolar cells) yield
primarily vertical axons along which stimulation is transmitted to deeper layers. The
others (the horizontal or amacrine cells) connect neurons that are located on one level.
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The third, deepest layer is formed of the ganglion cells. Their dendrites receive
information from the second-layer cells and the axons are long fibers that are interwoven
to form the visual nerve, which connects the retina with the brain. These axons branch
out, entering the thalamus opticus, and transmit information to the dendrites of the
cerebral neurons.

The eye of a frog has about 1 million receptors, about 3 million associative second-level
neurons, and about 500,000 ganglion cells. Such a retinal structure gives reason to
assume that analysis of the image begins in the eye of the animal and that the image is
transmitted alone the visual nerve in terms of some intermediate concepts. It is as if the
retina were a part of the brain moved to the periphery. This assumption is reinforced by
the fact that the arrangement of the axons on the surface of the thalamus opticus
coincides with the arrangement of the respective ganglion cells at the output of the
retina—even though the fibers are interwoven a number of times along the course of the
visual nerve and change their position in a cross-section of the nerve! Finally, the
findings of embryology on development of the retina lead to the same conclusion.

In the experiments we are describing a thin platinum electrode was applied to the visual
nerve of a frog, making it possible to record stimulation of separate ganglion cells. The
frog was placed in the center of an aluminum hemisphere, which was dull grey on the
inside. Various dark objects such as rectangles, discs, and the like, were placed on the
inside surface of the hemisphere; they were held in place by magnets set on the outside.

The results of the experiments can be summarized as follows.

Each ganglion cell has a definite receptive field, that is, a segment of the retina (set of
receptors) from which it collects information. The state of receptors outside the receptive
field has no effect on the state of the ganglion cell. The dimensions of receptive fields for
cells of different types, if they are measured by the angle dimensions of the
corresponding visible areas, vary from 2 degrees to 15 degrees in diameter.

The ganglion cells are divided into four types depending on what process they record in
their receptive field.

1. Detectors of long-lasting contrast. These cells do not react to the switching on and off
of general illumination, but if the edge of an object which is darker or lighter than the
background appears in the receptive field the cell immediately begins to generate
impulses.

2. Detectors of convex edges. These cells are stimulated if a small (not more than three
degrees) convex object appears in the receptive field. Maximum stimulation (frequency
of impulses) is reached when the diameter of the object is approximately half of the
diameter of the receptive field. The cell does not react to the straight edge of an object.

3. Detectors of moving edges. Their receptive fields are about 12 degrees in width. The
cell reacts to any distinguishable edge of an object which is darker or lighter than the
background, but only if it is moving. If a smoothly moving object five degrees in width
passes over the field there are two reactions, to the front and rear edges.
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4. Detectors of darkening of the field. They send out a series of impulses if the total
illumination of the receptive field is suddenly decreased.

The arrangement of the ends of the visual fibers in the thalamus opticus is extremely
interesting. We have already said that on a plane this arrangement coincides with the
arrangement of the corresponding ganglion cells in the retina. In addition, it turns out that
the ends of each type of fiber are set at a definite depth in the thalamus opticus, so that
the frog brain has four layers of neurons that receive visual information. Each layer
receives a copy of the retinal image—but in a certain aspect that corresponds to one of
the four types of ganglion cells. These layers are the transmitters of information for the
higher parts of the brain.

Experiments such as those we have described are quite complex and disputes sometimes
arise concerning their interpretation. The details of the described system may change or
receive a different interpretation. Nonetheless, the general nature of the system of first
level concepts has evidently been quite firmly established. We see a transition from point
description to local description which takes account of the continuous structure of the
image. The ganglion cells act as recognizers of such primary concepts as edge,
convexness, and movement in relation to a definite area of the visible world.

 FRAGMENTS OF A SYSTEM OF CONCEPTS

THE LOWEST-LEVEL concepts related to visual perception for a human being probably
differ little from the concepts of a frog. In any case, the structure of the retina in
mammals and in human beings is the same as in amphibians.

The phenomenon of distortion of perception of an image stabilized on the retina gives
some idea of the concepts of the subsequent levels of the hierarchy. This is a very
interesting phenomenon. When a person looks at an immobile object, “fixes” it with his
eyes, the eyeballs do not remain absolutely immobile; they make small involuntary
movements. As a result the image of the object on the retina is constantly in motion,
slowly drifting and jumping back to the point of maximum sensitivity. The image “marks
time” in the vicinity of this point.

An image which is stabilized, not in continuous motion, can be created on the retina. To
achieve this, the object must be rigidly connected to the eyeball and move along with it.
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Figure 2.4. Device for stabilizing an image on the retina

A contact lens with a small rod secured to it is placed on the eye. The rod holds a
miniature optical projector[4] into which slides a few millimeters in size can be inserted.
The test subject sees the image as remote to the point of infinity. The projector moves
with the eye so the image on the retina is immobile.

When the test subject is shown a stabilized image, for the first few seconds he perceives
it as he would during normal vision, but then distortions begin. First the image disappears
and is replaced by a grey or black background, then it reappears in parts or whole.

That the stabilized image is perceived incorrectly is very remarkable in itself. Logically,
there is no necessity for the image of an immobile object to move about the retina. Such
movement produces no increase in the amount of information, and it becomes more
difficult to process it. As a matter of fact, when similar problems arise in the area of
engineering—for example when an image is transmitted by television or data are fed
from a screen to a computer—special efforts are made to stabilize the image. But the
human eye has not merely adapted to a jerking image; it simply refuses to receive an
immobile one. This is evidence that the concepts related to movement, probably like
those which we observed in the frog, are deeply rooted somewhere in the lower stages of
the hierarchy, and if the corresponding classifiers are removed from the game correct
information processing is disrupted. From the point of view of the designer of a complex
device such as the eye (plus the data processing system) such an arrangement is strange.
The designer would certainly fill all the lower stages with static concepts and the
description of object movement would be given in terms of the concepts of a higher level.
But the hierarchy of visual concepts arose in the process of evolution. For our remote
frog-like ancestors the concepts related to movement were extremely important and they
had no time to wait for the development of complex static concepts. Therefore, primitive
dynamic concepts arose in the very earliest stages of the development of the nervous
system, and because nature uses the given units to carry out subsequent stages of
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building, these concepts became firmly established at the base of the hierarchy of
concepts. For this reason, the human eyeball must constantly make brownian movements.

Even more interesting is the way the image breaks up into parts (fragmentation). Simple
figures, such as a lone segment, disappear and come back in toto. More complex figures
sometimes disappear in toto and sometimes break into parts which disappear and
reappear independent of one another.

Figure 2.5. Fragmentation of a stabilized image.

Fragmentation does not occur chaotically and it is not independent of the type of image,
as is the case when a drawing on a chalkboard is erased with a rag; rather the
fragmentation corresponds to the “true” structure of the image. We have put the word
“true” in quotation marks because fragmentation actually occurs in accordance with the
structure of image perception by the eye-brain system. We do not know exactly what the
mechanics of the distortion of perception in stabilization are; we know only that
stabilization disables some component of the perception system. But from this too we can
draw certain conclusions.

Imagine that several important design elements have suddenly disappeared from an
architectural structure. The building will fall down, but probably the pieces would be of
very different sizes. In one place you may see individual bricks and pieces of glass, while
in another a part of the wall and roof may remain, and in still another place a whole
corner of the building maybe intact. Perception of the stabilized image is approximately
that kind of sight. It makes it possible to picture the nature of the concepts of a higher
level (or higher levels) but not to evaluate their mutual relations and dependences. It
should be noted that in the human being the personal experience of life, the learning (to
speak in cybernetic language), plays a large part in shaping higher-level concepts. (This
will be the next stage in evolution of the nervous system, so we are getting somewhat
ahead of things here. For an investigation of the hierarchy of concepts, however, it is not
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very important whether the hierarchy were inherited or acquired through one's own
labor.)

Let us cite a few excerpts from the work mentioned above (footnote4).

The figure of the human profile invariably fades and regenerates in meaningful units. The
front of the face, the top of the head. The eye and ear come and go as recognizable
entities, separately and in various combinations. In contrast, on first presentation a
meaningless pattern of curlicues is described as extremely “active”; the individual
elements fade and regenerate rapidly, and the subject sees almost every configuration that
can be derived from the original figure. After prolonged viewing however, certain
combinations of curlicues become dominant and these then disappear and reappear as
units. The new reformed groupings persist for longer periods.

Linear organization is emphasized by the fading of this target composed of rows of
squares. The figure usually fades to leave one whole row visible: horizontal, diagonal, or
vertical. In some cases a three-dimensional “waffle” effect is also noted.

A random collection of dots will fade to leave only those dots which lie approximately in
a line. . . . Lines act independently in stabilized vision, with breakage in the fading figure
always at an intersection of lines. Adjacent or parallel lines may operate as units. . . In the
case of figures drawn in solid tones as distinguished from those drawn in outline. . . the
corner now replaces the line as the unit of independent action. A solid square will fade
from its center, and the fading will obliterate first one and then another corner. Leaving
the remaining corners sharply outlined and isolated in space. Regeneration
correspondingly begins with the reappearance of first one and then another corner,
yielding a complete or partial figure with the corners again sharply outlined.

 THE GOAL AND REGULATION

WE HAVE DESCRIBED the first half of the action of a complex reflex, which consists
of analyzing the situation by means of a hierarchy of classifiers. There are cases where
the second half, the executive half, of the reflex is extremely simple and involves the
stimulation of some local group of effectors—for example the effectors that activate a
certain gland. These were precisely the conditions in which I. P. Pavlov set up most of his
experiments, experiments which played an important part in the study of higher nerve
activity in animals and led to his widely known theory of unconditioned and conditioned
reflexes. Elementary observations of animal behavior under natural conditions show,
however, that this behavior cannot be reduced to a set of reflexes that are related only to
the state of the environment. Every action of any complexity whatsoever consists of a
sequence of simpler actions joined by a common goal. It often happens that individual
components in this aggregate of actions are not simply useless but actually harmful to the
animal if they are not accompanied by the other components. For example, it is necessary
to fall back on the haunches before jumping and in order to grasp prey better it must be
let go for an instant. The two phases of action, preliminary and executive, which we see
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in these examples cannot be the result of independent reflexes because the first action is
senseless by itself and therefore could not have developed.

When describing behavior the concepts of goal and regulation must be added to the
concept of the reflex. A diagram of regulation is shown in figure 2.6.

Figure 2.6. Diagram of a regulation.

An action which the system is undertaking depends not only on the situation itself but
also on the goal, that is, on the situation that the system is trying to achieve. The action of
the system is determined by comparing the situation and the goal: the action is directed
toward eliminating the discrepancy between the situation and the goal. The situation
determines the action through the comparison block. The action exerts a reverse influence
on the situation through change in the environment. This feedback loop is a typical
feature of the regulation diagram and distinguishes it from the reflex diagram where the
situation simply causes the action.

 HOW REGULATION EMERGES

HOW COULD A SYSTEM organized according to the regulation diagram occurin the
process of evolution? We have seen that the appearance of hierarchicallyorganized
classifiers can be explained as a result of the combined actionof two basic evolutionary
factors: replication of biological structuresand finding useful interconnections by the trial
and error method. Wouldn't the action of these factors cause the appearance of the
regulation diagram?

Being unable to rely on data concerning the actual evolutionary process that millions of
years ago gave rise to a complex nervous system, we are forced to content ourselves with
a purely hypothetical combinative structure which demonstrates the theoretical possibility
of the occurrence of the regulation diagram. We shall make a systematic investigation of
all possibilities to which replication and selection lead. It is natural to assume that in the
process of replication relations are preserved within the subsystem being replicated, as
are the subsystem's relations with those parts not replicated. We further assume that
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owing to their close proximity there is a relationship among newly evolved subsystems,
which we shall depict in our diagrams with a dotted line. This relationship may either be
reinforced or disappear. We shall begin with the simplest case—where we see just one
nerve cell that is receptor and effector at the same time (figure 2.7a).

Figure 2.7

Here there is only one possibility of replication, and it leads to the appearance of two
cells (figure 2.7 b). If one of them is closest to the surface and the other closer to the
muscle cells, a division of labor between them is useful. This is how the receptor-effector
diagram emerges (figure2.7 c).

Now two avenues of replication are possible. Replication of the receptor yields the
pattern shown in figure 2.7 d; after the disappearance of the dotted-line relationship, this
becomes figure 2.7 e. A similar process generates the patterns in figures 2.7 f, g, and so
on. In this way the zero level of the hierarchy (receptors) expands.

The second avenue is replication of effectors (see figure 2.8).

Figure 2.8

In figure 2.8 b, the stimulation of one receptor should be transmitted along two channels
to two effectors. But we know that the electrical resistance of the synapses drops sharply
after the first time a current passes along them. Therefore, if the stimulation is sent along
one channel this communications channel will be reinforced while the other will be
bypassed and may “dry up” (figure 2.8 c). Then the stimulation may make a way across
the dotted-line relationship (figure 2.8 d), which marks the birth of the first level of the
hierarchy of classifiers.
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Figure 2.9.

Figure 2.9 shows possible variations of the development of the three-neuron diagram
shown in figure 2.7 d. The diagrams correspond to replication of different subsystems of
the initial system. The subsystem which is replicated has been circled. Figures 2.9 a-c
explain the expansion of the zero level, while figures 2.9 d-f show the expansion of the
first two levels of the hierarchy of classifiers. In the remainder we see patterns that occur
where one first-level classifier is replicated without a receptor connected to it. The
transition from figure 2.9 h to 2.9 i is explained by that “drying up” of the bypass channel
we described above. Figure 2.9 j, the final development, differs substantially from all the
other figures that represent hierarchies of classifiers. In this figure, one of the classifiers
is “hanging in the air”; it does not receive information from the external world. Can such
a diagram be useful to an animal'? It certainly can, for this is the regulation diagram!

As an example we can suggest the following embodiment of figure 2.9j. Let us consider a
certain hypothetical animal which lives in the sea. Suppose R is a receptor which
perceives the temperature of the environment. Classifier A also records the temperature of
the water by change in the frequency of stimulation impulses. Suppose that greater or less
stimulation of effector E causes expansion or contraction of the animal's shell, which
results in a change in its volume; the animal either rises toward the surface of the sea or
descends deeper. And suppose that there is some definite temperature, perhaps 16deg. C
(61deg. F) which is most suitable for our animal. The neuron Z (the goal fixer) should
maintain a certain frequency of impulses equal to the frequency of neuron A at a
temperature of 16deg. Effector E should register the difference of stimulation of neurons
A and Z and in conformity with it, raise the animal toward the surface where the water is
warmer or immerse it to deeper, cooler water layers. Such an adaptation would be
extremely helpful to our imaginary animal.
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 REPRESENTATIONS

REPLICATION of the various subsystems of the nerve net can give rise to many
different groups of classifiers which “hang in the air.” Among them may be copies of
whole steps of the hierarchy whose states correspond exactly to the states of those
“informed” classifiers which receive information from the receptors. They correspond but
they do not coincide. We saw this in the example of neurons A and Z in figure 2.9j. In
complex systems the uninformed copies of informed classifiers may store a large amount
of information. We shall call the states of these copies representations, fully aware that in
this way we are giving a definite cybernetic interpretation to this psychological concept.
It is obvious that there is a close relationship between representations and situations.
which are really nothing but the states of analogous classifiers, but ones receiving
information from the receptors. The goal is a particular case of the representation, or
more precisely, it is that case where the comparison between a constant representation
and a changing situation is used to work out an action that brings them closer to one
another. The hypothetical animal described above loves a temperature of 16deg. and the
“lucid image” of this wonderful situation, which is a certain frequency of impulses of
neuron A, lives in its memory in the form of precisely that frequency of pulses of neuron
Z.

This is a very primitive representation. The more highly organized the “informed” part of
the nervous system is, the more complex its duplicates will be (we shall call them
representation fixers), and the more varied the representations will be. Because classifiers
can belong to different levels of the hierarchy and the situation can be expressed in
different systems of concepts, representations can also differ by their “concept language”
because they can be the states of fixers of different levels. Furthermore, the degree of
stability of the states of the representation fixers can also vary greatly. Therefore,
representations differ substantially in their concreteness and stability. They may be exact
and concrete, almost perceptible to the sensors. The extreme case of this is the
hallucination, which is perceived subjectively as reality and to which the organism
responds in the same way as it would to the corresponding situation. On the other hand,
representations may be very approximate, as a result of both their instability and their
abstraction. The latter case is often encountered in artistic and scientific creative work
where a representation acts as the goal of activity. The human being is dimly aware of
what he needs and tries to embody it in solid, object form. For a long time nothing comes
of it because his representations do not have the necessary concreteness. But then, at one
fine moment (and this is really a fine moment!) he suddenly achieves his goal and
realizes clearly that he has done precisely what he wanted.



48

 MEMORY

IN PRINCIPLE. as many representation fixers as desired can be obtained by replication.
But a question arises here: how many does an animal need? How many copies of
“informed” classifiers are needed? One? Two? Ten? It follows from general
considerations that many copies are needed. After all, representation fixers serve to
organize experience and behavior in time. The goal fixer stores the situation which,
according to the idea, should be realized in the future. Other fixers can store situations
which have actually occurred in the past. The temporal organization of experience is
essential to an animal which is striving to adapt to the environment in which it lives, for
this environment reveals certain rules, that is, correlations between past, present, and
future situations. We may predict that after a certain initial increase in the number of
receptors the further refinement of the nervous system will require the creation of
representation fixers, and a large number of them. There is no reason to continue to
increase the number of receptors and classifiers and thus improve the “instantaneous
snapshots” of the environment if the system is not able to detect correlations among
them. But the detection of correlations among the “instantaneous snapshots” requires that
they be stored somewhere. This is how representation fixers, which in other words are
memory, arise. The storage of the goal in the process of regulation is the simplest case of
the use of memory.

 THE HIERARCHY OF GOALS AND PLANS

IN THE REGULATION DIAGRAM in figure 2.5 the goal is shown as something
unified. But we know very well that many goals are complex, and while working toward
them a system sets intermediate goals. We have already cited the examples of two-phase
movement: to jump onto a chair, a cat first settles back on its haunches and then springs
up. In more complex cases the goals form a hierarchy consisting of numerous levels. Let
us suppose that you set the goal of traveling from home to work. This is your highest goal
at the particular moment. We shall assign it the index (level number) 0. To travel to work
you must leave the building, walk to the bus stop, ride to the necessary stop, and so on.
These are goals with an index of —1. To leave the building you must leave the
apartment, take the elevator down, and go out the entrance. These are goals with an index
of —2. To take the elevator down you must open the door, enter the elevator, and so on;
this is index —3. To open the elevator door you must reach your hand out to the handle,
grasp it, and pull it toward you; this is index —4. These goals may perhaps be considered
elementary.

The goal and a statement of how it is to be achieved—that is, a break down into
subordinate goals—is called a plan of action. Our example is in fact a description of a
plan for traveling to work. The goal itself, which in this case is the representation
“me—at my work place,” does not have any hierarchical structure. The primary logical
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unit that forms the hierarchy is the plan, but the goals form a hierarchy only to the extent
that they are elements of the plan.

In their book Plans and the Structure of Behavior American psychologists G. Miller, E.
Galanter, and K. Pribram take the concept of the plan as the basis for describing the
behavior of humans and animals. They show that such an approach is both sound and
useful. Unlike the classical reflex arc (without feedback) the logical unit of behavior
description used by the authors contains a feedback loop.

Figure 2.10. T-O-T-E. Test-operate-test-exit unit.

They call this unit the Test-Operate-Test-Exit diagram (T-O-T-E—based on the first
letters of the English words “test,” “operate,” “test,” “exit.”) The test here means a test of
correspondence between the situation and the goal. If there is no correspondence an
operation is performed, but if there is correspondence the plan is considered performed
and the system goes to “exit.”

Figure 2.11. Driving a nail.

As an example, figure 2.11 shows a plan for driving a nail into a board; the plan is
represented in the form of a T-O-T-E unit. The T-O-T-E diagram in figure 2.10 shows the
same phenomenon of regulation that was depicted in figure 2.6. The difference is in the
method of depiction. The diagram in figure 2.6 is structural while in figure 2.10 it is
functional. We shall explain these concepts, and at the same time we shall define the
concept of control more precisely.
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 STRUCTURAL AND FUNCTIONAL DIAGRAMS

A STRUCTURAL DIAGRAM of a cybernetic system shows the subsystems which make
up the particular system and often also indicates the directions of information flows
among the subsystems. Then the structural diagram becomes a graph. In mathematics the
term graph is used for a system of points (the vertices of the graph), some of which are
connected by lines(arcs). The graph is oriented if a definite direction is indicated on each
arc. A structural diagram with an indication of information flows is a directed graph
whose vertices depict the subsystems while the arcs are the information flows.

This description of a cybernetic system is not the only possible one. Often we are
interested not so much in the structure of a system as in its functioning. Even more often
we are simply unable to say anything sensible about the structure, but there are some
things we can say about the function.  In such cases a functional diagram may be
constructed. It is also a directed graph, but in it the vertices represent different sets of
states of the system and the arcs are possible transitions between states. An arc connects
to vertices in the direction from the first to the second in the case where there is a
possibility of transition from at least one state relating to the first vertex into another state
relating to the second vertex. We shall also call the sets of states generalized states.
Therefore, the arc in a diagram shows the possibility of a transition from one generalized
state to another. Whereas a structural diagram primarily reflects the spatial aspect, the
functional diagram stresses the temporal aspect. Formally, according to the definition
given above, the functional diagram does not reflect the spatial aspect (division of the
system into subsystems) at all. As a rule, however, the division into subsystems is
reflected in the method of defining generalized states, that is, the division of the set of all
states of the system into subsets which are “assigned” to different vertexes of the graph.
Let us review this using the example of the system whose structural diagram is shown in
figure 2.12. This is a control diagram.

Figure 2.12. Structural diagram of control.

One of the subsystems, which is called the control device, receives information from
“working” subsystems A1, A2,A3, . . . , processes it, and sends orders (control information)
to subsystems A1, A2,A3, . . ., as a result of which these subsystems change their state. It
must be noted that, strictly speaking, any information received by the system changes its
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state. Information is called control information when it changes certain distinct
parameters of the system which are identified as “primary,” “external,” “observed,” and
the like.

Often the control unit is small in terms of information-capacity and serves only to switch
information flows, while the real processing of data and development of orders is done by
one of the subsystems, or according to information stored in it. Then it is said that control
is passed to this subsystem. That is how it is done, specifically, in a computer where
subsystems A1, A2, A3,. . . are the cells of operational memory. Some of the cells contain
“passive' information (for example numbers), while others contain orders (instructions).
When control is in the cell which contains an instruction the control unit performs this
instruction. Then it passes control to the next cell, and so on.

The functional diagram for systems with transfer of control is constructed as follows. To
each vertex of the graph is juxtaposed one of the subsystem Ai and the set of all states of
the system when control is in the particular subsystem. Then the arcs (arrows) signify the
transfer of control from one subsystem to another.

Figure 2.13.  Functional diagram of transfer of control.

Even where each successive state is fully determined by the preceding one there may be
branching on such a diagram because each vertex corresponds to a vast number of states
and the transfer of control can depend on the state of the control unit or the subsystem in
which control is located. Functional diagrams are often drawn in generalized form,
omitting certain inconsequential details and steps. It may then turn out that the path by
which control branches depends on the state of several different subsystems. The
condition on which this switch is made is ordinarily written alongside the arrow. The
diagram shown in figure 2.10 can he understood in precisely this sense. Then it will he
assumed that the system has two subsystems, a test block and an operation-execution
block, and control passes from one to the other in conformity with the arrows. The
system can also have other subsystems ( in this case the environment), but they never
receive control and therefore are not shown in the diagram (to be more precise, those
moments when the environment changes the state of the system or changes its own state
when acted upon by the system are included in the process of action of one of the blocks).

We can move even further from the structural diagram. Switching control to a certain
subsystem means activating it, but there can be cases where we do not know exactly
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which subsystem is responsible for a particular observed action. Then we shall equate the
vertices of the graph with the actions as such and the arcs will signify the transition from
one action to another. The concept of “action as such,” if strictly defined, must be
equated with the concept of “generalized state” (“set of states”) and this returns us to the
first, most abstract definition of the functional diagram. In fact, when we say that a dog
“runs,” “barks,” or” wags his tail,” a set of concrete states of the dog fits each of these
definitions. Of course one is struck by a discrepancy, “state” is something static, but
“action” is plainly something dynamic, closer to a change of state than a state itself. If a
photograph shows a dog's tail not leaving the plane of symmetry, we still do not know
whether the dog is wagging it or holding it still. We overcome such contradictions by
noting that the concept of state includes not only quantities of the type “position,” but
also quantities such as “velocity,” “acceleration,” and the like. Specifically, a description
of the state of the dog includes an indication of the tension of its tail muscles and the
stimulation of all neurons which regulate the state of the muscles.

 THE TRANSITION TO PHENOMENOLOGICAL
DESCRIPTIONS

THEREFORE In the functional diagram an action is, formally speaking, a set of states.
But to say that a particular action is some set is to say virtually nothing. This set must he
defined. And if we do not know the structure of the system and its method of functioning
it is practically impossible to do this with precision. We must he content with an
incomplete phenomenological definition based on externally manifested consequences of
internal states. It is this kind of functional diagram, with more or less exactly defined
actions at the vertices of the graph, that is used to describe the behavior of complex
systems whose organization is unknown—such as humans and animals. The diagrams in
figures 2.10 and 2.11 are, of course, such diagrams. The phenomenological approach to
brain activity can be carried out by two sciences: psychology and behavioristics (the
study of behavior). The former is based on subjective observations and the latter on
objective ones. They are closely connected and are often combined under the general
name of psychology.

Because the operational component of the T-O-T-E unit may be composite, requiring the
performance of several subordinate plans, T-O-T-E units can have hierarchical structure.
Miller, Galatier, and Pribram give the following example. If a hammer striking a nail is
represented as a two-phase action consisting of raising and lowering the hammer, then the
functional diagram in figure 2.11 which depicts a plan for driving a nail, becomes the
diagram shown in figure 2.14.
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Figure 2.14. Hierarchical plan for driving a nail.

In its turn, this diagram can become an element of the operational component of a T-O-T-
E diagram on a higher level.

We have seen that the elementary structural diagram of figure 2.6 corresponds to the
elementary functional diagram in figure 2.9. When plans make up the hierarchy, what
happens to the structural diagram? Or, reversing the statement to be more precise, what
structural diagrams can ensure execution of a hierarchically constructed plan'?

Different variants of such diagrams may be suggested. For example. It can be imagined
that there is always one comparison block and that the same subsystem which stores the
goal is always used, but the state of this subsystem (that is, the goal) changes under the
influence of other parts of the system, ensuring an alternation of goals that follows the
plan. By contrast, it may be imagined that the comparison block-goal pair is reproduced
many times and during execution of a hierarchical plan, control passes from one pair to
the other. A combination of these two methods maybe proposed and, in general, we can
think up many differently organized cybernetic devices that carry out the same
hierarchical functional diagrams. All that is clear is that they will have a hierarchical
structure and that devices of this type can arise through evolution by the replication of
subsystems and selection of useful variants.

But what kind of structural diagrams actually appear in the process of evolution?
Unfortunately, we cannot yet be certain. That is why we had to switch to functional
diagrams. This is just the first limitation we shall be forced to impose on our striving for a
precise cybernetic description of higher nervous activity. At the present time we know
very little about the cybernetic structure and functioning of the brains of higher animals,
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especially of the human being. Properly speaking, we know virtually nothing. We have
only certain facts and assumptions. In our further analysis, therefore, we shall have to
rely on phenomenology, the findings of behavioristics and psychology, where things are
somewhat better. As for the cybernetic aspect, we shall move to the level of extremely
general concepts, where we shall find certain rules so general that they explain the stages
of development of both the nervous system and human culture, in particular science. The
relatively concrete cybernetic analysis of the first stages of evolution of the nervous
system, which is possible thanks to the present state of knowledge, will serve as a
running start for the subsequent, more abstract analysis. Of course, our real goal is
precisely this abstract analysis, but it would be more satisfying if knowing more about the
cybernetics of the brain, we were able to make the transition from the concrete to the
abstract in a more smooth and well-substantiated manner.

 DEFINITION OF THE COMPLEX REFLEX

SUMMARIZING our description of the fourth stage in the development of the nervous
system we can define the complex reflex as that process where stimulation of receptors
caused by interaction with the environment is passed along the nerve net and is converted
by it, thus activating a definite plan of action that immediately begins to be executed. In
this diagram of behavior all feedbacks between the organism and the environment are
realized in the process of regulation of actions by the plan, while overall interaction
between the environment and the organism is described by the classical stimulus response
formula. Only now the response means activation of a particular plan.

Footnotes:

[1] Later we shall give a somewhat more general definition of the concept and a set of
situations shall be called an Aristotelian concept. At present we shall drop the adjective
“Aristotelian’ for brevity.

[2] According to the terminology accepted by many logicians, juxtaposing abstract
concepts to concrete concepts is not at all the same as juxtaposing general concepts to
particular ones.

[3] See the Russian translation in the collection of articles entitled Elekronikai
kibernetika v biologii i meditsine  (Electronics and Cybernetics in Biology and Medicine),
Foreign Literature Publishing House, Moscow, 1963. [Original Lettvin et al., Proc. IRE,
47, 1940-1951 (1959, # 11 )].

[4] See R. Pritchard, “Images on the Retina and Visual Perception,” in the collection of
articles Problemy bioniki  (Problems of Bionics), Mir Publishing House, 1965. [Original
in English Stabilized Images on the Retina. Scientific American 204 no. 41 (June 1961):
72-78.
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CHAPTER THREE

On the Path toward the Human Being

 THE METASYSTEM TRANSITION

SUBSEQUENT STAGES in the development of the nervous system will be described as
stated above, on a more phenomenological level. For this we must summarize the results
of our investigation of the mechanism of evolution in the early stages, using the
terminology of general cybernetic concepts. Having begun to think in this direction, we
shall easily detect one general characteristic of transitions from lower to higher stages: In
each stage the biological system has a subsystem which may be called the highest
controlling device; this is the subsystem which originated most recently and has the
highest level of organisation. The transition to the next stage occurs by multiplication of
such systems (multiple replication) and integration of them—by joining them into a
single whole with the formation (by the trial and error method) of a control system
headed by a new subsystem, which now becomes the highest controlling device in the
new stage of evolution. We shall call the system made up of control subsystem X and the
many homogeneous subsystems A1, A2, A3 . . . controlled by it a metasystem in relation to
systems A1, A2, A3 . . . Therefore we shall call the transition from one stage to the next the
metasystem transition.

Figure3.1. The metasystem transition

This concept will play a crucial part in our subsequent presentation. The metasystem
transition creates a higher level of organization, the metalevel in relation to the level of
organization of the subsystems being integrated.
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From the functional point of view the metasystem transition is the case where the activity
, which is characteristic of the top control system at a lower stage, becomes controlled

at the higher stage and there appears a qualitatively new, higher, type of activity  which
controls the activity . Replication and selection bring about the creation of the necessary
structures.

The first metasystem transition we discern in the history of animals is the appearance of
movement. The integrated subsystems are the parts of the cell that ensure metabolism and
reproduction. The position of these parts in space is random and uncontrolled until, at a
certain time, there appear organs that connect separate parts of the cell and put them into
motion: cell membranes, cilia, flagella. A metasystem transition occurs which may be
defined by the formula:

control of position = movement.

In this stage movement is uncontrolled and not correlated in any way with the state of the
environment. Nature's next task is to control it. To control motion means to make it a
definite function of the state of the environment. This leads to irritability. Irritability
occurs when—under the influence of external factors—there is a change in the state of
some segments of the cell, and when this change spreads to other sectors—specifically
those which ensure movement. Thus, the formula for the metasystem transition from the
second stage to the third is:

   Chemical Era 1. Chemical foundations of life

2 Movement

3 Irritability (simple reflex)

Cybernetic Era

4 Nerve net (complex reflex)

5 Associating (conditioned reflex)

Figure 3.2.  Stages in the evolution of life before the era of reason.

control of movement = irritability.

The integration of cells with formation of the multicellular organism is also a transition
from a system to a metasystem. But this transition concerns the structural aspect
exclusively and is not describable in functional terms. From a functional point of view it
is ultimately unimportant whether reproduction and integration of a certain part of the
organism occur or whether organisms are integrated as whole units. This is a technical
question, so to speak. Irritability is already manifested in unicellular organisms, but it
reveals its capabilities fully after cell integration.

An important characteristic of the metasystem transition must be pointed out here. When
the subsystems being integrated are joined into a metasystem, specialization occurs; the
subsystems become adapted to a particular activity and lose their capability for other
types of activity. Specialization is seen particularly clearly where whole organisms are
integrated. Each subsystem being integrated in this case contains a great deal which is
“superfluous”—functions necessary for independent life but useless in the community,
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where other subsystems perform these functions. Thus, specialized muscle and nerve
cells appear in the multicellular organism.

In general we must note that the integration of subsystems is by no means the end of their
evolutionary development. We must not imagine that systems A1, A2, A3, . . . are
reproduced in large numbers after which the control device X suddenly arises “above
them.” On the contrary, the rudiments of the control system form when the number of
subsystems Ai is still quite small. As we saw above, this is the only way the trial and error
method can operate. But after control subsystem X has formed, there is a massive
replication of subsystems Ai and during this process both Ai and X are refined. The
appearance of the structure for control of subsystems Ai does not conclude rapid growth
in the number of subsystems Ai; rather, it precedes and causes this growth because it
makes multiplication of Ai useful to the organism. The carrier of a definite level of
organization branches out only after the new, higher level begins to form. This
characteristic can be called the law of branching growth of the penultimate level. In the
phenomenological functional description, therefore, the metasystem transition does not
appear immediately after the establishment of a new level; it appears somewhat later,
after the penultimate level has branched out. The metasystem transition always involves
two levels of organization.

Let us continue our survey of the stages of evolution. We shall apply the principle of the
metasystem transition to the level of irritability. At this level, stimulation of certain
sectors of a unicellular organism or a specialized nerve cell in a multicellular organism
occurs directly from the external environment, and this stimulation causes direct (one-to-
one) stimulation of muscular activity. What can control of irritability signify?
Apparently, creation of a nerve net whose elements, specifically the effectors, are not
stimulated by the environment directly but rather through the mediation of a complex
control system. This is the stage of evolution we related to the concept of the complex
reflex. The control of irritability in this stage is seen especially clearly in the fact that
where there is a goal, stimulation of the effectors depends not only on the state of the
environment but also upon this goal—that is, on the state of certain internal neurons of
the net. Thus, the formula for this metasystem transition (from the third stage to the
fourth) is:

control of irritability = complex reflex.

What next'?

 CONTROL OF THE REFLEX

NO MATTER how highly refined the nerve net built on the principle of the complex
reflex may be, it has one fundamental shortcoming: the invariability of its functioning
over time. The animal with such a nervous system cannot extract anything from its
experience; its reactions will always be the same and its actions will always be executed
according to the same plan. If the animal is to be able to learn, its nervous system must
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contain some variable components which ensure change in the relations among situations
and actions. These components will therefore carry out control of reflexes. It is
commonly known that animals have the ability to learn and develop new reflexes. In the
terminology introduced by I. P. Pavlov, the inborn reflex included in the nervous system
by nature is called an unconditioned reflex  while a reflex developed under the influence
of the environment is called a conditioned reflex. When we speak of a complex reflex we
have in mind, of course, an unconditioned complex reflex. The presence of components
that control complex reflexes manifests itself, in experiments with teaching animals, as
the ability to form conditioned reflexes.

We cannot, however, equate the concept of the conditioned reflex with the concept of
control of a reflex. The latter concept is broader. After all, our concept of the complex
reflex, taken in the context of the description of general principles of the evolution of the
nervous system, essentially signifies any fixed connection between the states of
classifiers, representation fixers, and effectors. Therefore, control of reflexes must be
understood as the creation, growing out of individual experience, of any variable
connections among these objects. Such connections are called associations of
representations or simply associations. The term “representation” here is understood in
the broad sense as the state of any subsystems of the brain, in particular the classifiers
and effectors. We shall call the formation of associations associating (this terminology is
somewhat awkward, but it is precise). Thus, the fifth stage of evolution is the stage of
associations. The formula for the metasystem transition to this stage is:

control of reflexes = associating.

 THE REFLEX AS A FUNCTIONAL CONCEPT

THE CONCEPTS of the reflex and the association are functional not structural concepts.
The connection between stimulus S and response R in the reflex (see figure 3.3) does not
represent the transmission of information from one subsystem to another, it is a transition
from one generalized state to another. This distinction is essential to avoid confusing the
reflex, as a definite functional diagram which describes behavior, with the embodiment of
this diagram, that is, with the cybernetic device that reveals this diagram of behavior.

Figure 3.3.  Functional diagram of the unconditioned reflex

Confusion can easily arise, because the simplest embodiment of reflex behavior has a
structural diagram that coincides externally with the diagram shown in figure 3.3, except
that S and R in it must be understood as physical subsystems that fix the stimulus and
response. This coincidence is not entirely accidental. As we have already said in defining
the functional diagram, breaking the set of all states of the system down into subsets
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which are ascribed to vertices of the graph is closely tied to breaking the system down
into subsystems. Specifically, each subsystem that can be in two states (yes/no) can be
related to the set of all states of the system as a whole for which this system is in a
definite state, for example “yes.” More simply, when defining the generalised state we
consider only the state of the given subsystem, paying no attention to what is happening
with the other subsystems. Let us assume that the letters S and R signify precisely these
subsystems, that is to say, subsystem S is the discriminator for stimulus (set of situations)
S and subsystem R is the effector that evokes response R. Then the statement that “yes”
in subsystem S is transmitted along a communications channel (arrow) to subsystem R,
putting it also in the “yes” state, coincides with the statement that the ,generalised state S
switches (arrow) to state R. Thus the structural and functional diagrams are very similar.
It is true that the structural diagram in no way reflects the fact that “yes” evokes a “yes”
not a “no,” whereas this is the very essence of the reflex. As we have already said, the
reflex is a functional concept.

 WHY ASSOCIATIONS OF REPRESENTATIONS ARE
NEEDED

THESE PRELIMINARY considerations were required in order for us to be able to better
grasp the concept of association and the connection between a functional description
using associations and a structural description by means of classifiers. Because each
classifier can be connected to one or several generalized states, there is a hierarchy of
generalized states corresponding to the hierarchy of classifiers. When introducing the
concept of the classifier we pointed out that for each state of the classifier (we can now
say for each generalized state of the system as a whole) there is a corresponding, definite
concept at the input of the system—that is, the input situation is affiliated with a definite
set. The concepts of the Aristotelian “concept” and the “generalized state” are close to
one another; both are sets of states. But the “generalised state” is a more general concept
and may take account of the state not just of receptors but also of any other subsystems,
in particular classifiers. This is essential to follow the dynamics of the state of the system
during the process of information processing.

Let us see how the generalized states of the K level of the hierarchy and the next level, K
+ 1, are interconnected. As we know, the chief task of the classifiers is to store
“significant” information and discard “insignificant” information. This means that there
is some set of states on level K which in the functional diagram has an arrow going from
each of the states to the same state at level K + 1. In figure 3.4 below, the representations
(generalized states) T1 andT2 evoke representation U equally.



60

Figure 3.4. Association of representations

If T1and T2 always accompany one another this diagram will unquestionably be
advantageous to the animal. He does not have to know that T1 and T2 are occurring; it is
enough if he knows that U is occurring. In this way superfluous information is discarded
and useful information is compressed. The compression of information is possible
because T1 andT2 are always encountered together. This is a fact which is external to the
nervous system and refers only to the stream of situations being fed to it. It testifies to the
existence of a definite organization in the stream of situations, which is a consequence of
the organized nature of the environment surrounding the animal. The organization of the
nervous system and its activity (the system of reflexes) reflect characteristics of the
environment. This happens because, by testing different ways to discard information,
nature finally finds the variation where the information discarded is indeed superfluous
and unnecessary owing to the partially organized nature of the environment.

In the stage of the unconditioned reflex the structure of such connections, as shown in
figure 3.4, does not change during the life of the animal and is the same for all animals of
the given species. As we have already said, however, such a situation is not satisfactory.
The metasystem transition occurs, and the connections between generalized states
become controlled. Now if T1 andT2 in the individual experience of the animal always (or
at least quite often) accompany one another, new connections form in the animal brain
which are not determined uniquely by heredity. This is associating—the formation of a
new association of representations. It is clear that associations form among
representations of the highest level of the hierarchy. Thus, the most general correlations
in the environment, those which are the same for all times and all places of habitation, are
reflected in the permanent organization of the lower levels of classifiers. The more
particular correlations are reflected by variable connections at the highest level.

 EVOCATION BY COMPLEMENT

THE DIAGRAM shown in figure 3.4 may cause misunderstanding. When speaking of an
association of representations we usually mean something like a two-way connection
between T1 and T2, where T1 evokes T2 and T2 evokes T1. But in our diagram both
representations evoke something different, specifically U, and there are no feedback
arrows from U to T1 and T2.

In fact, the diagram shown in figure 3.4 more closely corresponds to the concept of the
association of representations than a diagram with feedback does. Specifically, it contains
an evocation, in a certain sense, of representation T2 by representation T1 (and vice versa),
but this is evocation by complement. The representation U contains both T2 and T1; after
all, it was conceived by our nervous system as equivalent to the simultaneous presence of
T2 and T1. Therefore, when T1 evokes U in the absence of T2, then T2 is contained
concealed in U itself. By evoking U we, so to speak, complement T1 with the nonexistent
T2.
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This process of mental complementing is in no way related to the fact that the association
is developed by learning. Only the method by which the brain processes information
plays a part here. When inborn lower-level mechanisms operate the effect of the
complementing shows itself even more clearly; no kind of learning or training will
weaken or strengthen it.

Figure 3.5. The points make a line.

Look at figure 3.5. In it you see not just points but also a line, an arc. In fact there is no
line at all. But you mentally supplement (complement) the drawing with points so that a
solid line is formed. In terms of figure 3.4, T1 here is the actually existing points, U is the
line, and T2 is the complementary points. The fact that you discern a nonexistent line
testifies to the presence in the brain (or in the retina) of classifiers which create the
representation of U.

Why did these classifiers arise? Because the situations arriving at the input of our visual
apparatus possess the characteristic of continuity. The illuminations of neighboring
receptors of the retina are strongly correlated. The image on the retina is not a mosaic set
of points, it is a set of light spots. Therefore, translating the image into the language of
spots, the brain (we say “brain” arbitrarily, not going into the question of where the
translation is in fact made) rejects useless information and stores useful information.
Because “consisting of spots” is a universal characteristic of images on the retina, the
language of spots must be located at one of the lowest levels and it must be inborn. The
line which we “see” in figure 3.5 is a long, narrow spot.

 SPOTS AND LINES

NOTICE, we have reduced the concept of the line to the concept of the spot. We had to
do this because we were establishing the theoretical basis for the existence of the
corresponding classifiers. In reality, it is possible to conclude from the two-dimensional
continuity of the image on the retina that the basic concept for the brain should be the
concept of the spot, not the line. The line can be included as either an exotically shaped
spot or as the boundary between spots. This theoretical consideration is confirmed by
numerous observations.
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Figure 3.6.  Concealed circle formed by the vertices of angles

A circle formed by the vertices of angles is clearly seen in figure 3.6 a. In figure 3.6 b the
vertices of the angles are located at exactly the same points, but their sides are directed
every which way, some outside and some inside. As a result the circle disappears. It is
possible to follow the vertices along, switching attention from one to another, and
ascertain that they are set in a circle, but you cannot see this as you can in the first
drawing, even though the points which make up the circle are all vertices of angles and
all lie on the circumference of the circle. The simplest machine program for recognizing
circles would “see” the circle in figure 3.6 b (as well as figure 3.6 a). But our eye does
not see it. In figure 3.6 a, where all the rays are directed out, however, our eye glosses
them into something like a rim and clearly sees the internal circle, a two-dimensional
formation, a spot. The circumference, the boundary of this spot, also becomes visible.

There are many visual illusions resulting from the fact that we “see in spots.” They offer
instructive examples of inborn associations. One of the best ones is shown in figure 3.7.

Figure 3.7.  The illusion of the approximation of diagonals.

Figure 3.7a is a square, and its diagonals intersect at right angles. Figure 3.7 b is
constructed of arcs, but its vertices form precisely the same square as in figure 3.7 a. and
therefore the diagonals also intersect at right angles. This is almost impossible to believe,
so great is the illusion that the diagonals of figure 3.7 b are approximated to the vertical.
This illusion may be explained by the fact that alongside the microcharacteristics of the
figure—that is, the details of its shape—we always perceive its macrocharacteristics, its
overall appearance. The overall appearance of figure 3.7 b is that of a spot which is
elongated on the vertical. The degree of elongation may be judged by figure 3.7 c. This
figure is a rectangle whose area is equal to the area of figures 3.7 a and b, while the ratio
of its width to its height is equal to the ratio of the average width of figure 3.7 b to its
average height. The hypothetical classifier which records the overall elongation of the
figure will arrive at the same state in contemplating figure 3.7 b as in contemplating
figure 3.7 c. In other words, whether we desire it or not, figure 3.7 b is associated in our
mind with the rectangle in figure 3.7 c. Following the diagonals in figure 3.7 b in our
mind, we equate them with the diagonals of figure 3.7 c, which form acute vertical
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angles. The classifier that records elongation of the spot is unquestionably a useful thing
it was especially useful for our distant ancestors who did not perceive the world in more
subtle concepts. But because we cannot switch it on or off at will, it sometimes does us a
disservice, causing visual deception.

 THE CONDITIONED REFLEX AND LEARNING

BUT LET US RETURN from inborn associations to developed ones, that is, to the actual
associating of representations. The very essence of the metasystem transition from the
fourth stage of evolution to the fifth lies in the difference between the suffixes of two
words from the same root. The association is simply one of the aspects of the complex
reflex, while associating is control of associations: the formation of new associations and
disappearance of old ones.

The capability for associating representations appears most fully as the capability for
forming (and therefore also recognizing) new concepts. The dog that recognizes its
master from a distance may serve as an example.

The Pavlovian conditioned reflex is a more particular manifestation of the capability for
associating. The diagram of this reflex is shown in figure 3.8.

Figure 3.8.  Diagram of the conditioned reflex.

The unconditioned stimulus S1 (food) is always accompanied by the conditioned stimulus
S2 (a whistle), and as a result they become associated in one representation U, which,
because of the presence of S1 in it, causes the response R (salivation). Then stimulus S2

causes U, and therefore R, even where S1 is not present. The whistle causes salivation.

A question may arise here. The conditioned reflex arises on the basis of the unconditioned
reflex whose diagram is S  R. At the same time, if the conditioned stimulus is removed
in figure 3.8, we shall obtain the diagram S1  U  R. How do we know that step U
exists? Is this an arbitrary hypothesis?
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In reality the diagram shown in figure 3.8 contains absolutely no hypotheses. We shall
emphasize once more that this diagram is functional, not structural. We are making no
assumptions about the organization of the nerve net; we are simply describing observed
facts, which are these: first, state S1 leads, through the mediation of some intermediate
states, to state R; second, state S2 in the end also leads to R. Therefore, at some moment
these two processes are combined. We designate the state at this moment U and obtain
the diagram we are discussing. In this way our diagram, and our approach in general,
differ from the Pavlovian diagram of the reflex arc, which is precisely the structural
diagram, a physiological model of higher nervous activity.

The process of learning, if it is not reduced to the development of certain conditioned
reflexes (that is, touching only the discriminatory hierarchy) also includes the element of
acquiring know-how, development of specific skills. The process of learning also fits
within the diagram of associating representations in the general meaning we give to this
concept. After all, learning involves the development and reinforcement of a detailed plan
to achieve a goal. a new plan that did not exist before. The plan may be represented as an
organized group of associations. Let us recall the regulation diagram (see figure 2.6).
With a fixed goal the comparison block must juxtapose a definite action to each situation.
The “untaught” comparison block will test all possible actions and stop at those which
yield a reduction in the discrepancy between the situation and the goal (the trial and error
method). As a result of learning a connection is established between the situation and the
appropriate action (which is, after all, a representation also) so that the “taught”
comparison block executes the necessary action quickly and without error.

Now for a few words about instinct and the relationship between instinctive behavior and
behavior developed through learning. Obviously, instinct is something passed on by
inheritance—but exactly what? In the book already referred to, Miller, Galantier, and
Pribram define instinct as a “hereditary, invariable, involuntary plan.” Plans, as we know,
are organized on the hierarchical principle. It is theoretically possible to assume the
existence of an instinct that applies to all stages of the hierarchy, including both the
general strategy and particular tactical procedures all the way to contracting individual
muscles. “But if such an instinct does exist,” these authors write, “we have never heard of
it.” The instinct always keeps a definite level in the hierarchy of behavior, permitting the
animal to build the missing components at lower levels through learning. A wolf cub
which is trying to capture a fleeing animal unquestionably acts under the influence of
instinct. But it is one thing to try and another to succeed. “It may be considered,” Miller,
Galantier, and Pribram write, “that copulation is an instinctive form of behavior in rats. In
certain respects this is in fact true. But the crudeness of copulative behavior by a rat
which does not have experience in the area of courting shows plainly that some practice
in these instinctive responses is essential.”

As the organization of an animal becomes more complex and its ability to learn grows in
the process of evolution, the instincts “retreat upward,” becoming increasingly abstract
and leaving the animal more and more space for their realization. Thus the behavior of
animals becomes increasingly flexible and changes operationally with changes in external
conditions. The species' chances for survival grow .
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 MODELING

IN OUR DISCUSSION of associations of representations thus far we have completely
ignored their dynamic, temporal aspect; we have considered the representations being
connected as static and without any coordinate in time. But the idea of time can enter
actively into our representations. We can picture figures that are moving and changing at
a certain speed and we can continue the observed process mentally. A wheel rolls down
the road. We close our eyes for a second or two and picture the movement of the wheel.
Upon opening our eyes we see it in exactly the place where we expected it. This is, of
course, the result of an association of representations, but this means an association, or
more correctly representations, which are organically bound up with the passage of time.
The wheel's position x at moment t is associated with the position x1 at moment t + ∆t
with position x2 at moment t + 2∆t , and so on. Each of these representations includes a
representation of the time to which it refers. We do not know the mechanism by which
this inclusion is made and, in conformity with our approach, we shall not construct any
hypotheses regarding this. We shall simply note that there is nothing particularly
surprising in this. It is commonly known that an organism has its own time sensor, the
“internal clock.”

The association of representations that have a time coordinate enables us to foresee future
situations in our imagination. We have just established the existence of such
representations relying on internal, subjective experience. But the fact that animals also
reveal the capability for foresight (look at the way a dog catches a piece of sugar) leads
us to conclude that animal representations may also have a time coordinate.

Speaking in the language of cybernetics, the interconnection of representations which
have a time coordinate and the resultant capability to foresee the future is simply
modeling, constructing a model of the environment.
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Figure 3.9.  Diagram of modeling.

Let us give the general concept of the model. We shall consider two systems  and . Let
us assume that to each state Ai of system we can somehow juxtapose one definite state
Bi of system . The inverse correspondence does not have to be unique (single-valued);
that is, many states of may correspond to one state of . Because, according to our
definition, the genenalized state is a set of states, this proposition may be described as a
one-to-one correspondence of the states of system  to the generalized states of system 

 . This is necessary but not sufficient to consider system  a model of system  .
Additionally there must be a transformation T(t) of system  which depends on time t and
models the natural passage of time in system  . This means the following: Suppose that
system   is initially in generalized state A1 which corresponds to state B1 of system .
Suppose that after the passage of time t the state of system a becomes A2 Then the
conversion T(t) should switch system  to state B2, which corresponds to generalized state
A2. If this condition is met we call system  a model of system  .

The conversion T(t) may involve nothing more, specifically, than permitting system  by
itself to change its state with time. Such models are called real time models.

The besiegers dug an opening under the fortress wall and placed several barrels of
powder in it. Next to them a candle was burning and from the base of the candle a
trail of powder ran to the barrels. When the candle burned down the explosion would
take place. An identical candle lighted at the same time was burning on a table in the
tent of the leader of the besieging forces. This candle was his model of the first
candle. Knowing how much time remained until the explosion he gave his last
orders.... Wild faces leaned over the table, hairy hands clutched their weapons. The
candle burned down and a fearsome explosion shook the air. The model had not let
them down.

The image on a television screen when a soccer game is being broadcast may also be
formally considered a model of the soccer field and stands. All conditions are in fact
observed. But one senses a great difference between the case of the two candles and the
case of the soccer broadcast—a difference in the information links between systems a and

. Any image  of object   is a model of it in the broad sense; but there is a continuous
flow of information from   to  and it is only thanks to this flow that the correspondence
between states a and  is kept. With information access to , we in fact have access to 

. System  operates as simply a phase in the transmission of information from  .

The situation is quite different in the case of the two candles. Candle  burns at the same
speed as candle  , but independently of it. The leader of the besieging forces does not
have access to candle a and cannot receive any real information regarding its state. By
modeling he compensates for this lack and obtains equivalent information. System  here
plays a fundamentally different and more significant role. A spatial barrier is overcome,
so to speak, by this means and this is done without establishing any new information
channels.
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Even more important is the case where the model helps overcome a barrier of time rather
than space. One cannot, alas, lay an information channel to the future. But a model
permits us to operate as if there were such a channel. All that is required is that execution
of the conversion T(t) on the model take less time than time t itself. Many other examples
could be given of the use of such models in modern life, but that is hardly necessary. Let
us return once again to associations of representations.

We have seen that associations of static representations reflect the existence of spatial
correlations, interrelationships in the environment. In exactly the same way associations
of dynamic representations (models created by the brain) reflect dynamic temporal
correlations that characterize the environment. Situation x after time t evokes (or may
evoke) situation y—that is the general formula for such correlations, and in the brain
these correlations are imprinted in the form of the corresponding associations.

 COGNITION OF THE WORLD

WHAT IS knowledge? From a cybernetic point of view, how can we describe the
situation where a person or animal knows something or other? Suppose we know there
are two people in an adjacent room. Since they really are there, if we go into the room we
shall see two people there. Because we do know this, we can, without actually entering
the room, imagine that we are opening the door and entering it; we shall picture the two
people who are in the room. In our brains therefore, an association of representations
takes place which enables us to foresee the results of certain actions: that is. there is a
certain model of reality. For the same reason, when we see a rolling wheel, we know
where it will be a second later, and for the same reason when a stick is shaken at a dog
the animal knows that a blow will follow, and so on.

Knowledge is the presence in the brain of a certain model of reality. An increase in
knowledge—the emergence of new models of reality in the brain—is the process of
cognition. Learning about the world is not a human privilege, but one characteristic of all
higher animals. The fifth stage of evolution may be called the stage of individual
cognition of the world.
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CHAPTER FOUR

The Human Being

    CONTROL OF ASSOCIATING

WE HAVE COME to the most exciting moment in the history of life on earth, the
appearance of the thinking being, the human being. The logic of our narrative compels us
to link the appearance of thought with the next metasystem transition. We still know so
little about the process of thinking and the structure of the thinking brain that any theory
claiming to explain this phenomenon as a whole is hypothetical. Thus, our conception of
thinking must also be treated as a hypothesis. However, this conception indicates the
place of thinking in the series of natural phenomena and, as we shall see, puts a vast
multitude of facts together in a system. The complete absence of particular, arbitrary
assumptions, which ordinarily must be made when a theory includes a structural
description of a little-studied object, is another positive feature. The core of our
conception is not some hypothesis regarding the concrete structure and working
mechanism of the brain, but rather a selection of those functional concepts through which
a consistent and sufficiently convincing explanation of the facts we know about thinking
becomes possible.

Thus, we assert that the appearance of thinking beings, which marks the beginning of a
new stage—perhaps a new era—in evolution (the era of reason) is nothing short of the
next metasystem transition, which occurs according to the formula

control of associating = thinking.

To prove this assertion we shall analyze the consequences that follow from control of
associating and equate them with the forms of behavior we observe in thinking beings.

First of all. what is control of associating? Representations X and Y are associated in an
animal only when they appear together in its experience. If they do not appear together
(as a rule, on many occasions), the association will not arise. The animal is not free to
control its associations; it has only those which the environment imposes on it. To control
associating a mechanism must be present in the brain which makes it possible to associate
any two or several representations that have no tendency at all to be encountered together
in experience—in other words, an arbitrary association not imposed by the environment.

This action would appear to be completely meaningless. An elder tree in the garden and
an uncle in Kiev—why connect these two totally unrelated facts? Nonetheless, arbitrary
associating has profound meaning. It really would be meaningless if brain activity
amounted to nothing more than passively receiving impressions, sorting them, grouping
them, and so on. But the brain also has another function—its basic one: to control the
organism, carrying out active behavior which changes the environment and creates new
experience. You can bet that the alarm clock and the holder for the teapot are in no way
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associated in your consciousness. Nor in the consciousness of your three-year-old son.
However, this is only for a certain time. One fine day, for some reason an association
between these two objects occurs in the head of the young citizen and he is overcome by
an insurmountable desire to rap the alarm clock with the holder. As a result, the objects
enter a state of real, physical interaction.

In the metasystem transition, some thing that was once fixed and uniquely determined by
external conditions becomes variable and subject to the action of the trial and error
method. Control of associating, like every metasystem transition, is a revolutionary step
of the highest order directed against slavish obedience by the organism to environmental
dictatorship. As is always true in the trial and error method, only a small proportion of the
arbitrary associations prove useful and are reinforced, but these are associations which
could not have arisen directly under the influence of the environment. And they are what
permits a reasoning being those forms of behavior which are inaccessible to the animal
that was frozen in the preceding stage.

 

 PLAY

HIGHER ANIMALS reveal one interesting form of behavior, play, which relates them to
human beings and is a kind of herald of the era of reason. We are not referring to
behavior related to mating (which is also called play sometimes), but rather to “pure”
and, by appearance, completely purposeless play—play for pleasure. That is how a cat
plays with a piece of paper, and how the young (and the adults) of all mammals play with
one another.

 But what is play? How does this phenomenon arise in the animal world? Play is usually
explained as a result of the need to exercise the muscles and nervous system, and it
certainly is useful for this purpose. But it is not enough to point out the usefulness of a
form of behavior; we still must explain how it becomes possible. When a kitten plays
with a piece of paper tied to a string it behaves as if it thinks the paper is prey. But we
would underestimate the mental capabilities of the kitten if we supposed that it was
actually deceived—it is not. It has caught this paper many times, bitten it, and smelled its
offensive, inedible odor. The kitten's representation of the paper is not included in the
concept of “prey.” However, this representation partially activates the very same plan of
action normally activated by the concept of “prey.” Similarly, a wolf frolicking with
another wolf does not take its playmate for an enemy, but up to a certain point it behaves
exactly as if it did. This is the very essence of play. It can be understood as the arbitrary
establishment of an association between two objects such as the paper and the prey or the
fellow wolf and the enemy. As a result there arises a new representation which, strictly
speaking, has no equivalent in reality. We call it a “fantasy,” the result of “imagination.”
Thus the paper plainly is not prey, but at the same time seems to be prey; thus fellow
wolf is simultaneously friend and enemy. The synthetic representation generates a
synthetic plan of action—a play plan. The wolf is completely serious and tries as hard as
it can to overtake and catch its friend, but when it bites it is no longer serious.
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Indeed, play exercises the muscles and develops skills which are useful during serious
activities, but this impresses one more as a useful side effect than as a special strategic
goal for whose sake play forms of behavior are developed. Everyone knows how children
love to play, but what is attractive in their play is not so much the pleasure gained from
physical exercise or showing one's agility as it is the game as such. When boys play
soldiers and girls play dolls they are not exercising anything except their
imagination—that is, their ability to make arbitrary associations. It is these arbitrary
associations which give them pleasure. Children's play is a phase of development through
which every person must inevitably pass in order to become a person. In his remarkable
book From Two to Five, K. Chukovsky devotes many pages to developing the idea of the
absolute necessity for elements of play and fantasy in a child's upbringing. Children
cannot get along without these things. They give themselves up to play completely,
feeling it to be something needed, important, and serious.

 K. Chukovsky writes:

I knew a little boy who was pretending to be a chimney sweep and shouted, “Don't
touch me, mama, you'll get dirty! . . .”

Another little boy who had been pretending he was a meatball for quite some time
and was conscientiously sizzling in the frying pan pushed his mother away in
irritation when she ran up and began kissing him. “How dare you kiss me when I'm
cooked!” he shouted.

No sooner had my three-year old daughter Mura spread out her books on the floor in
play than the books became a river where she caught fish and washed clothing.
Accidentally she stepped on one of the books and exclaimed '“Oh, I got my foot
wet!” It was so natural that for a minute I believed that the books were water and
almost ran over to her with a towel.

In all of these games the children are both the authors and the performers of
fantasies which they embody in play-acting. And the desire to believe in their make-
believe is so strong that any attempt to bring them back to reality evokes heated
protest.
 

The apparatus for controlling associations first announces its existence through the need
for play. And because it exists it must work: it needs something to do. This is just as
natural as the lungs needing air and the stomach food.

 

 MAKING TOOLS

BUT LET US leave play behind and pass on to the serious acts of serious adult people.
When speaking of the origins of human beings the use and manufacture of tools are
pointed out as the first difference between humans and animals. The decisive factor here
is, of course, making the tools. Animals can also use objects as tools. The woodpecker
finch of the Galapagos Islands uses a spine of cactus or small chip to pick worms out of
the bark of a tree. No one who has seen pictures of the skillful way the finch manages the
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spike held in its beak can fail to agree that this is a clear and very artful use of a tool. The
California sea otter lies on its back on the surface of the water, places a flat rock on its
chest, and breaks mussels open with it. Monkeys sometimes use sticks and stones. These
are very meager examples, but they show that in principle there is nothing impossible in
animals using tools. In fact, why can't a plan of action passed on by heredity and
reinforced by learning include the selection and use of certain types of objects? Concepts
such as “long and sharp” or “round and heavy” are fully accessible to animals. It is
obvious that examples such as those given above are rare, because the tools that can be
received from nature without special manufacture are very imperfect and in the process
of evolution animals have greater success using and refining their natural organs: beaks,
claws, and teeth. If the use of tools is to become the rule, not the exception, it is necessary
to be able to make them or at least to be able to find suitable objects especially for the
particular case.

Suppose that you have to drive a nail but do not have a hammer handy. You look around,
seeking a suitable object and spot a bronze bust of Napoleon on the table. You have never
before had to drive nails with Napoleons. We can even assume that you have never
before driven nails with anything but a real hammer. This will not prevent you from
taking the bust and driving the nail. You did not have the association “nail = bust,” you
created it. In your imagination you compared the nail and the bust of Napoleon, pictured
how you could drive the nail with him, and then did so.

 

 IMAGINATION, PLANNING, OVERCOMING INSTINCT

IF IN THE BRAIN of the animal there is an association between object X, a tool, and
object Y, the object of the action (and, of course, if it is physically possible to execute the
action), the animal will be capable of using the tool. But if there is no such association,
the animal does not “guess” that it should do this. A dog may be trained to drag bench X
in its teeth to fence Y, climb up on the bench, and jump from it over the fence, but if it is
not taught this it will not figure it out with its own mind. The dog knows very well that
the bench can be moved from place to place. It also knows what opportunities open up
when the bench is next to the fence; if you put the bench there it will immediately jump
up on it and leap over the fence (assuming that there is some need for it to do so). This
means that it is able to foresee the result of the combination of X and Y; it has the
corresponding model in its brain. But this model is just dead weight, because the dog
cannot picture to itself the combination XY as a goal to strive toward; it does not have the
imagination for this. It is not enough to know what will be, one must also imagine what
can be. The bare formula which equates thinking with control of associating may be
translated into less precise but more figurative language by stating that the human being
differs from the animal by the possession of imagination.

Let us construct a very simple model of the working of imagination, using A to designate
the situation occuring at a given moment and Z for the situation to be achieved. We shall
consider that for the given situation only some other situations are immediately
achievable. This will be written by the formula:
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A  (B, C, H, Z)

where situations immediately achievable from A are shown in parentheses.

Let us assume that a certain animal (or person) knows which situations are achievable
from which others—that is, in its brain there is a series of associations that can be
represented in formulas resembling the one above. We shall also consider that for each
transition from the given situation to another, directly achievable, one the action which
executes it is known. We shall not introduce designations for this, however, so as not to
clutter up the formula.

 If the brain does possess the exact association shown above, and therefore state Z is
achievable from A, the animal will immediately execute the necessary action. Now let us
suppose that the brain contains the following group of associations:

A  (B, C, D)

B  (E, F)

D  (G, H, I, J)

H  (B, C)

I  (B, C, Z)

In this table there is no action which would switch A to Z, and therefore the animal given
this problem will not be able to solve it. It will either do nothing or flounder in confusion,
executing all the actions in the table without any order. But the human being will imagine
that he has performed action A in order to understand what situations will become
accessible to him in this case. In other words, he will create new associations, which can
be written as follows:

  A  B  E

A  B  F  

It is true that in the given case these associations will prove useless, but continuing with
such attempts the human being will finally find the solution:

 A  D  I  Z.

It is also possible, of course, to approach the problem from goal Z. The main thing is that
the table of associations itself does not remain unchanged; it becomes an object of work
according to the trial and error method and new lines are added to it. Further, these lines
do not appear through the influence of the environment (which determines only the initial
list of associations), they result from the functioning of a special mechanism which
follows its own rules and laws.
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The higher animals also have the rudiments of imagination, which manifest themselves,
as has already been noted, particularly in games. Elements of imagination can be clearly
discerned in the behavior of the anthropoid apes, which show a resourcefulness dogs and
other animals cannot attain. There have been experiments in which an ape has used a
support (a cube) to reach a suspended lure, and has even placed one cube on top of
another if necessary. With a stick, the ape can push a lure out of a segment of pipe. It can
find an appropriate stick, and even split it in half if it is too thick and does not go into the
pipe. This can be considered the beginning of toolmaking.

All the same, the boundary is not between the dog and the ape, but between the ape and
the human being. At some moment our ancestors' ability to control associating crossed a
threshold, beyond which it became an important factor for survival. Then this capability
was refined during the course of evolution. The metasystem transition was completed; the
human being had become distinct from the world of animals.

Many factors played parts in the process of humanization, above all the organization of
the limbs of the man-ape. No matter what wise instructions the brain might give, they
would come to naught if it were physically impossible to execute them. On the other
hand, the existence of organs capable of executing subtle actions does not by itself give
rise to thinking: Insects are physically capable of very complex operations; the limbs of
the dinosaurs could, in principle, have served as the starting point for the development of
arms; the tentacles of the octopus are more perfect in design than our arms.
Unquestionably the leading role is played by the brain. At the same time, the arms of the
man-ape and the possibility of having them free when walking fostered a situation where
the brain's capability for control of associations became (through the mediation of using
and making tools) a factor of decisive importance for survival. Other factors, such as a
sharp change in natural conditions, could operate in this same direction. It may be that
some other circumstances also played a part. Clarifying the concrete conditions of the
origin of the human being and the role played in this process by various circumstances is
a complex and interesting problem on which many scientists are working, but it is not the
subject of this book. For us it is enough to know that the combination of conditions
necessary for the metasystem transition did come about.

 Because the goals which are the most important elements in a plan are representations,
the ability to associate representations arbitrarily means the ability to make plans
arbitrarily. The human being can decide as follows: first I will do A, then B, then C, and
so forth. The corresponding chain of associations arises. The human being can decide that
it is absolutely necessary to do X. The association “X—necessary” arises. New, concrete
plans also occur to the animal constantly, but the mechanism of their occurrence is
different. They are always part of a more general (standing higher in the hierarchy) plan
and, in the end, a part of instinct. The goals the animal sets are always directed to
executing an instinctive plan of actions. The instinct is the supreme judge of animal
behavior—its absolute and immutable law. The human being also inherits certain
instincts, but thanks to the ability to control associations he can get around them and
create plans not governed by instinct and even hostile to it. Unlike the animal, the human
being sets his own goals. Where these goals and plans are taken from and what purpose
they serve is another matter. We shall take this up when we discuss the human being as a
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social being. For now, the only thing to keep in mind is that the human brain is organized
in a way that makes it possible to go beyond the framework of instinctive behavior.

 

 THE INTERNAL TEACHER

THE HUMAN BEING does not by any means perform each operation “through personal
imagination”—that is, as if discovering it for the first time. On the contrary, a person (at
any rate an adult) does most operations without using imagination; they are routine and
customary, and they are regulated by already established associations. The mechanism of
such operations does not differ from what we observed in animals, and we call the
method by which the necessary associations are developed learning, just as with animals.
But the mechanism of learning in humans and animals differs radically.

In the animal, new associations are in a certain sense imposed from outside. For an
association to form it must have motivational grounds, be related to a negative or positive
emotion. Reinforcement is essential. In other words, teaching takes place only by the
“carrot and stick” [in Russian, literally, “knout and cake”]. When a person learns, he
himself is taking steps toward learning; but this is not because he knows that “learning is
useful.” The baby does not know this, but it learns most easily and actively. In the baby,
associations “simply form” without any reinforcement. This is the functioning of the
mechanism for control of associating, which requires nourishment. If he does not have it
the person becomes bored, a negative emotion. There is no need for the teacher to force
anything on the child, or upon people in general: the teacher's job is simply to provide
nourishment for the imagination. Upon receiving this nourishment a person feels
satisfaction. Thus, he himself is always learning inside. This is an active, creative
process. Thanks to the metasystem transition, the human being acquired his own internal
teacher who is constantly teaching him, driving him with the internal stick and luring him
with the internal carrot.

The “internal teacher” is not a fanatic; he takes a realistic approach to his pupil's
capabilities. Representations which coincide or are close in time by no means always
form stable associations. If they did, it would indicate the existence of absolute
memory—that is, total recall. We do not know why we do not have this capability; it may
be supposed that the brain's information capacity is simply inadequate. But the existence
of people whose capabilities for memorization are substantially greater than average
appears to contradict this hypothesis and leads us to conclude that the lack of such
capability is more likely the result of some details involving the organization of control of
associating. In any case, because there is no absolute memory there must be a criterion
for selecting associations. One of the human criteria is the same as found among animals:
emotional strain. We memorize things involving emotions first of all. But the human
being also has another criterion (which is, by the way, evidence of the existence of
control of associating): we can decide to memorize something and as a result in fact do
memorize it. Finally, the third and most remarkable criterion is that of novelty. We know
that people memorize things new to them and let old things go by (“in one ear and out the
other”). But what is the difference between “new” and “old?” After all, strictly speaking
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no impression is ever repeated. In this sense every impression is a new one. But when we
hear talk on a hackneyed subject or see hackneyed situations on a movie screen we start
to yawn and wave our hand in annoyance: “This is old!” When the stream of impressions
fits into already existing models, our “internal teacher” sees no need to change the model
and the impressions slip by without any consequences. This is the case when we know
ahead of time what is coming. But when we do not know what is coming (or even more
so when it contradicts the model) then new associations appear and the model becomes
more complicated. The relationship to the model already existing in the brain is the
criterion for the novelty of an impression.

As we begin to talk about memory and other aspects of the human psyche, we touch on
many unresolved problems. Fortunately, a systematic presentation of human psychology,
particularly in its “cyberneticized” variation, is not part of our task. We shall be content
with a quick survey of the psychological characteristics that distinguish human beings
from animals in order to be sure that they are the natural results of the metasystem
transition—the appearance of an apparatus for controlling associating.

We have seen that the control of associating leads to a qualitative difference between the
human and the animal in susceptibility to learning. We shall also note in passing that the
enormous quantitative difference that exists between these levels for humans and
animals, and that is expressed simply in the quantity of information memorized in the
process of learning, is also a direct consequence of the metasystem transition. It follows
from the aforementioned law of branching of the penultimate level. In this case the
penultimate level consists of the physical devices for the formation of associations.
Multiplication of these devices means enlarging memory. We shall deviate here from our
principle of not considering structural models of the brain to point out the branching of
the human cerebral cortex, which according to general (and well-founded) opinion is the

storage place for associations.  

Figure 4.1.  Area of the cerebral cortex in the horse, orangutan, and human being.
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 THE FUNNY AND THE BEAUTIFUL

ALL THE SAME, qualitative differences are more interesting. We have already
established that the existence of a special apparatus for the control of associating makes
learning an active process involving positive and negative emotions for the human being.
These are truly human emotions which are inaccessible to beings that do not possess this
apparatus. The goal of associating is the construction of a model (or models) of the
environment, and we may therefore conclude that a new emotion will be positive if it
establishes an association which improves the brain model of the world. This emotion can
be called the pleasure of novelty using the term “novelty” in the sense we gave it above.
The corresponding negative emotion is called boredom. We have already enumerated the
criteria for establishing and reinforcing associations and separated the criterion of novelty
from the criterion of the existence of emotional reinforcement. We had in mind ordinary
emotions common to humans and animals. When we raise the pleasure of novelty to the
rank of an emotion we can declare the third criterion to be a particular case of the first.
Then we can say that involuntary associating always involves emotional reinforcement,
but compared to the animal the human being possesses a fundamentally new class of
emotions.

 Yes, that is right, a class. The “pleasure of novelty” is a very general term which covers
a whole class of emotions. We can immediately point out two plainly different
representatives of this class: the sense of the funny and the sense of the beautiful. Hardly
anyone today would try to maintain that he has fully and finally understood the nature of
these emotions and can give them a detailed cybernetic interpretation. Unquestionably,
however, they are inseparable from cognition of the world, from the creation of new
models.

 What makes us laugh? A disruption of the “normal” course of events which is
completely unexpected but at the same time natural, and in hindsight entirely
understandable: an unexpected association, meaningless at first glance but reflecting
some deep-seated relationships among things. All this, of course, creates a new model of
the world and gives pleasure proportional to its novelty. When it is no longer new it is no
longer funny. When someone tries to make us laugh using a very familiar model we call
it “flat” humor. But this is a very relative concept. Everyone is familiar with the situation
where a joke is told and one listener bursts out laughing while the other smiles sourly.
The difference between the two listeners is obviously the absence or presence of the
corresponding model. Another situation very important for clarifying the nature of humor
occurs when one person laughs and another glances around uncomprehending. “He didn't
get it,” they say in such cases. The joke was too subtle for this person; it relied on
associations he did not have. What is funny is always on the borderline between the
commonplace the unintelligible. Every person has his own borderline and the line shifts
in the process of individual development. Nothing shows the level of a person's
sophistication so clearly as his understanding of what is funny.

 There are more individual differences among people in their sense of the beautiful—a
sense more subtle and mysterious than the sense of humor. But here too we find the same
dynamism related to the novelty of the impression. Frequent repetition of a pleasing piece



77

of music creates indifference to it, and finally revulsion. A sharp sensation of the
beautiful is short in duration; it includes the element of revelation. enchanting surprise. It
can also be described as the sudden discernment of some deep order, correspondence, or
meaning. If we attempt to interpret this phenomenon cybernetically, we may assume that
the sense of the beautiful evokes impressions which give nourishment to the most
complex and subtle models, which employ classifiers on the highest level. These
classifiers must, of course, compress information to the maximum degree and recognize
extremely complex concepts. That is what discernment of a deep internal order in
apparent disorder is.

All models are hierarchical. The more complex is built on the simpler, and the higher
rests on the lower. A person may be insufficiently developed in esthetic terms and not see
beauty in a place where others do see it. To an untrained listener a masterpiece of
symphonic music will seem to be a meaningless cacophony. On the other hand, a banal
melody or a primitive geometric ornament will not elicit a sensation of the beautiful in
us; in this case the order is too obvious. When we say in “us,” we are speaking of
modern, civilized people. It is possible that a Neanderthal would be shaken to the depth
of his soul upon seeing a series of precisely drawn concentric circles. The beautiful too is
always found on the borderline between the commonplace and the unintelligible. Shifting
this line, which we can define as esthetic education, is cognition of the world and the
consequent construction of new models in the brain.

We are taking the sense of the beautiful in its pure form. In reality it is ordinarily bound
up with other human feelings, often forming inseparable groups and therefore influencing
many spheres and aspects of societal life. The value of esthetic experiences, which may
be called its applied value, has long been widely recognized. The situation with pure
esthetics is worse. Now and again through the course of human history there have been
calls to put an end to pure esthetics once and for all, as something not simply useless but
even directly harmful. (The harm has been understood in different ways. Some have
proclaimed beauty to be sinful while others have argued that it distracts from the class
struggle.) On the other hand, there have been attempts by the vulgar materialist school to
explain and “justify” the beautiful by reducing it to the useful in the most ordinary,
everyday sense of the word. This is like someone praising a transistor radio because it can
be used to drive nails and crack nuts. This attitude arises from a failure to understand that
pure esthetic education trains the brain to perform its highest and most subtle functions.
The brain is unitary. The models created in the process of esthetic education
unquestionably influence a person's perception of the world and his creative activity.
Exactly how this happens is unknown. Esthetic education is more precious because we
know of no substitute for it.

 

 LANGUAGE

UNTIL NOW we have considered the human being as an individual only and have been
interested in the capabilities of the human brain. With this approach it is not at all
obvious that the appearance of the human being on earth was such a major revolution in
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the history of life. The frog was more intelligent than the jellyfish. The dog was more
intelligent than the frog. The ape was more intelligent than the dog. Now there appeared a
being which was more intelligent than the ape. Well, so what'?

 The revolution was created by the appearance of human society which possessed a
definite culture, above all language. The key aspect here is language. Language in
general is understood to be a certain way of correlating objects Ri, which are considered
to be some kind of primary reality, to objects Li which are called the names of objects Ri

and are viewed as something secondary, especially created to be correlated to objects Ri .
In relation to the name Li object Ri is called its meaning. The aggregate of all objects Li is
frequently also called a language (in a more expanded form it would be better to call it
the material fixer or carrier of the language). The set of objects Ri can be much broader
and more varied than the set of language objects Li This is the case, for example, with
natural languages such as Russian, English, and others. It is clear that an enormous
amount of information is lost when word descriptions are substituted for the perception of
real objects and situations. In those cases where the information levels of objects Ri and Li

are on the same order of magnitude, the cybernetic term code is often used in place of the
word “language.” The transition from R to L is called coding and the opposite transition
from L to R is decoding. Thus, when a message is transmitted in 'Morse' Code by radio,
the initial text—a set of letters—is coded in a set of dots and dashes. In this code
(language), information travels through the air and is received at an assigned point, where
decoding from the language of dots and dashes to the language of letters takes place. In
this case the process of coding and decoding does not cause information loss.

Because there are no more convenient and generally accepted terms than coding and
decoding for the transition from the meaning to the name we shall use these terms in the
most general sense, disregarding the ratio of information levels (and calling language
simply that, and not “code”).

Objects Ri and Li may be arbitrary in nature; they do not have to be physical objects but,
speaking generally, may be phenomena such as sound oscillations. Let us note that
'phenomenon” is the most general term we can use to designate a part of physical reality
which is limited in space and time; “physical object,” by contrast, is a less clear-cut
concept which refers to phenomena of a special type that reveal a certain stability: they
have a surface across which the exchange of matter does not take place. This concept is
not clear-cut because there are no absolutely impenetrable boundaries in reality and so-
called “physical objects” are continuously changing. This is a relative concept which only
reflects a low rate of change.

Elementary language is also found among animals, especially among those living in
communities, which therefore must somehow coordinate their actions and “clarify
relationships.” We call this language elementary only in comparison with human
language; by itself animal language is not at all simple and evidently well satisfies the
needs of members of the community for the exchange of information. The danger signal,
the call for help, the intention to initiate mating relationships and the acceptance or
rejection of this intention, the order to obey, and the order for everyone to head
home—these and other components are found in the languages of most birds and
mammals. They are expressed by gestures and sounds. When bees return to the hive from
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a honey-gathering expedition they show the other bees where they have been by
performing certain unique movements which resemble a dance.

 

 CREATION OF LANGUAGE

HUMAN LANGUAGE differs radically from animal language. As was the case with the
use of tools, the animal language is something given at the start—an element of
instinctive behavior. If language does change it is only along with changes in behavior
accompanying the general evolution of the species. For the human being, language is
something incomparably more mobile and variable than behavior. The human being
himself creates language: he has the capability (and even the need) to assign names,
something no animal can do. Giving names to phenomena (specifically, to physical
objects) is perhaps the simplest and most graphic manifestation of the control of
associating. There is nothing in common between the word “lion” and a real lion, but
nonetheless the association between the word and its meaning is established. It is true that
many onomatopoetic words appeared in the dawn of human culture. There is an
abundance of such words in the languages of primitive cultures. The same thing is even
more true of gestures, which have obviously always been imitative at base. But this does
not change the nature of the association between the name and the meaning as the result
of deliberate associating. Let us suppose that in some primitive language the lion is called
“rrrrr.” The association between “rrrrr” and the lion does not arise because this sound can
be confused with the lion's roar (it would be quite a hunter who was capable of making
such a mistake), but because in searching for a name for the lion the human being sorts
through the animal's characteristics in his imagination and selects one of them which
permits at least an approximate reproduction. The creator of a name perceives it
subjectively as something close to the meaning— something like it or, to be more precise,
likened to it. This is because the objective resemblance between the name and the
meaning cannot be large; it is almost nil and serves only as an umbilical cord, which
withers away soon after the name is born. The association between the name and the
meaning does not arise at all in the way that the association between types of dishes and
salivation arose in Pavlov's experiments with dogs. The latter was a conditioned reflex,
but the former is creation of language. The occasion that brought about the choice of the
name is forgotten and the name itself is transformed, but the relationship between the
name and its meaning does not suffer from this.

 

 LANGUAGE AS A MEANS OF MODELING

LANGUAGE ARISES as a means of relationship, of communication among members of
a primitive community. But once it has arisen it immediately becomes a source of other,
completely new possibilities which are not in principle related to relationships among
people. What these possibilities are we shall demonstrate with the example of the
language of numbers.
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Let us imagine a young man from the primitive Nyam-Nyam tribe. We shall call him Uu.
Now let us see how he performs the duties of scout.

Uu is lying behind a thick old oak tree and keeping constant watch on the entrance
to a cave on the opposite bank of the river. At sunrise a group of men from the
hostile Mayn-Mayn tribe approach. They are obviously planning something bad,
probably setting up an ambush in the cave. They scurry back and forth, now going in
the cave and now coming out, first disappearing in the forest and then returning to
the cave. Each time an enemy enters the cave Uu bends over one finger, and when
an enemy comes out of the cave he unbends one finger. When the enemy goes away
Uu will know if they have left an ambush party and, if they have, how many people
are in it. Uu will run to his own tribe and tell them with his fingers how many enemy
men remain in the cave.

Our hero is able to know how many men are in the cave at any moment because he has
used his fingers to construct a model of that part of the external world which interests
him. And what interests him is the cave and the enemy in it. In his model one bent finger
corresponds to each enemy in the cave. A bent finger is the name of the enemy in the
cave; an enemy in the cave is the meaning of a bent finger. The operations performed on
the names, bending and unbending the fingers, correspond to the entrances and exits of
enemies from the cave. This is a language. It can be called a finger language if we are
looking at the physical material from which the model is constructed or a number
language if we are looking at the method of correlating names with meanings. And this
language is used not so much for information transmission as for constructing a model
which is needed precisely as a model—as a means of foreseeing events, a means of
finding out indirectly that which cannot be found out directly. If his native Nyam-Nyam
tribe is far away and Uu does not intend to tell anyone how many enemy men are in the
cave, in order to plan his own course of action he still has reason to count them. The
communicative use of language (a means of communication among people) is
supplemented by the noncommunicative use of language (a means of constructing models
of reality).

 We come now to the crux of the matter. The modeling function of language is that final
element which we lacked for assessing the appearance of the human being on earth as the
boundary between two ages, as an event of cosmic importance. When an astronomer
determines the position of the planets in the sky, makes certain calculations, and as a
result predicts where the planets will be after a certain interval of time, he is essentially
doing the same thing that Uu did when he bent and unbent his fingers as he watched the
entrance to the cave. Art, philosophy, and science—all these are simply the creation of
linguistic models of reality. The remainder of this book will be devoted to an analysis of
this process, its laws and results. But first we shall take a general look at its place in the
evolution of the universe.
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 SELF-KNOWLEDGE

THE ANIMAL has no concept of itself; it does not need this concept to process
information received from outside. The animal brain can be compared to a mirror that
reflects the surrounding reality but is not itself reflected in anything. In the most primitive
human society each person is given a name. In this way, a person, represented in the form
of sentences containing the person's name, becomes an object for his or her own attention
and study. Language is a kind of second mirror in which the entire world, including each
individual, is reflected and in which each individual can see (more correctly, cannot help
but see!) his or her own self. Thus the concept of “I” arises. If the stage of cognition may
be called the concluding stage of the cybernetic period, the era of reason is the era of self-
knowledge. The system of two mirrors, the brain and language, creates the possibility of
a vast multitude of mutual reflections without going outside the space between the
mirrors. This gives rise to the unsolved riddles of self-knowledge, above all the riddle of
death.

 

 A CONTINUATION OF THE BRAIN

LET US SUPPOSE that three enemies enter the cave and two come out. In this case even
without the use of fingers the primitive man will know that one enemy has remained in
the cave. A model he has in his brain is operating here. But what if 25 go in and 13 or 14
come out? In this case the human brain will be impotent; it does not contain the necessary
model, the necessary concepts. We instantaneously and without error distinguish sets of
one, two, three, and four objects and can imagine them clearly. These concepts are given
to us from nature and are recognized by the nerve net of the brain, just as the concepts of
spot, line, contiguity, and the like are. It is not so easy with concepts expressed by the
numbers between five and eight; here a great deal depends on individual characteristics
and training. As for the concepts of “nine,” “ten.” and so on, with very rare exceptions
they are all merged into the single concept of “many.” And then the human being creates
a language whose material carrier (for example the fingers) serves as a fixer of new
concepts, performing the functions of those classifiers for which no room was found in
the brain. If there are not enough fingers then pebbles, little sticks, and chips will come
into play . . . and in the more developed languages, numbers and sets of numbers. The
language used is not important; the ability to encode is. The process of counting serves
for the recognition of new concepts, performing the functions of the nerve net which is
put in a stimulated state by some particular classifier. As a result of counting, the object R
(which for example represents an enemy detachment) is correlated with object L (which
for example is a series of chips or numbers). Finally, the rules for operations with the
language objects and the relations among them (for example of the type 6 + 3 = 9 and so
on) correspond to associations between concepts in the brain. This concludes the analogy
between models realized by means of language and models created by the neuron nets of
the brain.
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 If the tool is a continuation of the human hand, then language is a continuation of the
human brain. It serves the same purpose as the brain: to increase the vitality of the
species by creating models of the environment. It continues the work of the brain using
material lying outside the physical body, basing itself on models (concepts and
associations) of the pre-language period which are realized in nerve nets. It is as if the
human being had stepped across the boundary of his own brain. This transition, this
establishment of a relationship between internal and external material, became possible
owing to the capability for control of associating, which was expressed in the creation of
language.

The two functions of language, communication and modeling, are inseparably
interconnected. We gave counting on the fingers as an example of a model which arises
only thanks to language and which cannot exist without language. When language is used
for communication it performs a more modest task: it fixes a model which already exists
in someone's brain. Phrases such as “It is raining” or “There are wolves in the
neighboring forest,” or more abstract ones such as 'poisonous adder” or “fire extinguishes
water,” are models of reality. When one person communicates this to another the
associations, which were formerly in the head of the first person only, become
established in the head of the second.

Owing to the existence of language human society differs fundamentally from animal
communities. In the animal world members of a community communicate only on the
level of functions related to food and reproduction. Members of human society
communicate not only on this level, but also on the highest level of their individual
organization, on the level of modeling the external world by means of the association of
representations. People have contact by brain. Language is not only a continuation of
each individual brain but also a general, unitary continuation of the brains of all members
of society. It is a collective model of reality on whose refinement all members of society
are working, one that stores the experience of preceding generations .

 SOCIAL INTEGRATION

THE METASYSTEM transition in the structure of the brain, control of associating,
generated a new process, that of social integration—the unification of human individuals
into a certain new type of whole unit: human society. All human history has gone forward
under the banner of social integration; relations among people are growing qualitatively
and quantitatively. This process is taking place at the present time, very intensively in
fact, and no one can say for sure how far it will go.

Social integration is a metasystem transition; it leads to the appearance of a new level of
organization of matter, the social sphere. Communities of animals can be viewed as the
first (and unsuccessful) attempts to make this transition. We know communities of
animals, for example ants, in which certain individuals are so adapted to life within the
community that they cannot live outside it. The anthill may with full justification be
called a single organism; that is how far interaction among individuals and specialization
of them has gone in it. But this interaction remains at the level of the lowest functions.
There is no “contact among brains.” There is no creation of new models of reality. No
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fundamentally new possibilities are opened up because of the joining of ants into a
society; they are frozen in their development. The anthill is, of course, a metasystem in
relation to the individual ant. The integration of individuals takes place. However, this is
not a new stage in evolution, but merely a digression, a blind alley. In Russian literature
the word sotsial'nyi (social) which has the same literal meaning as the word
obshchestvennyi, has traditionally been used to apply to human society only, thus
emphasizing the fundamental difference between it and animal society. That is why I use
the term sotsial'nyi here and it is how the phrases “social sphere” and “social integration”
must be understood.

Figure 4.2.  Stages in the evolution of life.

Thus, attempts by nature to form a new stage in the organization of matter by integrating
multicellular organisms had no significant results for a long time: there was no
appropriate material. A metasystem transition in the structure of the brain was needed in
order for individuals to acquire the capability to make the necessary connections. One
other consequence of the control of associating is very important for development of the
social sphere. This is the capability of the human being to go beyond instinct, to construct
plans of action that are completely unrelated to instinct and sometimes even contradict it.
These two characteristics make the human being a social being—that is, material suitable
for building human society, the social unit as opposed to the individual. The word
“material” in reference to human beings sounds wrong, somehow degrading. Do you in
fact think there is some kind of higher being who is building society using human beings
as material? Of course not. The human being himself is the creator. And this is not some
abstract Human (with a capital letter), but a concrete human, a human personality, an
individual. Everything that society possesses has been produced by the creativity of
human individuals. But at the same time (such is the dialectic of the relationship between
the personality and society) the human being is significant only to the extent that he or
she is significant for society. This must not be understood, of course. to mean that
someone who is not recognized is not a genius. A person may oppose the entire society,
that is to say all those people living at a given moment, but at the same time be guided by
the interests of society, the logic of society's development. There are two levels of the
organization of matter: the animal level, for which the highest laws are the instincts of
self preservation and reproduction, and the human level, which means human society.
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Everything in the human being that we call distinctly human is a product of the
development of society. The human being as a purely biological (pre-social) being is
nothing but the possibility of the human being in the full sense of the word. If there is any
logic at all in human actions it is either the logic of animal instincts or the logic of society
s development (possibly veiled and not recognized as such). There is simply nowhere else
to find any other logic. Therefore,  although there is no being to whom the human. acting
as creator, is subordinate, the human being is nevertheless subordinate to some highest
law of evolution of the universe and, it may be said, is the material for the action of this
law.

 

 THE SUPER-BEING

THE APPEARANCE of human society is a large-scale metasystem transition in which
the subsystems being integrated are whole organisms. On this level it may be compared
with the development of multicellular organisms from unicellular ones. But its
significance, its revolutionary importance, is immeasurably greater. And if it is to be
compared to anything it can only be compared to the actual emergence of life. For the
appearance of the human being signifies the appearance of a new mechanism for more
complex organization of matter, a new mechanism for evolution of the universe. Before
the human being the development and refinement of the highest level of organization, the
brain device, occurred only as a result of the struggle for existence and natural selection.
This was a slow process requiring the passage of many generations. In human society the
development of language and culture is a result of the creative efforts of all its members.
The necessary selection of variants for increasing the complexity of organization of
matter by trial and error now takes place in the human head. It can take place at the level
of intuition— as the result of sudden enlightenment and inspiration— or it may break
down into distinct, clearly recognized steps. But in one way or the other it becomes
inseparable from the willed act of the human personality. This process differs
fundamentally from the process of natural selection and takes place incomparably faster,
but in both its function (constructing and using models of the environment) and in its
results (growth in the total mass of living matter and its influence on nonliving matter) it
is completely analogous to the earlier process and is its natural continuation. The human
being becomes the point of concentration for Cosmic Creativity. The pace of evolution
accelerates manyfold.

 Society can be viewed as a single super-being. Its “body” is the body of all people plus
the objects that have been and are being created by the people: clothing, dwellings,
machines, books, and the like. Its “physiology” is the physiology of all people plus the
culture of society—that is, a certain method of controlling the physical component of the
social body and the way that people think. The emergence and development of human
society marks the beginning of a new (the seventh in our count) stage in the evolution of
life. The functional formula of the metasystem transition from the sixth stage to the
seventh is:

control of thinking = culture
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Language is the most important constituent part of culture. It fulfils the functions of a
nervous system. As in the nervous system of a multicellular organism, its first function
historically and logically is the communicative function, the exchange of information
among subsystems and coordination of their activity. In the process of carrying out this
function language, again precisely like the nervous system “one step lower,” receives a
second function: modeling the environment. And just as stages related to metasystem
transitions can be identified in the development of the brain, so the development of
language models takes place (as we shall see) by successive metasystem transitions in the
structure of language.

The parallels between society and a multicellular organism have long been noted. But the
question is: what are we to make of these parallels? It is possible to consider them, if not
random, then at least superficial and insignificant—something like the resemblance
between the boom of a hoisting crane and the human arm. But the cybernetic approach
brings us to another point of view according to which the analogy between society and
the organism has a profound meaning, testifying to the existence of extraordinarily
general laws of evolution that exist at all levels of the organization of matter and pointing
out to us the direction of society's development. This point of view conceals in itself a
great danger that in vulgarized form it can easily lead to the conception of a fascist-type
totalitarian state. In chapter 14, in our discussion of the problem of creative freedom of
the personality, we shall consider this question in greater detail too. For now we shall
note that the possibility a theory may be vulgarized is in no way an argument against its
truth. The branch of modern science called cybernetics gives us concepts that describe the
evolutionary process at both the level of intracellular structures and the level of social
phenomena. The fundamental unity of the evolutionary process at all levels of
organization is transformed from a philosophical view to a scientifically substantiated
fact. When thinking of the destiny of humanity and its role in the universe one cannot
ignore this fact.

To emphasize the cosmic importance of reason the French scientists Leroy and Teilhard
de Chardin introduced the term “noosphere” (that is, the sphere of reason) to signify that
part of the biosphere where reason reigns. These ideas were taken up by V. P. Vernadsky
(see his article entitled “A Few Words About the Noosphere”).  In the preface to his main
work Le phénomène humain (The Phenomenon of Man, translated by B. Wall, New York:
Harper and Row Torchbook ed., 1965, p 36) Teilhard de Chardin writes:
 

 In fact I doubt whether there is a more decisive moment for a thinking
being than when the scales fall from his eyes and he discovers that he is not an
isolated unit lost in the cosmic solitudes, and realizes that a universal will to live
converges and is hominized in him.

 In such a vision man is seen not as a static center of the world—as he for
long believed himself to be—but as the axis and leading shoot of evolution,
which is something much finer.
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CHAPTER FIVE

From Step to Step

 MATERIAL AND SPIRITUAL CULTURE

A DISTINCTION IS MADE between “material” and “spiritual” culture. We have put
these words in quotes (the first time; henceforth they will parade themselves in the
customary way, without quotes) because the distinction between these two manifestations
of culture is arbitrary and the terms themselves do not reflect this difference very well.
Material culture is taken to include society's productive forces and everything linked with
them, while spiritual culture includes art, religion, science, and philosophy. If we were to
attempt to formulate the principle on the basis of which this distinction is made, the
following would probably be the best way: material culture is called upon to satisfy those
needs which are common to humans and animals (material needs), while spiritual culture
satisfies needs which, we think, are specifically human (spiritual needs). Clearly this
distinction does not coincide with the distinction between material and spiritual on the
philosophical level.

The phenomenon of science, the chief subject of this book, is a part of spiritual culture.
But science emerges at a comparatively late stage in the development of society and we
cannot discuss this moment until we have covered all the preceding stages. Therefore we
cannot bypass material culture without saying at least a few words about it. This is
especially true because in the development of material culture we find one highly
interesting effect which the metasystem transition sometimes yields.

 THE STAIRWAY EFFECT

A baby is playing on the bottom step of a gigantic stone stairway. The steps are high
and the baby cannot get to the next step. It wants very much to see what is going on there;
now and again it tries to grab hold of the edge of the step and clamber up, but it cannot....
The years pass. The baby grows and then one fine day it is suddenly able to surmount this
obstacle. It climbs up to the next step, which has so long attracted it, and sees that there is
yet another step above it. The child is now able to climb it too and thus, mounting step
after step, the child goes higher and higher. As long as the child was unable to get from one
step to the next it could not ascend even a centimeter; but as soon as it learned how, not
only the next step but the entire stairway became accessible.
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Figure 5.1.  The stairway effect.

A schematic representation of this “stairway effect” is shown in figure 5.1. The stairway
effect forms the basis of many instances in which small quantitative transitions become
large qualitative ones. Let us take as an example the classical illustration of Hegel's law
of the change of quantity into quality: the crystallization of a liquid when the temperature
drops below its melting point. The ability of a molecule oscillating near a certain
equilibrium position to hold several adjacent molecules near their equilibrium positions is
precisely the “capability of transition to the next step.” When this capability manifests
itself as a result of a drop in temperature (decrease in the amplitude of oscillations) the
process of crystallization begins and “step by step” the positions of the molecules are set
in order. Another well-known example is the chain reaction. In this case the transition to
the next step is the self-reproduction of the reagents as a result of the reaction. In physical
systems where all relationships important for the behavior of the system as a whole are
statistical in nature, the stairway effect also manifests itself statistically; the criterion of
the possibility of transition to the next step is quantitative and statistical. In this case the
stairway effect can be equated with the chain reaction, if the latter term is understood in
the very broadest sense.

 THE SCALE OF THE METASYSTEM TRANSITION

WE ARE MORE INTERESTED in the case where the transition to the next step is
qualitative, specifically the metasystem transition. For the stairway effect to occur in this
case it is clearly necessary for system X, which is undergoing the metasystem transition
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(see figure 5.2), to itself remain a subsystem of some broader system Y, within which
conditions are secured and maintained for multiple transitions “from step to step”—the
metasystem transition beyond subsystem X.

Figure 5.2.  The stairway effect within ultrametasystem Y.  The arrows indicate
changes taking place in time.

We shall call such a system Y an ultrametasystem in relation to the series X, X', X”, . . and
so on. Let us take a more detailed look at the question of the connection between the
metasystem transition and the system-subsystem relation.

We have already encountered metasystem transitions of different scale. Metasystem
transitions in the structure of the brain are carried out within the organism and do not
involve the entire organism. Social integration is a metasystem transition in relation to the
organism as a whole, but it does not take humanity outside of the biogeographic
community, the system of interacting living beings on a world scale. There is always a
system Y which includes the given system X as its subsystem. The only possible
exception is the universe as a whole, the system Z which by definition is not part of any
other system. We say “possible” exception because we do not know whether the universe
can be considered a system in the same sense as known, finite systems.

Now let us look in the opposite direction, from the large to the small, from the whole to
the part. What happens in system X when it evolves without undergoing a metasystem
transition? Suppose that a certain subsystem W of system X makes a metasystem
transition.
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Figure 5.3.  The metasystem transition W  W' within system X.

This means that system W is replaced by system W', which in relation to W is a
metasystem (and contains a whole series of W-type subsystems) but in relation to X is a
subsystem analogous to W and performs the same functions in X as W had been
performing, only probably better. Depending on the role of subsystem W in system X, the
replacement of W with W” will be more or less important for X. In reviewing the stages
in the evolution of living beings during the cybernetic period we substituted the organism
as a whole for X and the highest stage of control of the organism for W. Therefore the
metasystem transition W  W' was of paramount importance for X. But a metasystem
transition may also occur somewhere “in the provinces,” at one of the lower levels of
organization.

Figure 5.4.  Metasystem transition at one of the lower levels of organization.

Suppose W is one of the subsystems of X., V is one of the subsystems of W, and U is one
of the subsystems of V. The metasystem transition U  U' may greatly improve the
functioning of V, and consequently the functioning of W also, although to a lesser degree,
and finally, to an even smaller degree, the functioning of X. Thus, evolutionary changes
in X, even though they are not very significant, may be caused by a metasystem transition
at just one of the lower levels of the structure.

These observations provide new material for assessing quantitative and qualitative
changes in the process of development. If system X contains homogeneous subsystems W
and the number of these subsystems increases we call such a change quantitative. We
shall unquestionably classify the metasystem transition as a qualitative change. We can
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assume that any qualitative change is caused by a metasystem transition at some
particular level of the structure of the system. Considering the mechanics of evolution
described above (replication of systems plus the trial and error method) this assumption is
highly probable.

 TOOLS FOR PRODUCING TOOLS

LET US RETURN to material culture and the stairway effect. The objects and
implements of labor are parts, subsystems of the system we have called the “super-
being,” which emerges with the development of human society. Now we shall simply call
this super-being culture, meaning by this both its physical “body” and its method of
functioning (“physiology”), depending on the context. Therefore, the objects and
implements of labor are subsystems of culture. They may possess their own complex
structure and, depending upon how they are used, they may be part of larger subsystems
of culture which also have their own internal structures.

Specifically, the division of material subsystems into objects of labor and implements of
labor (tools) is in itself profoundly meaningful and reflects the structure of production.
When a human being applies tool B to objects of a certain class A, this tool, together with
objects A, forms a metasystem, in relation to subsystems A. Indeed, subsystem B acts
directly upon subsystems A and is specially created for this purpose. (Of course, this
action does not take place without the participation of the human hand and mind, which
are part of any production system.) Thus, the appearance of a tool for working on certain
objects that had not previously been worked on is a metasystem transition within the
production system. As we have seen, the ability to create tools is one of the first results of
the development of human traits; and because the human being remains the permanent
moving force of the production system, the metasystem transition from object of labor to
implement of labor may be repeated as many times as one likes. After having created tool
B to work on objects in class A the human being begins to think of ways to improve the
tool and manufactures tool C to use in making tools of class B. He does not stop here; he
makes tool D to improve tools of class C, and so on. The implement of labor invariably
becomes an object of labor. This is the stairway effect. It is important to assimilate the
very principle of making tools (learning to climb up a step). After this assimilation
everything follows of its own accord: the production system becomes an ultrametasystem
capable of development. The result of this process is modern industry, a highly complex
multilevel system which uses natural materials and step by step converts them into its
“body”—structures, machines, and instruments—just as the living organism digests the
food it has eaten.

 THE LOWER PALEOLITHIC

LET US CONSTRUCT a general outline of the development of material culture. The
history of culture before the emergence of metalworking is divided into two ages: the
Paleolithic (Old Stone Age) and the Neolithic (New Stone Age). In each age distinct
cultures are identified, which differ by geographic region and the time of their existence.
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The cultures which have been found by archaeological excavation have been given names
derived from the names of the places where they were first discovered.

Traces of Paleolithic culture have been found in many regions of Europe, Asia, and
Africa. They enable us to confidently make a periodization of the development of culture
in the Paleolithic and divide the age into a number of stages (epochs) which are
universally important for all geographic regions.

The most ancient stages are the so-called Chellean, followed by the Acheulean and then
the Mousterian. These three stages are joined together under the common name Lower
(or Early) Paleolithic. The beginning of the Lower Paleolithic is dated about 700,000
years ago and the end (the late Mousterian culture) is dated about 40,000 years ago.

The Chellean and Acheulean cultures know just one type of stone tool—the hand ax. The
Chellean hand ax is very primitive; it is a stone crudely flaked on two sides, resembling a
modern axhead in shape and size. The typical Acheulean hand ax is smaller and much
better made; it has carefully sharpened edges. In addition, signs of the use of fire are
found at Acheulean sites.

The tools of the Mousterian culture reveal a clear differentiation. Here we distinguish at
least two unquestionably distinct types of stone tools: points and scrapers. Stoneworking
technique is considerably higher in the Mousterian period than in the Acheulean. Objects
made of bone and horn appear. Fire is universally used. We do not know whether the
Mousterians were able to make fire, but it is clear that they were able to preserve it.

In a biological sense the human being of the Lower Paleolithic was not yet the modern
form. The Chellean and Acheulean cultures belonged to people (or semipeople?) of the
Pithecanthropus and Sinanthropus types. The Mousterian was the culture of the
Neanderthals. In the Lower Paleolithic the development of techniques for making tools
(not only from stone but also from wood and other materials which have not survived
until our day) proceeded parallel with the development of human physical and mental
capabilities, with human evolution as a species. The increase in brain size is the most
convincing evidence of this evolution. The following table shows the capacity of the
cranial cavity in fossil forms of man, the anthropoid apes, and modern man:

Gorilla 600-685 cm3

Pithecanthropus 800-900 cm3

Sinanthropus 1.000-1,1100 cm3

Neanderthal 1,100-1,600 cm3

Modern Man 1,200-1,700 cm3

Let us note that although the Neanderthal brain is only slightly smaller in volume than the
brain of modern man it has significantly smaller frontal lobes and they play the chief role
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in thinking. The frontal lobes of the brain appear to be the principal storage area for
“arbitrary” associations.

 THE UPPER PALEOLITHIC

AT THE BOUNDARY between the Lower and Upper Paleolithic (approximately 40,000
years ago) the process of establishment of the human being concludes. The human being
of the Upper Paleolithic is, in biological terms, modern man: Homo sapiens. From this
moment onward nature invests all its “evolutionary energy” in the culture of human
society, not in the biology of the human individual.

Three cultures are distinguished in the Upper Paleolithic: Aurignacian, Solutrean, and
Magdalenian. The first two are very close and are joined together in a single cultural
epoch: the Aurignac-Solutrean. The beginning of this epoch is coincident with the end of
the Mousterian epoch. Several sites have been found containing bones of both
Neanderthals and modern man. It follows from this that the last evolutionary change,
which completed the formation of modern man, was very significant and the new people
quickly supplanted the Neanderthals.

In the Aurignac-Solutrean epoch, stone-working technique made great advances in
comparison with the Mousterian epoch. Various types of tools and weapons can be
found: blades, spears, javelins, chisels, scrapers, and awls. Bone and horn were used
extensively. Sewing appeared, as evidenced by needles which have been found. In one of
the monuments of Solutrean culture a case made of bird bone and containing a whole
assortment of bone needles was found, as was a bone fishing hook. By the Magdalenian
epoch (about 15,000 years ago) throwing spears and harpoons had appeared. A
noteworthy difference between the Upper Paleolithic and the Lower is the emergence of
visual art. Cave drawing appeared in the Aurignac-Solutrean epoch and reached its peak
in the Magdalenian. Many pictures (primarily of animals) have been found whose
expressiveness, brevity, and exactness in conveying nature amaze even the modern
viewer. Sculptured images and objects used for ornamentation also appear. There are two
points of view on the question of the origin of art: the first claims art is derived from
magic rituals, the second from esthetic and cognitive goals. However, when we consider
the nature of primitive thinking (as we shall below) the difference between these two
sources is insignificant.

Looking at material production as a system, the crucial difference between the Upper
Paleolithic and the Lower is the appearance of composite implements (for example, a
spear with a stone point). Their appearance can be viewed as a metasystem transition,
because in making a composite implement a system is created from subsystems. Before,
the maker would have viewed the two components as independent entities (the point as a
piercing stone tool and the pole as a stick or wooden spear). This is not a simple
transition; even in historical times, there could be found a group of people (the
indigenous inhabitants of the island of Tasmania) who did not know composite
implements.
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The Tasmanians no longer exist as an ethnic group. The last pure-blooded Tasmanian
woman died in 1877. The information about the Tasmanian culture that has been
preserved is inadequate and sometimes contradictory. Nonetheless, they may certainly be
considered the most backward human group of all those known by ethnography. Their
isolation from the rest of the human race (the Tasmanians' nearest neighbors, the
Australian aborigines, were almost equally backward) and the impoverished nature of the
island, in particular the absence of animals larger than the kangaroo, played parts in this.
With due regard for differences in natural conditions, the culture of the Tasmanians may
be compared to the Aurignac-Solutrean culture in its early stages. The Tasmanians had
the stone hand ax, sharp point, crudely shaped stone cutting tool, wooden club (two types,
for hand use and throwing), wooden spear, stick for digging up edible roots, and wooden
spade for scraping mussels off rocks. In addition they were able to weave string and sacks
(baskets) from grass or hair. They made fire by friction. But, to again repeat, they were
not able to make composite tools—for example, to attach a stone working part to a
wooden handle.

 THE NEOLITHIC REVOLUTION

UNLIKE THE PALEOLITHIC CULTURES, the Neolithic cultures (which are known
from both archaeological and ethnographic findings) show great diversity, specificity,
and local characteristics. In terms of techniques of producing tools the Neolithic is an
elaboration of the qualitative jump (metasystem transition) made in the late Paleolithic:
composite tools made using other tools. Following this route human beings made a series
of outstanding advances, the most remarkable of which is clearly the invention of the
bow. Great changes also took place in clothing and in the construction of dwellings.

Although the Neolithic cannot boast of a large-scale metasystem transition in regard to
tool manufacture, a metasystem transition of enormous importance nevertheless did occur
during this period. It concerned the overall method of obtaining food (and therefore it
indirectly involved tools also). This was the transition from hunting and gathering to
livestock herding and farming—sometimes called the Neolithic revolution. The animal
and plant worlds, which until this had been only external, uncontrolled sources of food,
now became subject to active influence and control by human beings. The effects of this
transition spread steadily. We are thus dealing with a typical metasystem transition.

Archaeologists date the emergence of farming and livestock herding to about 7,000 years
ago, emphasizing that this is an approximate date. The most ancient cereal crops were
wheat, millet, barley, and rice. Rye and oats appeared later. The first domesticated animal
was the dog. Its domestication is dated in the Early Neolithic, before the emergence of
farming. With the transition to farming, people domesticated the pig, sheep, goat, and
cow. Later, during the age of metal, the domesticated horse and camel appeared.
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 THE AGE OF METAL

THE AGE OF METAL is the next page in the history of human culture after the
Neolithic. The transition to melting metal marks a metasystem transition in the system of
production. Whereas the material used earlier to make tools (wood, stone, bone, and the
like) was something given and ready to use, now a process, melting metal, emerged and it
was directed not to making a tool but rather to making the material for the tool. As a
result people received new materials with needed characteristics that were not found in
nature. First there was bronze, then iron, various grades of steel, glass, paper, and rubber.
From the point of view of the structure of production the age of metal should be called
the age of materials. Strictly speaking, such crafts as leather tanning and pottery, which
originated earlier than metal production, should be viewed as the beginning of the
metasystem transition to the age of materials. But there is a crucial phase in each
metasystem transition when the advantages of creating the new level in the system
become obvious and indisputable. For the age of materials this phase was the production
of metals, especially iron.

The most ancient traces of bronze in Mesopotamia and Egypt date to the 4th millennium
B.C. Iron ore began to be melted by 1300 B.C.

 THE INDUSTRIAL REVOLUTIONS

THE NEXT qualitative jump in the system of production was the use of sources of
energy other than the muscular energy of human beings and animals. This, of course, is
also a metasystem transition because a new level of the system emerges: the level of
engines which control the movement of the working parts of the machine. The first
industrial revolution (eighteenth century) radically changed the entire appearance of
production. Improvement of engines becomes the leitmotif of technical progress. First
there was the steam engine, then the internal combustion engine, and then the electric
motor. The age of materials was followed by the age of energy.

Finally, our day is witness to one more metasystem transition in the structure of
production. A new level is emerging, the level of control of engines. The second
industrial revolution is beginning, and it is obvious that it will have a greater effect on the
overall makeup of the system of production than even the first did. The age of energy is
being replaced by the age of information. Automation of production processes and the
introduction of computers into national economies lead to growth in labor productivity
which is even more rapid than before and give the production system the character of an
autonomous, self-controlling system.
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 THE QUANTUM OF DEVELOPMENT

THE SIMILARITY between successive stages in the development of technology and the
functions of biological objects has long been noted. The production of industrial
materials can be correlated with the formation and growth of living tissue. The use of
engines corresponds to the work of muscles, and automatic control and transmission of
information corresponds to the functioning of the nervous system. This parallel exists
despite the fundamental difference in the nature of biological and technical systems and
the completely different factors that cause their development. Nonetheless, the similarity
in the stages of development is far from accidental. It arises because all processes of
development have one common feature: development always takes place by successive
metasystem transitions. The metasystem transition is, if you like, the elementary unit, the
universal quantum of development. Therefore it is not surprising in the least that having
compared the initial stage of development of two different systems—for example
industrial materials and living tissue—we receive a natural correlation among later
stages, which are formed by the accumulation of these universal quanta.

 THE EVOLUTION OF THOUGHT

OUR NEXT TASK on the historical plane is to analyze the development of thought
beginning with the most ancient phase about which we have reliable information. This
phase is primitive society with Late Paleolithic and Early Neolithic culture. But before
speaking of primitive thinking, before “putting ourselves in the role” of primitive people,
we shall investigate thinking in general, using both the modern thinking apparatus as an
investigative tool and modern thinking as an object of investigation that is directly
accessible to each of us from personal experience. This is essential in order that we may
clearly see the difference between primitive thinking and modern thinking and the
general direction of the development of thinking. The investigation we are preparing to
undertake in the next two chapters can be defined as a cybernetic approach to the basic
concepts of logic and to the problem of the relationship between language and thinking.
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CHAPTER SIX

Logical Analysis of Language

 ABOUT CONCEPTS AGAIN

LET US BEGIN with the most fundamental concept of logic, the concept of the
“concept.” In chapter 2 we gave a cybernetic definition of the concept in its Aristotelian
version-as a set of situations at the input of a cybernetic system. To master a concept
means to be able to recognize it, that is, to be able to determine whether or not any given
situation belongs to the set that characterizes this concept. This definition applies equally
to complex cybernetic systems of natural origin about whose organization we have only a
general idea (for example: the brain of an animal) and to those relatively simple systems
we ourselves create for applied and research purposes.

In the first case we arrive at the conclusion, that the system recognizes a certain concept,
by observing external manifestations of the system's activity. For example, when we see
that a dog becomes happily excited when it hears its master's voice and responds in a
completely different way to all other sounds we conclude that the dog has the concept of
“master's voice.” This concept develops in the dog naturally, without any special effort
by the experimenter. To determine the maximum capabilities of the dog brain the
experimenter may create unusual conditions for the animal and watch its reaction. I. P.
Pavlov and his school conducted many such experiments. If a dog is shown plywood
circles and squares of different sizes and colors and is fed after the presentation of a circle
and punished after the presentation of a square, the dog will learn to distinguish the circle
and the square and will respond differently when these shapes are presented. Thus, the
dog is capable of recognizing certain general (abstract) concepts-in this case the concepts
of circle and square abstracted from the features of size and color. This means we must
conclude that the dog possesses the abstract concepts of “circle” and “square.”

But no sooner do we say this than we begin to feel that perhaps this conclusion was too
hasty. The statement that the dog can possess the concept of “master's voice” (referring,
of course, to the voice of a specific person) can be accepted without reservation, but the
statement that the concept of square is accessible to the dog seems true in one sense and
not in another. We shall take note of this now and return to the question later. In the
meantime let us examine the dog's mental capabilities by indicating the very simple
concepts known to be inaccessible to the animal. Suppose that you show the dog a box
divided into two parts, each of which contains several billard balls. You want to force the
dog to distinguish the case where the number of balls in each part is equal from the case
where the number of balls in the parts differs. It is a safe bet that no matter how much
you feed the dog and no matter how much you beat it you will not achieve your purpose.
The concept of different numbers is inaccessible to the dog.
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Cybernetic systems possessing the ability to recognize concepts are also created
artificially. Their importance is steadily growing in connection with cybernetic science
and production. The development of artificial recognition devices (discriminators) plays a
crucial part in understanding the general principles and concrete mechanisms of the
working of the brain. These devices serve as models with which people try to lift the veil
from the process of thinking. The creation of an “artificial brain” which performs, at least
partially, the same functions as the natural brain provides indications of how to approach
investigation of the activity of the natural brain. It is interesting that one of the first
results of comparing artificial and natural recognition systems was the conclusion that
natural systems are very narrowly goal-directed and specialized. Within their own
specialization they reach a high level of refinement, but they are completely impotent
when the problem goes beyond this framework. Recognizing a person by voice is an
extremely difficult problem for artificial cybernetic devices, but the brain of a dog
resolves it easily. At the same time the problem of comparing the number of billard balls,
which is very simple for an artificial system, is beyond the ability of a dog.

In chapter 2 we considered a cybernetic discriminator that was fed information by signals
from light-sensitive receptors arranged on a screen. We called the situation, that is to say
the aggregate of values of all signals from the receptors, the “picture”; it coincides with
the image on the screen with a precision down to semitones. This device (picture
discriminator) will serve as an illustration in this chapter too.

 ATTRIBUTES AND RELATIONS

SO FAR, the examples of concepts we have given have fit within the definition of the
concept as a set of situations. But as it turns out, this definition does not apply to every
concept that seems intuitively clear to us and manifests itself in language. For example'
let us take the concept expressed by the prepositions “inside” or “in.” For those who do
not like to see a concept expressed by a preposition, we can express it by phrases such as
“to be located inside” or “location in.” This concept is applicable to a device to whose
input “pictures” are fed.

Figure 6.1.

In figure 6.1 for example, spot A is inside contour B. But can we correlate the concept of
“inside” to some definite set of pictures? No, we cannot. This can be seen, for example,
from consideration of the picture shown in figure 6.2.
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Figure 6.2.

In figure 6.2 a spot A is inside contour B, but not inside contour C. In figure 6.2 b, spot A
is outside contour B while spot C is inside it.

Could these pictures be classed with a set of situations for “inside” which we would have
to construct? Any answer will be unsatisfactory and arbitrary, because the question itself
is meaningless. The concept of “inside” does not characterize a picture (situation) as a
whole but rather the relation between two definite objects, details in the picture. As long
as these objects are not indicated, a definite spot and a definite contour, it is meaningless
to ask the question “inside or not”'?

 ARISTOTELIAN LOGIC

WE SHALL call the concepts that express attributes of the situation as a whole
“Aristotelian,” because Aristotle's logic is simply a consistent theory of the correct use of
such concepts. For each Aristotelian concept there is a definite corresponding set of
situations, specifically those situations in which the attribute expressed by this concept
occurs. Therefore the Aristotelian concept can also be described as a certain set or class
of situations (phenomena, objects in that extremely general sense in which these terms
are used here; they are all equivalent to one another and to the term “something” [in
Russian nechto] which is the most precise but also the most inconvenient because of the
difficulties with Russian grammar its use entails). Therefore all the laws of Aristotelian
logic can also easily be derived from the simplest properties of operations on sets.

For example, let us take the classical syllogism:

All men are mortal
Socrates is a man

Therefore Socrates is mortal.

Three Aristotelian concepts participate in this reasoning: “man,” “mortal,” and
“Socrates.” The concept of “man” is characterized by the set of situations in which we
say, “This is a man.” The same thing applies to the other concepts. To make the
properties of the sets graphically clear let us represent each situation as a point within a
certain square, as is shown in figure 6.3.
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Figure 6.3.

Then this square will embody the set of all conceivable situations corresponding to the
maximally general concept “something.” The other concepts, to which deterrent sets of
points correspond, will be shown by different areas inside the square. The statement that
“all men are mortal,” in other words “every man is mortal,” signifies that every point
included in the area of “man” is also within the area of “mortal” (“mortal being”), which
is to say that the “man” area is entirely inside the “mortal” area. In exactly the same way
the second premise of the syllogism means that the “Socrates” area is entirely inside the
“man” area. It follows from this that the “Socrates” area is within the “mortal” area, or in
other words the statement “Socrates is mortal” is true.

Figure 6.4 demonstrates the correctness of the following deduction rule (“disamis” in
logical terminology):

All A are B
Some A are C

Therefore, some B are C.

Figure 6.4.

Aristotle's logic played an important role in the development of European culture. But it
does not go deeply enough into the structure of our thinking: it is not able to reflect the
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process of breaking situations up into distinct parts (objects) and investigating the
relations among these parts. In discussing the attributes of objects Aristotelian logic is
completely adequate, because an isolated object can be pictured as a certain situation.

Forming the set of such situation-objects, we obtain an abstract concept that expresses
one of the properties of the object. Things are different with relations. Aristotelian logic
can express the concept of the aggregate of objects which are in a given relation, but it
has no means for expressing the concept of the relation as such. We can represent a set of
pictures that have the form of contours with spots in the middle; this set generates the
Aristotelian concept (attribute) of “being” a contour with a spot in the middle.” But there
is no Aristotelian concept for “being inside.” Aristotle's logic is too global and
superficial.

Let us take the following deduction:

Ivan is Peter's brother

Therefore, Peter is Ivan's brother.

The inference is correct, but to substantiate it one must state openly the premise which is
taken for granted here: that the relation of “brothers” is symmetrical. This premise can be
expressed by the phrase: “If x is the brother of y, then y is the brother of x .”

In this the letters x and y, represent any persons of the male sex. But this symbolism goes
beyond the limits of Aristotelian logic.

Can this syllogism be expressed in the language of Aristotle's logic? It can if we consider
not individual people but pairs of people-or, more exactly, ordered pairs, which is to say
pairs where one person is assigned the number one and the other receives the number
two. Here is this syllogism, which is completely proper from the point of view of
Aristotelian logic.

The pair (Ivan and Peter) possesses the attribute: the first is the brother of the
second

Each pair possessing the attribute: “the first is the brother of the second”
possesses the attribute: “the second is the brother of the first”
______________________________________________________________

Therefore the pair (Ivan and Peter) has the attribute: “the second is the
brother of the first.”

Even though formally it is the same reasoning used before, this clumsy syllogism misses
the mark because it does not reflect the main element in our initial syllogism, the
symmetry in the relation of “brothers.” The attributes “the first is the brother of the
second” and “the second is the brother of the first” are in no way broken down, in no way
connected with one another, and in no way connected with the fact that they are applied
to objects which have the appearance of an ordered pair.
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It was not accidental that we began our cybernetic investigation of concepts from
Aristotelian concepts. They are simpler because they permit definition exclusively in
terms of input and output states without referring to the internal structure of the
recognition system. The same thing occurred in the history of human thought. People first
became aware of the existence of Aristotelian concepts: awareness of relations came only
much later.

Because the chief thing in mathematics is to investigate relations among objects,
Aristotelian logic is completely inadequate for expressing mathematical proofs. This was
noted long ago; the examples from mathematics which traditional logic uses speak for
themselves: they are extremely primitive and uninteresting. Until the very end of the
nineteenth century, when a new (“mathematical”) logic began to be created, mathematics
and logic developed independently of one another.

 HEGEL'S DIALECTIC

IN PHILOSOPHY Hegel delivered the decisive blow against Aristotelian logic. With his
dialectic he showed that the world must be viewed not as an aggregate of objects that
possess certain attributes, but rather as an aggregate of objects that stand in certain
relations to one another. This does not exclude attributes from consideration, of course,
for the concept of the relation is much broader than the concept of the attribute.

A relation may be defined for any number of objects. Specifically, the number of objects
may be one; such a relation is an attribute, a property. Pair relations, that is to say
relations between two objects, are the clearest intuitively and at the same time the most
important. Two is the minimum number of objects for which the relation ceases to be an
attribute, and becomes a relation proper. The number two lies at the foundation of the
Hegelian method, which is reflected in the very term “dialectic.”

The most important features of Hegel's dialectic follow directly from the description of
phenomena in terms of relations, not attributes. Above all, what follows from this
approach is the theory of the interaction and interrelatedness of everything that exists.
Further: If two elements are in correspondence and do not contradict one another, they
act as something whole and their common attributes become paramount while the
interaction, the relation, between them withdraws to a secondary position. Relations
among elements, objects, manifest themselves to the extent that they are relations of
opposition, contradiction, and antagonism. Thus, the idea of the struggle of opposites
plays an important part in Hegel.

When considering the relation between the state of an object at a given moment and the
state of this same object at some other moment in time we come to the concept of change.
Change is the relation between objects separated by a time interval. In the language that
operates with attributes but not with relations, change cannot be expressed. The most that
such language is capable of is depicting a series of states of the object which are in no
way interconnected.
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Zeno's aporia concerning the arrow in flight is a brilliant expression of this inability. Let
us consider the arrow in flight. Take a certain moment in time. At this moment the arrow
occupies a definite position in space. Take another moment. The arrow again occupies a
completely determinate position in space. The same thing is true for any other moment.
This means that the arrow always occupies a definite position in space. This means that it
is standing in place. In Aristotelian concepts the world is represented as something static,
frozen, or at best mechanically duplicated with certain variations. On the other hand,
having made the investigation of relations its object, the dialectic studies things from the
point of view of their change, movement, and development. It discloses the historical
causality and relativity (from the word “relation”!) of things which are represented as
unconditional and external when described in Aristotelian concepts. Combining the
concept of opposition with the concept of the relation among states at successive
moments in time generates the concept of the negation and the concept of the negation of
the negation. The dialectic is dynamic and revolutionary.

In relation to Aristotelian logic, Hegel's dialectic acted as a destructive force-and not just
because of its “general” revolutionary nature but also because it pointed out the many
contradictions that arise when a description of phenomena which demands the language
of relations is squeezed into the narrow framework of the language of attributes. In Hegel
and his followers these contradictions were often surrounded with a certain exalted aura
and, one might say, a semi-mystical significance. This reflected, on the one hand, the
idealistic orientation of Hegel's philosophy, and on the other hand a general characteristic
of new doctrines, theories, and movements: in the initial stages of their development,
trying to liberate themselves from the old intellectual framework, they prefer a
paradoxical, exaggerated form and become heroic and romantic. Hegel's dialectic is the
heroic epoch of the new logic, when the old logical formalism had been broken but the
new one was not yet created. Therefore things seemed contradictory and not subject to
formalisation (“dialectical”) which later proved to be beautifully ordered and formalized.
To modern thinking, which makes free use of the language of relations and is armed with
analysis of logical concepts and constructions, the Hegelian style of thinking appears as
obscure philosophizing about things which are clear. The following reasoning is a
crudely simplified, caricature-like sketch of the Hegelian dialectical contradiction,
showing the source from which this contradiction arises.

“Let us put the question: is the number 1,000 large or small? It is large because it is much
more than one. It is small because it is much less than 1 million. This means that it is both
large and small at the same time. A dialectical contradiction. What is large is at the same
time not large, A is not-A.”

The concepts of “large” and “small” were considered here as attributes of objects
(numbers). In fact these are not attributes but concealed (by means of the grammatical
category of the adjective) relations. An exact meaning can be given only to the concepts
“larger” and “smaller.” If we analyze the reasoning given above from this point of view it
will prove to be simply nonsense. This caricature was not directed against Hegel (the
credit due him for creating the new logic is indisputable) but rather against those who
take an uncritical attitude toward Hegel's dialectical method and, in the second half of the
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twentieth century, propagate the style of thinking of the first half of the nineteenth
century, ignoring the enormous progress made by logic in this century and a half.

 MATHEMATICAL LOGIC

THE DECISIVE FACTOR in the advance of logic was the development of mathematical
logic in the late nineteenth and early twentieth centuries. This process was generated by
the needs of mathematics and was carried out by mathematicians. The gap between
mathematics and logic was finally overcome. Having expanded its language and made it
mathematical. Logic became suitable for describing and investigating mathematical
proof. On the other hand, mathematical methods began to be used to solve logical
problems.

Having gained a base of operations in the field of mathematics, the new logic began to
penetrate the natural sciences and philosophy. In this process the role of the mathematical
element proper (the use of mathematical methods) declined. Nonetheless all modern logic
is often called “mathematical” because of its language and origin.

 OBJECTS AND STATEMENTS

BEFORE GOING on in our analysis of language and thinking we need to give a short
sketch of modern logic and those concepts which are related to language. For now we
will leave the concepts related to the logical deduction (proof) aside.

Modern logic divides everything that exists into objects and statements. In natural
language statements are represented by sentences or groups of sentences and objects are
depicted by words or combinations of words which make up the sentences. Examples of
objects are “heron,” “Uncle Kolya,” or “kolkhoz chairman.” Examples of statements are:
“The heron died,” or “Uncle Kolya was elected chairman of the kolkhoz.” Objects are
most often expressed by nouns, but this is not mandatory. For example, in the statement
“To smoke is harmful,” “to smoke” is the object. In application to mathematics objects
are usually called terms and statements are called relations.

Examples of terms are:

(1) 3.14;

(2) ax2 + bx + c;

(3)∫∫a
b  f(z)dz.

Examples of relations are:
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(1) ax2 + bx + c = 0;

(2) 0 < z ≤ 1,

(3) no matter what natural number n > 1 may be, a simple number p will be found which
is a divisor of number n;

(4) the sum of the squares of the legs of a right triangle is equal to the square of the
hypotenuse.

In logic the concepts “object” and “statement” are considered primary, intuitively clear,
and indefinable. The formal difference between them is that a statement may be said to be
true or false. Thus, the examples (3) and (4) of mathematical relations above are true,
while the first and second may be true or false depending on the values of the variables x
and z. The concepts of truth and falsehood are not applicable to objects.

In logic objects and statements, which are considered elementary-meaning that they
cannot be broken down into distinct constituent parts-are represented by letters. Objects
are usually represented by small letters and statements by capital letters. We shall follow
this system but we shall introduce one more convention. For clarity in writing and to
reduce the number of verbal explanations we shall sometimes designate elementary
objects and statements with words and phrases within quotation marks. Therefore phrases
in quotes will be considered equal to letters.

Objects and statements which are not elementary are obviously constructed from other
objects and statements. We must now point out the methods of construction. Where there
are two types of elements (objects and statements) and assuming that the elements
serving as building material all belong to one type, we find that there are four possible
types of constructions. We have reduced them to the following table.

What Is Constructed
What It Is

Constructed From
Name of the
Construction

Statement Statements Logical Connective
Statement Objects Predicate
Object Statements —
Object Objects Function

 LOGICAL CONNECTIVES

THERE ARE FIVE widely used logical connectives. Negation (depicted by the symbol
–), conjunction (sign &), disjunction (sign ∨), material implication (sign ⊃), and
equivalence (sign ≡ ).

The statement –A  (read “not A”) means that statement A is false. In other words, –A is
true when A is false and it is false when A is true. The statement A & B (read “A and B”)
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signifies the assertion that both A and B are true. It is true only if both statement A and
statement B are true.

The statement A ∨ B (“A or B”) is true if at least one of the two statements A and B is
true.

The statement A ⊃ B is read “A entails B” or “if A then B.” This is untrue if A is true and
B is false but is considered true in all other cases.

Finally, the statement A ≡ B is true if statements A and B are either both true or both false.

Parentheses are used to designate the structure of connections, similar to the way they are
used in algebra to designate the order of performance of arithmetic operations. For
example, the statement –A & B means “S is untrue but B is true,” while the statement –
(A & B ) means “it is untrue that both A and B are true.” And, just as in algebra, an order
of seniority among connectives by the tightness of the bond is established to reduce the
number of parentheses. Above we listed the connectives in order of decreasing tightness.
For example, the conjunction is a tighter bond than implication and therefore the
statement A ⊃ B & C is understood as A ⊃ (B & C), not as (A ⊃ B) & C. This corresponds
to algebra where A + B × C is the same as A + (B × C), but not the same as (A + B) × C.

Let us give a few examples of composite statements. A common Russian tongue-twister
is “The heron withered, the heron dried, the heron died” [in Russian, “tsaplya chakhla,
tsaplya sokhla, tsaplya sdokhla”]. This statement may be written as follows: “The heron
withered” & “the heron dried” & “the heron died.” The relation 0 < Z < 1 is the
conjunction “Z > 0” & “Z < 1,” while the relation |Z| > 1 is the disjunction “Z > 1”∨“Z <
–1.” The definition given above for the logical connective ≡ can be written as follows:

[(A ≡ B) ⊃ (A & B) ∨ (–A &–B)] & [(A & B) ∨ (–A &–B) ⊃ (A≡ B)]

We will let the reader translate the following statement into conventional language: “The
light is turned on” & “the bulb is not burning”  “there is no electricity” ∨ “the plugs

have burned out” ∨ “the bulb is burned out.” If we consider that statements can only be
true or false, and consider nothing else about them, then the connectives we have listed
are enough to express all conceivable constructions made of statements. Even two
connectives are adequate-for example, negation and conjunction or negation and
disjunction. This situation obtains, in particular, in relation to mathematical statements.
Therefore other connectives are not used in mathematical logic.

But natural language reflects a greater diversity in the evaluation of statements than
simply separating them into true statements and false. For example, a statement may be
considered meaningless or implausible even though it is possible (“There are probably
wolves in this forest”). Special branches of logic which introduce other connectives are
devoted to these matters. For modern science (unlike classical mathematical logic) these
branches are not very important and we shall not deal with them.
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 PREDICATES

A CONSTRUCTION that associates a statement with certain objects is called a predicate.
Predicates are divided into one-place, two-place, three-place, and so on according to the
number of objects they require. Functional notation is used to represent them. The
predicate can be written as a function with unfilled places for variables, for example:

P( ),

L( , ),

I( ,  , )

or in the form

P(x),

L(x, y),

I(x, y, z)

having stipulated that x, y  and z are object variables, that is, symbols which must in the
last analysis be replaced by objects-although which objects is not yet known. But the
second form of notation, strictly speaking, no longer represents a predicate; rather, it is a
statement containing object variables. In addition to capital letters we shall also use
words and phrases within quotation marks, for example: “red” (x) or “between” (x, y, z)
and special mathematical signs such as < (x, y).

The one-place predicate expresses an attribute of an object while a predicate with more
than one variable expresses a relation among objects. If the places for variables in the
predicate are filled, then we are dealing with a statement which asserts the existence of
the given attribute or relation. The statement “red” (“ball”) means that the “ball”
possesses the attribute “red.” The construction < (a,b) is equivalent to the relation
(inequality) a < b. By joining predicate constructions with logical connectives we obtain
more complex statements. For example we formerly wrote the |z| > 1 without breaking
the statement down into elements, but now we write it

> (z, “1” )∨ < (z, “–1” )

 QUANTIFIERS

IN MATHEMATICS a large role is played by assertions of the universality of a given
attribute and of the existence of at least one object that possesses the given attribute. To
record these assertions the following so-called quantifiers are introduced: universal
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quantifiers  and the existential quantifier . Let us suppose that a certain statement S
contains a variable (indeterminate object x, therefore we shall write it in the form S(x).
Then the statement ( x)S(x) means that S(x) occurs for all x, while the statement ( x)S(x)
represents the assertion that there exists at least one object x for which the statement S(x)
is true.

A variable included in a statement under the sign of a quantifier is called a bound
variable, because the statement does not depend on this variable just as the sum

does not depend on the indexes i. The bound variable may be replaced by any other letter

that does not coincide with the remaining variables and the meaning of the statement will
not change as a result. A variable which is not bound is called free. The statement
depends entirely on the free variables it contains.

Here are some examples of statements containing quantifiers.

1) ( x) ( y) [“brother” (x, y ) & “man” (y) ⊃ “brother” (y, x)].

For every x and every y, if x is the brother of y and y is a man then y is the brother of x.

2) If D(x, y) is used to represent the statement “x is a divisor of y,” then one of the
relationships cited above as an example of a statement will be represented in the form

( n)[ >(n1”1” ) ⊃ ( p)D(P1 n)]

( x) W (x) ⊃ – (  x) –W(x)

The last relation is true for any statement W(x) and shows that there is a connection
between the universal and existential quantifiers. From the existence of object x for which
W(x) is true it follows that the assertion that “W(x) is untrue for all x” is not true.

A quantifier is also, in essence, a logical connective. The attribution of a quantifier
changes a statement into a new statement which contains one less free variable. The
difference from the connectives we considered above is that one must indicate, in
addition to the statement, the free variable that must be coupled. The coupling of a
variable means that concrete objects will be put in its place. If the number of objects that
can be substituted for the variable is finite then the quantifiers can be viewed simply as
convenient abbreviations because they can be expressed by the logical connectives of
conjunction and disjunction. Suppose variable x can assume ~l values, which we shall
designate by the letters x1, x2, . . . , xn. Then the following equivalences will occur.

( n)W (x) ≡ W (x1) &W (x2) & . . . &W (xn),

( x) W (x) ≡ W (x1) ∨W (x2) ∨ . . . ∨W (xn)

Si
i =1

n

∑
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 THE CONNECTIVE “SUCH THAT”

THE THIRD LINE of our table describes a construction that correlates an object to a
statement. In natural languages this construction is very widely used. When we say “red
ball,” we have in mind an object “ball” which possesses the attribute “red,” that is, it is
such that the statement “red” (“ball”) is true. We transfer the statement about the object to
the adjective which modifies the noun by which we designate an object; in other cases
this can be achieved by participles, participial constructions, and constructions with the
connectives “which” and “such that.” If we carry this analysis further we shall find that
the noun, like the adjective, indicates first of all a definite attribute or attributes of an
object. Like the word “red,” the word “ball” depicts a certain class of objects and may be
correlated to a one-place predicate, “is a ball” (x), or simply “ball” (x). Then “red ball” is
such an object that the statements “ball” (a) and “red” (a) are true; in other words, the
statement “ball” (a) & “red” (a) is, true.

Notice that there are three independent elements operating in the logical notation: the
letter a and the objects “ball” and “red,” while in writing in natural language there
continue to be just two, “red” and “ball.” But the letter a, which is introduced in logical
notation to identify the given object and distinguish it from others (and which is called
the identifier), does not completely disappear in natural notation. It has been transferred
to the concept “ball,” changing it from an attribute to an object' Unlike the word “red,”
the word “ball” identifies; you can say, “This is the ball we lost yesterday” or I have in
mind the same ball I was talking about in the previous sentence.”

But what is an “object”?

 THE PHYSICAL OBJECT AND THE LOGICAL OBJECT

EXPERIENCE TEACHES US that the world we live in is characterized by a certain
stability and repetition (and also, of course, by constant movement and variation).
Suppose we see a tree. We walk away from it and the image of the tree on the retina of
our eye changes in relationship to our movements. This change follows a definite law
which is very familiar to us from observation of other objects. But when we return to our
former place the image becomes almost exactly the same as it was before. Then we say,
“This is the tree,” having in mind not only the image of the tree-the mental photograph-at
the given moment in time but also the situations at nearby moments. If we are talking
about classifying distinct situations by themselves, without considering their relations to
other situations, then there is no difference at all between the noun and the adjective; the
concept “ball,” just like the concept “red,” is completely defined by indicating a certain
set of situations, and the discriminator (natural or artificial) of these concepts need only
be able to use the following sentences correctly: “This is red,” “This is not red,” “This is
a ball,” and “This is not a ball.”
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It is different when we must classify time sequences of situations rather than separate
situations; we shall represent them as if they were a movie film whose frames each depict
the situation at a given moment. In the movie film “ball” is not simply a detail of the
situation in one frame; it is a detail that recurs in many. The discriminator of the concept
“ball” cannot simply say, “Yes, my friends, this is a ball!” It must identify the particular
details in the frames, saying: “Here is how the ball looks in frame no. 137; here is the
same ball in frame no. 138; here it is again in frame no. 139; and here is what it looked
like in frame no. 120,” and so on. The detail of the situation which is called “the same
ball” can change quite considerably because of change in the position of the eye relative
to the ball or a change in the shape of the ball itself, but the ball itself is invariably and
absolutely the same. This invariability reflects the relative and temporal invariability we
find in reality. It is as if we were to draw a line in time connecting the details in the
different frames of film and declare that everything on this line is “the same” object. It is
this line, in combination with a certain set of attributes (characteristics), that forms the
concept of the physical object.

The logical concept of the object reflects a property of physical objects-they preserve
their identity. The object of logic is simply an identifier. Sameness is its only attribute, as
reflected in our imaginary connecting line. If there are several different classes of objects,
then various types of identifiers are ordinarily used to denote the objects in different
classes. For example, line segments will be represented by small letters, points by capital
letters, angles by Greek letters, and so on. But more concrete attributes characteristic of
objects are written in the form of distinct assertions which include the introduced
designations. This makes it possible to get by without a construction involving the
connective “such that.” It is true that at the very beginning of his famous treatise
Eléments de mathematique Bourbaki introduces the designation τx[A(x)] for a certain
object which possesses attribute A(x), that is, such that A{τx[A(x)]} is a true statement.
After this, however, the designation disappears from his text. Thus a definite name for the
construction that associates an object with a statement has not even been established and
we are forced to leave a blank in our table. In the last analysis, a complete division of
labor between identifiers and statements is more convenient.

For example let us take the sentence: “The reddish-brown dog of Lieutenant Pshebyssky's
widow killed the stray cat.” When written in the language of logic this sentence breaks
down into several statements which are implicitly contained in it and expressed by means
of the grammatical category of attribution. They can be joined into one statement using
the conjunction sign, but we can obtain a more conventional and readable notation if we
simply write out all the assertions being made-each on a new line separated by commas
instead of conjunction signs. Assuming that the meaning of the attributes and relations
being introduced is clear from the context, we receive the following equivalent of the
above sentence:

“dog” (a),

“reddish-brown” (a),

“belongs” (a, b),
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“widow” (b, c),

“Lieutenant Pshebyssky” (c),

“killed” (a, d),

“cat” (d),

“stray” (d).

 FUNCTIONS

IN THE EXAMPLE, the predicate, Lieutenant Pshebyssky (c), is the only one that is
plainly not elementary. In the attribute “to be Lieutenant Pshebyssky” we distinguish two
aspects: to have the rank of lieutenant and to have the surname Pshebyssky. That is why
this predicate is expressed by two separate words. Of course, we could have put each of
these words in the form of a distinct predicate, but the fact that “lieutenant” is the rank of
object c and “Pshebyssky” is the surname of it would not have been reflected in this case,
and therefore we considered such a separation meaningless.

“Surname” and “rank” are examples of a function of one free variable of a construction
that juxtaposes the object which is the meaning of the function to the object which is the
free variable. The function is written, as customary in mathematics, “surname” (x),
“rank” (x), and so on. If there are several free variables they are separated from one
another by commas, after which we are dealing with the function of several variables.
This construction associates an object-value with a set of object-variables (their order is
important!). An example of a function of two free variables is “the result of a game of
chess” (x, y). Let us give examples of functions from mathematics. Functions of one free
variable: sin (x), |x|; |functions of two variables: arithmetic operations which may be
written + (x, y), –(x, y), and so on; the distance (A, B) between two points in space A and
B; a function of three variables: the angle formed at point B by paths to points A and C:
the designation < (A, B, C), abbreviated as < ABC.

Not every object can be substituted into the given function as a free variable or variables.
If object a is a reddish-brown dog, then obviously the construction “rank” (a) is
meaningless. The construction + (a, B) is also meaningless where a is a number and B is a
point in space. The set of objects (or sets of groups of objects) that can be free variables
of a function (or functions) is called its domain of definition. The domain of definition of
the function “rank” (x) is formed by all those objects which are military servicemen. The
objects which can be values of the given function form the set which is called the area of
values of the function. The area of values of the function “rank” (x) includes such objects
as “ensign,” “lieutenant,” “major,” and the like, but it cannot include “3.14” or “reddish-
brown dog.” The function “rank” (x) ascribes a definite rank to each serviceman.

When we deal with functions, one of the relations among objects, the relation of equality,
becomes particularly important. It is essential for establishing correspondence between
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functional constructions and the names of objects from the area of values of the function.
When singling out an equality from the mass of other relations, we preserve its
conventional notation x = y instead of writing it in the form of a predicate = (x, y) . The
fact that object c has the surname “Pshebyssky” and the rank “lieutenant” will look as
follows:

(“surname” (c) = “Pshebyssky”) &

(“rank” (c) = “lieutenant”)

The equality relation can be defined formally by the following four assertions.

1. ( a) (a = a)

2. ( a) ( b)[(a = b) ⊃ (b = a)]

3. (  a) (  b) ( c)[(a = b) & (b = c) ⊃ (a = c)]

4. (  a) ( b){[a = b] ⊃ [W(a) =W(b)]}

The last assertion is true for any statement W(x) which depends on variable x. As an
exercise we suggest that the reader translate these assertions into natural language.

In one of the examples given above we introduced the predicate D(x,y), which has the
meaning “x is a divisor of y.” The concept of divisibility is wholly determined by the
operation (function) of multiplication: therefore the predicate D(x,y) can be expressed by
the function x. The natural (that is, whole positive) number p is a divisor of the number n
when and only when there exists a natural number m such that n =pxm. In the language of
predicate calculus

( p) ( n)[(D(p1n) ≡ (  m)[n = x(p1m)]}

To each function from n free variables we may correlate an n + 1 = place predicate which
expresses the relation where one (for example the last) free variable is the given function
from the remaining variables. For example, corresponding to function x(x,y) is the
predicate M(x, y, z), which yields a true statement if and only it z = x× y. In the general
case, corresponding to the function F(x, y, . . .z) there is the predicate F(x, y, . . .z, u),
which possesses the property:

( x) ( y) ... (  z) (u) {F[x, y, . . . , z, u] ≡  [f(x, y, ..., z) = u]}

The predicate F in fact expresses the same concept as the function F. Any statement
which contains functional symbols can be rewritten, using predicate symbols only and
introducing a certain number of additional object variables. Thus neither of the
constructions that generate new objects-the construction with the connective “such that”
and the function-is essential in principle, and it is possible to get along without them.
Unlike the construction “such that,” however, functional symbols are very convenient
and they are used extensively in logic.
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 SYNTAX AND SEMANTICS

IN CONCLUDING our short sketch of logic we shall consider the question of the
relation between the language of logic and natural language. In the course of our
discussion the important concepts of the syntax and semantics of language will be
introduced.

Let us recall the sentence about the reddish-brown dog, which we expanded into a set of
statements expressed by means of predicates. The meaning of this set coincides with the
meaning of the initial sentence, but the form of notation, the structure of the text, differs
fundamentally. In semiotics (the science that studies sign systems) the aggregate of rules
of construction of language elements is called its syntax and the relationship between
language elements and their meanings is called semantics. Thus, the first thing that
strikes one's eye in comparing logical and natural language is that the language of logic
has a different syntax-one that is simple and uniform. It is based on the style of notation
which has taken shape in mathematics; the construction of more complex language
elements from simpler ones is represented by analogy with mathematical notation of
operations and functions. The syntax of the language of logic is completely formalized,
that is, there is a set of precisely formulated rules with which one can construct any
language element. Moreover, no matter what correctly constructed language element
(object or statement) we may take it will always be possible to re-create the element's
construction. This process is called syntactical analysis of the element. It is easy to see
that syntactical analysis is extremely simple and unambiguous in the language of logic.

The syntax (in the semiotic sense) of natural language is its grammar-that is, the rules by
which sentences are constructed from words (syntax in the narrow, linguistic sense of the
word) and the rules for constructing words from letters (morphology). Unlike the
language of logic, the syntax of natural language is far from completely formalized. It
includes an enormous number of rules with an enormous number of exceptions. This
difference is entirely understandable. The language of logic was created artificially, while
natural language is a result of long development which no one controlled consciously, in
which no preconceived plan was used. The grammar of natural language has not been
constructed or designed; it is an investigation of an already complete system. an attempt
to discover and formulate as clearly as possible those rules which speakers of the
language use unconsciously.

Syntactical analysis of the sentences of natural language often requires reference to
semantics, for without considering the meaning of a sentence it will be ambiguous. For
example, let us take the sentence: “Here are the lists of students that passed the physics
exam. In this sentence the attribute “that passed the physics exam” refers to students. If
we use parentheses to make the syntactical structure of the sentence more precise, as is
done in writing algebraic and logical expressions, they would be placed as follows: “Here
are the lists of (students that . . . passed).” Now let us take the following sentence: “Here
are the lists of students that were lying on the dean's shelf. Formally the structure of this
sentence is exactly the same as in the preceding one. But in fact a different placement of
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parentheses is assumed here, specifically: “Here are the (lists of students) that . . . were
lying.” When we arrange parentheses in this way mentally we are relying exclusively on
the meaning of the sentence, for we assume that students could not be lying on the dean's
shelf.

In general, constructions with the word “that” [Russian kotoryi] are very treacherous. In
his book Slovo o slovakh [A Word about Words], L. Uspensky tells how he once saw the
following announcement:

CITIZENS-TURN IN SCRAP MATERIAL TO THE YARDKEEPER THAT IS LYING
AROUND!

It is not surprising that this construction did not find a place in mathematical logic!

 LOGICAL ANALYSIS OF LANGUAGE

THUS, to make a logical analysis-to construct the logical equivalent of a sentence in
natural language, we must first of all make a syntactical analysis of the sentence; the
results of the analysis will be reflected directly in the syntactical structure of the logical
expression. But semantics is by no means left out either. When we say that “reddish-
brown' is a one-place predicate, “killed” is a two-place predicate, “distance” is a function,
“and” is a logical connective, “all” is a quantifier, and so on, we are performing a
semantic analysis of the concepts expressed in natural language. We classify concepts in
accordance with a scheme fixed in the language of logic and we establish relations among
the concepts. Logical analysis is essentially semantic analysis. Syntactical analysis is
necessary to the extent that it is needed for semantic analysis.

Logical analysis may be more or less deep. In our example it is very superficial. Let us
see if we could continue it, and if so how.

The concepts of “dog,” “reddish-brown” and “cat” are one place predicates, obviously
elementary and not subject to further analysis. These are simple Aristotelian concepts
which rely directly on sensory experience; every normal person is able to recognize them
and the only way to explain what a “cat” is to point one out.

The concept “stray” is also a one-place predicate, although a more complex one. If we
were reasoning in a formal grammatical manner we could conclude that “stray” means
“that which strays.” But this would be an incorrect conclusion because the verb to stray
does not designate a length of time. A perfectly well-bred house cat may go out for an
hour and stray across a roof, but this does not give anyone the right to call it a “stray.” It
would be more correct to define a stray cat as a cat that has no master or, using a relation
which is already included in our logical expression, as a cat that does not belong to
anyone. Here is a formal notation of this definition:

“stray” (x) ≡ –( y) [“belongs” (x,y)]

(It is assumed here that x is an arbitrary object.)



114

Let us look at the relation “belongs.” In a certain sense we sneaked it in because the word
“belong” was not in the initial sentence. But it was understood and semantic analysis
revealed it! In the Russian sentence the relation of belonging was conveyed by the
genitive case. Here we see a clear example of the ambiguity and inadequacy of
syntactical analysis. We used the genitive case in the constructions “the widow's dog [
“the dog of the widow”] and “the dog's mistress” but in no way can it be said that the
mistress belongs to her dog. The construction “the widow's nose” can of course be
interpreted as the “nose that belongs to the widow.” But here we are already encountering
the semantic ambiguity of the word “belong,” for it is obvious that the nose belongs to
the widow in a different way than the dog belongs to her.

It requires a good deal of work to break the concept “belong” into its elementary
constituent parts; this would require a description of the customs and laws related to the
right of ownership. Only in this case can the meaning of “belong” be explained. The
predicate “widow” and the functions “rank” and “surname” (which we introduced during
our analysis of the concept “Lieutenant Pshebyssky”) are also bound up with the social
sphere and require further analysis. Finally the concept “killed” although it is not linked
with the social sphere and is plainly simpler (closer to sensory experience) than the
preceding concepts would also have to be subjected to logical analysis. In this analysis it
would be possible to identify. first of all the element of completion in the action. which is
expressed by the Russian verb form secondly the final result (the death of the victim) and
thirdly the typical characteristic of the action expressed by the Russian verb zagryzt' ]-use
of the teeth.

Logical analysis of language is an extremely interesting line of investigation, but we
cannot dwell on it here. Those who are interested are referred to Elements of Symbolic
Logic (New York: Free Press. 1966) by H. Reichenbach one of the founders of this field.

Let us summarize the results of our comparison between natural language and the
language of logic. The language of logic has a simple and completely formalized syntax.
By syntactical and semantic analysis a text in natural language can be translated to the
language of logic-that is, it can be correlated with a text in the language of logic that has
the same meaning. Semantic analysis of the natural text during translation may be more
or less deep which is to say that the predicates and functions included in the logical text
may be closer or further from immediate sensory and emotional experience. There are
predicates and functions which cannot be broken down into more elementary constituents
and which therefore cannot be defined in any way except by reference to experience. We
shall call such predicates and functions primary.
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CHAPTER SEVEN

Language and Thinking

 WHAT DO WE KNOW ABOUT THINKING?

THE FIRST THING we must do to approach the problem of language and thinking
correctly is to clearly separate what we know about thinking from what we do not know.
We know that thinking is a process that takes place in the nerve nets of the brain. Because
the tern “representation” to us means a state of some subsystem of the brain it may be
said that thinking is the process of change in the aggregate of self-representations. But at
any given moment in time only a certain (obviously small) part of these representations is
accessible to, as we say, our consciousness. These representations can be consolidated
into one (for several subsystems taken together constitute a new subsystem), which is the
state of consciousness at the given moment. We do not know what consciousness is from
a cybernetic point of view: we have only fragmentary information (specifically, that
consciousness is closely related to the activity of what is called the reticular formation of
the brain).

Thus, thinking has an external, manifest aspect: a stream of conscious representations.
This stream can be fixed and studied, and from it we try to draw conclusions indirectly
about those processes in the brain which are illuminated by consciousness. We are fairly
sure about some things regarding the stream of consciousness. We know that it is
regulated to a significant degree by associations of representations which form under the
influence of experience and reflect the characteristics of our environment. Specifically,
we receive our ability to foresee future situations to one degree or another thanks to the
association of representations. We also know that humans, unlike animals, have the
ability to control the process of association; this is manifested as imagination, encoding,
and conscious memorization. But we do not know the concrete cybernetic mechanism of
this ability or, as a matter of fact, the mechanism of the association of representations.
These mechanisms are not given to us subjectively either: in the stream of consciousness
we merely observe their appearance, the result of their action. Finally, we are subjectively
given a sensation of freedom of choice in our actions: free will. Free will also manifests
itself in thinking. We are able to turn our thoughts to any subject we wish. We do not
know the cybernetic interpretation of free will either, and this situation is perhaps worst
of all.
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 LINGUISTIC ACTIVITY

REPRESENTATIONS of linguistic objects, words and sentences, occupy a distinct place
among all representations in the process of thinking. These representations are (with the
exception of deaf mutes, of course) a combination of aural and motor representations and
(for people who have dealt with written language from childhood) the visual component
may also be joined to them. When we picture a certain word in our mind we mentally
pronounce it, listen, and possibly see it written. For brevity we will call these linguistic
representations. The stream of linguistic representations is precisely what is ordinarily
called thinking. The presence of this stream is a specifically human characteristic; it is
not found in animals. So-called “abstract” thinking is actually thinking in words, the
stream of linguistic representations. Without such thinking, the achievements of thought
in which the human race takes such pride would have been impossible.

The significance of linguistic representations is that they are uniquely related to words
and sentences as the material elements of the material system “language.” This system is
the aggregate of all words and sentences pronounced orally, transmitted by telephone and
radio, written on paper, encoded on punched cards for computers, and so on—in short,
the aggregate of what we have called the higher nervous system of the material body of
culture. Functionally, a stream of linguistic representations in no way differs from a
sequence of their material correlatives: words. The external, observed aspect of thinking
may be described as activity consisting of the creation of certain material linguistic
objects, for example pronouncing sentences out loud (unfortunately these objects are very
short-lived) or writing them on paper. We shall call this activity linguistic.

There are compelling reasons to consider linguistic activity the basic, primary aspect of
thinking and the stream of linguistic representations merely a transitional element—a
form of connection between the material linguistic objects and the aggregate of all (not
just linguistic) representations. In fact, it is precisely the linguistic objects which store
and transmit information and operate as the elements of linguistic models of reality. The
child is taught linguistic activity in the same way as it is taught to walk, shoot a bow, or
hammer nails. As a result the child becomes, so to speak, plugged into the language: he
uses the models already available and enriches it with new ones. Furthermore, he may
also use language in a noncommunicative manner (for his own purposes) as did the
young man Uu of the Nyam nyam tribe when he counted the enemy with his fingers.
During noncommunicative use of language there may be a stream of linguistic
representations without apparent linguistic activity (“I think!”); but after all, these
representations emerged and acquired their meanings as a result of activity involving
substantial, material linguistic objects! And often during the process of reflection we
whisper certain words and whole phrases, returning them to their material form. The
primacy of substantive linguistic activity is especially clear when we are dealing with
scientific models of reality. After long, hard study with real, written symbols a person
may be able to multiply a few small numbers or reduce similar elements of an algebraic
expression in his head. But give him a problem that is a little harder and he will demand a
pencil and paper!
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Linguistics and logic investigate linguistic activity. Linguistics is interested primarily in
the syntax of language (in the broad, semiotic sense) while logic is chiefly interested in
semantics. When syntax and semantics are interwoven it is not possible to separate
linguistics from logic. It is true that traditional logic declares itself to be the science of the
laws of thinking, not the science of language, but this pretentious statement should not be
taken too seriously. Of all the fields of knowledge which study thinking, logic has the
most external, superficial approach. It does not investigate the real mechanisms of the
work of the brain, as neurophysiology does; it does not construct models of mental
activity, as cybernetics does; and it does not attempt to record and classify subjectively
perceived emotional states, as psychology does. It recognizes only precise, socially
significant thoughts (not the ravings of a madman!) as its object of study. But such
thoughts are in fact nothing else but linguistic representations with socially significant
semantics. Logical (semantic) analysis of language leads to primary, undefinable
concepts and stops there; it does not take us beyond language. Logic also contains its
theory of proof. If language is used in a form of notation which keeps within the rules of
predicate calculus, not in the form of natural language, it is possible to establish the
formal characteristics of the correctness of deductions and formal rules which, if used,
will always yield correct conclusions from correct premises. These rules (the laws of
logic), which are also expressed in the form of a linguistic object, form a metasystem in
relation to the statements obtained as a result of application of the rules.

Figure 7.1.  Logic as a metasystem.

Sentences are the object and result of work for the theory of proof. Thus, all of logic lies
wholly in the sphere of linguistic activity. Its lower stage is semantic analysis and its
higher stage is the theory of proof. We will talk about proof theory later; for now we are
interested in the lower stage (it may even be called the foundation): the relationship
between language and the working of the brain.

We shall consider that by logical analysis we can translate any sentence in natural
language into the language of logic. Of course, this somewhat exaggerates the advances
made to date, but it is fairly clear that in principle there is nothing impossible about it.
Logical analysis reveals the internal structure of language, the fundamental nodes of
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which it consists. Therefore we shall review the basic concepts of the language of logic,
clarify exactly why they are as they are, and discover how they are related to brain
activity. Whereas in the last chapter we were primarily concerned with the syntax of
language, here we shall pose the question of the semantics of language.

 THE BRAIN AS A “BLACK BOX”

FIRST LET US try to find direct correlatives of language elements in brain activity. The
first concept we introduced in our description of the language of logic was the statement.
With what can it be correlated? The answer suggests itself: the association of
representations. Indeed, like the brain, language is a system used to create models of
reality. In the case of the brain the basic independent unit that can operate as a model is
the association of representations, while in the case of language it is the statement.

Now there is a temptation to correlate the representation to the object. At first glance this
creates a complete and harmonious interpretation: the object corresponds to the
representation; the relation among objects, which is the statement, corresponds to the
relation among representations, which is the association. We may take the example of the
association “In the forest there are wolves,” which we gave in chapter 4, and interpret it
as follows: “forest” and “wolves” are objects and, at the same time, representations, while
“In the forest there are wolves” is a statement and, at the same time, an association.

But a careful analysis shows that this interpretation involves a serious mistaken
assumption; we have artificially transferred linguistic structure to the sphere of
representations. In reality this sphere has no such structure. Begin from the fact that an
association of representations is also a representation. A representation may be correlated
with the sentence “In the forest there are wolves” just as it may be correlated with the
nouns “forest” and “wolves.” We should recall that an association between
representations S1 and S2 is a new synthetic representation U (see figure 3.8). It is true that
the association of representations is a model of reality, but if we understand the term
“model” in the broad sense as a certain correlative of reality, any representation is a
model. If, however, we understand model in the narrow sense as a correlative of reality
which permits us to predict future states, then not any association can be a model, but
only one that reflects the temporal aspect of reality. The process of associating is
important, because it leads to the creation of a new model where none existed before.
This process permits completely strict logical definition and can be revealed by
experiment, similar to the way we easily define and uncover the process of the formation
of a system from subsystems. But it is impossible to define the difference between an
association of representations and a representation just as it is impossible to establish
criteria that would distinguish a system from subsystems.

So the statement elicits a representation and the object elicits a representation and our
harmonious system crumbles. The representation proves too broad and too indefinite a
concept to be made the basis of a study of the semantics of language. All we know about
the representation is that it is a generalized state of the brain, but we know virtually
nothing about the structure of the brain.
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In chapter 4 we defined language as the aggregate of objects Li each of which is the name
of a certain object Ri, which is called its meaning. Concerning objects R we said only that
they are some kind of real phenomena. The time has now come to work toward a more
precise answer as to what kind of phenomena these are: in other words, the question is
“what are the semantics of natural language?”

In the simplest examples usually given to illustrate the relationship Li-Ri and which we
cited above (the word lion—the animal lion, and so on), the object Ri is a representation
of a definite object. In general, language emerges as the result of an association between
linguistic and other representations, and therefore it is natural to attempt to define the
semantics of language by means of those representations which emerge in the process of
linguistic activity. It can be said that the meaning of a linguistic object is that
representation which it evokes—the change in the state of the brain which occurs when a
representation about a linguistic object appears in the consciousness. This definition is
entirely correct, but unfortunately it is unproductive because the states of the brain as
objective reality are not directly accessible to us, and we make our judgments about them
on the basis of their manifestation in human actions only.

Therefore let us take another route. We shall view the brain as a black box; we shall
investigate the observed manifestations of its activity without any attempt to understand
its internal organization. We are interested in the semantics of language, the connection
(associations) between linguistic representations and all others.

Figure 7.2.  The brain as a black box.

Because the representations are inside the “black box,” however, we shall rely only on
the input data corresponding to them— which is to say the linguistic objects and all the
other activity that, for the sake of brevity, we shall call nonlinguistic. This is the input of
the black box. Its output is obviously the person's observed actions
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Because the system of actions is very complex, we shall not make progress in our
attempts to study semantics if we do not choose some simple type of action as a standard.
Of course there must be at least two variants of the action so that it will carry some
information. Suppose there are exactly two. We shall call them the first and second
standard actions. We shall formulate the elementary act in studying semantics as follows.
Linguistic objects will be presented to a person who is perceiving a definite nonlinguistic
reality and we shall assume that he responds to them by performing one of the two
standard actions.

 AFFIRMATION AND NEGATION

WE CONCEIVED this scheme in a purely theoretical manner as the simplest method of
defining the semantics of language under conditions where the brain is pictured as a black
box. It turns out that this scheme actually exists in linguistic activity, emerging
spontaneously in the early stages of the development of language! In all known languages
we find expressions for two standard actions—affirmation and negation. These actions
are of great antiquity, as evidenced by the fact that among a large majority of peoples
(possibly all) they are expressed in gestures as well as words. If we open the top of the
black box just a crack, to the degree shown in figure 7.2, we can define the affirmation as
an action performed when the linguistic object and reality are in the relation name-
meaning (that is, the necessary association exists between the linguistic and nonlinguistic
representations), and we can define negation as the action performed when there is no
such relation. But a person learning to use affirmative and negative words and gestures
correctly knows nothing, of course, about representations, associations, and the like. At
first he is simply taught to say “cat,” “dog,” and so forth while pointing at the
corresponding objects, and then he is taught to perform the affirmative action when
someone says “this is a cat” while pointing at one and to perform the negative action
when someone makes the same statement while pointing at a dog. In both instances we
learn correct linguistic activity while relying on the brain's ability to recognize and
associate; but we have no knowledge of the brain s mechanisms; to us it is a black box.

The last remark explains why it is hardly surprising that the scheme of standard actions
has become an established part of linguistic practice. A person's brain is a black box both
for himself and for other members of society. This is the origin of the need for a socially
meaningful way of determining more precise semantics; this need appears as soon as
language reaches a minimum level of complexity.

The standard actions of affirmation and negation are not related to reality itself, as
primary linguistic objects are; rather they refer to the relationship between primary
linguistic objects and reality. They are elements of a metasystem in relation to the system
of primary linguistic objects. The introduction of the actions of affirmation and negation
into the practice of society was the beginning of that metasystem transition within
linguistic activity whose subsequent stages are the appearance of the language of logic
and the theory of deduction. Although affirmation and negation appeared very early in
the development of human culture, they did not appear sufficiently early for a prototype



121

of them to be found in animal actions. We know that such prototypes exist for primary
linguistic objects in the form of animal signals. Among these signals there are ones which
could be described as affirmative and negative, but they have nothing in common with
the semantic actions of affirmation and negation which are oriented to the signals
themselves and lay the foundations of the metasystem. In this we see one more
manifestation of the law of branching (expansion) of the penultimate level. The enormous
growth in the number of primary linguistic objects (signals) which is found in human
society began simultaneously with the beginning of the metalevel.

 THE PHENOMENOLOGICAL DEFINITION OF SEMANTICS

NOW IT WILL not be difficult for us to interpret the basic concepts of logic from the
point of view of the phenomenological (“black box”) approach. The statement is
obviously the linguistic object to which the actions of affirmation and negation refer. The
semantics of a language appear to an external observer as the function of two free
variables (the statement and the true state of affairs); the function assumes one of two
truth values: “true” (“yes,” “truth”) and “untrue' (“no,”, “falsehood”). The value of this
function is worked out by the black box, the human brain, which knows the given
language. How this happens the external observer does not know.

The statement is the basic unit of language. In considering language as a system we must
discover how the statement, a system of statements of subsystems, can be constructed.
Thus we come to the introduction of logical connectives, which were discussed in the
preceding chapter.

Reality is perceived by the human being through the medium of the sense organs; it
appears to the human being as an aggregate of receptor states, a situation If a person were
unable to control his sense organs and concentrate his attention on certain parts of the
situation, that is, if the situation always appeared to a person as something whole and
completely given from outside, then all logic would probably be limited to propositional
(statement) calculus. But a person can control his sense organs and can, for example, fix
his vision on a particular object. Therefore the situation is not simply reality, it is reality
with an attention characteristic—that is, with an isolated area (approximately defined)
which we are speaking about and on which we concentrate our attention. The concept of
attention also has a psychological aspect, but we shall try to bypass it. We can determine
from observing a person what he is looking at (or feeling, smelling, and so on), because
the attention characteristic can be determined objectively. Reality with the attention
characteristic can therefore be viewed as a free variable of the function in the “black box”
approach. People resort to gestures or verbal clarifications to define the position of the
area of attention more precisely. In either case the result will be the same. If you say, “I
am looking at the thick book the girl in the pink dress is holding in her hands,” the person
you are talking to will look around until he locates the girl and the book.

The temporal aspect of the input data of semantics must also be taken into account. If the
reaction of the brain were determined only by the situation at one specific moment,
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unrelated to situations close in time, once again logic would probably be limited to
propositional calculus. In fact, however, the brain stores its memory of many past
situations; the brain's reaction (and specifically, the standard action) is therefore always a
function of the moving picture of situations. We often fail to recognize this because there
are in the environment around us objects which show a relative invariability, and when
we concentrate our attention on the invariant object it seems to us that we are not dealing
with a moving picture but rather with a single frame. In actuality, the analysis of the
concept of object which was given above shows that the time aspect plays the decisive
part in it. Now, when we have introduced the concept of the attention characteristic we
can define the object as a moving picture of situations with the attention characteristic
represented by one continuous line.

The extent to which we are inclined to ignore the dynamic aspect of perception can be
seen from the situation we ordinarily describe as the existence of at least two distinct
objects. It seems to us that we are perceiving each object separately and still we
distinguish among all the objects and concentrate our attention on them simultaneously.
But the simplest psychological self-analysis will persuade us that in fact in such a case
our attention darts rapidly from one object to another. In the moving picture of situations,
the line of the attention characteristic will be broken; it will, indeed, easily become
possible to make several (according to the number of objects) continuous lines .

Figure 7.3.  Broken line of attention out of which two continuous lines can be
formed

We have now come to defining the concept of the object in logic. We have established
that the “nonlinguistic activity,” shown in 7.2, which is fed to the input of the black box
is often broken, divided up in space and time. It can be imagined as a moving picture on
which the line of movement of the attention characteristic is drawn in. Moreover, it turns
out that this line can be broken to become several continuous lines. These continuous
lines are the objects.

Thus the object of logic is wholly liberated from its material meaning; this is transferred
to statements about the given object. The object is an identifier. Its only attribute is to be
identical to itself and it signifies a continuous line of attention. This proposition has
already been explained in sufficient detail in the preceding chapter.

When in place of undivided reality we feed to the input of the black box a reality divided
into objects, the statement becomes dependent on the method of division—that is, on the
objects we are singling out; the statement is converted into the predicate.
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 THE LOGICAL CONCEPT

WE HAVE ALMOST completed our analysis of the fundamentals of logic from the
black-box point of view. We have still to define the general concept of “logical concept,”
but that is simple: the concept is the predicate or logical connective. The grounds for this
are that predicates and connectives are those basic functional nodes we discover in
linguistic activity. The concept of function in the sense that we have defined it above may
not be elevated to the rank of the basic logical concept because, as we have seen, it can be
expressed through predicates and connectives. But in the broader sense both logical
connectives and predicates are functions—that is, correlations by a certain method of
values (truth values in the given case) to free variables. Thus it can be said that the logical
concept is a function whose free variables are linguistic objects and situations and whose
values are linguistic objects. The result of a logical analysis of language is a breakdown
of linguistic activity into homotypic functional elements: connectives and predicates.

Every logical concept is defined in the first place by its material carrier, the linguistic
object (in most cases a word or phrase), and in the second place by the method of using
this object in linguistic activity in society. The second point offers an opportunity to
refine the first. The words “koshka,” “koshka,” “KOSHKA,” and koshka [Russian for
“cat”] are different linguistic objects (the first two differ by their placement while the
third and fourth also differ by their type face) but we consider them to be carriers of a
single concept because they appear indistinguishable in linguistic activity. The same
thing can be said—with certain restrictions—about the German die Katze, for it is used
analogously (but only analogously!) to the Russian koshka.

The concepts of a language form a hierarchical system. In certain specialized languages
(sublanguages) used by the exact sciences this hierarchy is determined in a completely
clear and strict manner. The concepts located higher in the hierarchy acquire their
meaning by logical definitions through concepts of a lower order—that is, it is pointed
out how, being able to determine the truth values of the predicates at a lower level, one
can determine the value of the predicate of a higher level. In natural languages there is no
strict hierarchy, but there is an approximate one. We can therefore assess the “degree of
remoteness” of a concept from the direct data of experience by logical analysis and
breaking complex concepts down into simpler components; the degree of remoteness of a
concept from direct experience can be equated with its elevation in the hierarchy. This
estimate of position in the hierarchy is approximate, because the breakdown in the
components is not unambiguous, the actual method of subdividing has not been fully
formalized, and no one has yet done such work for all language. Perhaps the most firmly
established fact is that the predicates which cannot be subdivided at all are primary
(belonging to the lowest level of the hierarchy).

Between the concepts of a language there are numerous interconnections given by the set
of all true statements in which the concepts under consideration are included. Language is
a system and its concepts have meaning only as elements of the system. The meaning of a
word is determined by the way this word is used in linguistic activity. Each word, so to
speak, bears the imprint of all the sentences in which it has ever been included; it is an
element of the system. When traditional logic speaks of concepts, the two functions of the
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concept are pointed out: to serve as an element of reasoning—that is, a method of shaping
thought—and at the same time to concentrate already existing thoughts and knowledge of
an object in oneself. This duality is a result of the system nature of the concept. The
linguistic object (word) which expresses a concept is used as an element for constructing
a model of reality and is associated functionally—that is, in linguistic activity (and
therefore also in our imagination)—with all models in which it participates. Therefore,
although a trained dog does distinguish between a square and a circle, it cannot be said
that it has mastered the concept of “square”; this word includes many things about which
the dog does not have the slightest idea. Therefore also the most exact translation from
one language to another is by no means always a literal translation; the difference
between the systems must be taken into account. Strictly speaking, an absolutely exact
translation is generally impossible (with the possible exception of statements which
contain only primary concepts accessible to a dog).

 THE STRUCTURAL APPROACH

WE HAVE DEFINED the logical concept as an element of the functioning of the
linguistic system. We shall now attempt to give a more general definition of the
cybernetic concept of “concept,” relying on the structural rather than the functional
approach.

Let us again consider the concept “inside” in application to the picture discriminator.
How would we begin to build a system that contains the concept inside”? It is apparent
that at first we would have to construct classifiers for the concepts of “spot” and
“contour.” Let us recall that the classifier is a cybernetic system that recognizes the
affiliation of an input state (“situation”) with a definite set (Aristotelian concept), and
converts it to an output state that reflects the most important characteristics of the
situation. The spot classifier, for example, recognizes the existence of a spot and fixes the
coordinates of the points which bound it.

Figure 7.4.
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In figure 7.4 we have designated the classifiers of spots and contours by the letters π1, π2,.
. .. and K1, K2, . . . These classifiers form the first level of a hierarchy, for their input is the
states of the receptors. They translate the situation from the language of illuminated
points to the language of spots and contours.

Having constructed the first level, we begin work on the second. We construct classifier
B (as in figure 7.4) to whose input is fed the output of one spot classifier, πi, we shall
assume, and one contour classifier, Kj. Classifier B must have just two output states: one
(“yes”) occurs when the spot fixed by classifier πi lies inside the contour fixed by
classifier Kj, while the second (“no”) occurs in the opposite case. We would like classifier
B to be applicable to any pair (πi, Kj). But it would be insanity to make as many copies of
B as there are pairs (πi, Kj)! Therefore we need some kind of switching device by means
of which information from different points of the system could be fed to the one and only
device B. Because it is meaningless to feed information directly from the receptors or
from any other inappropriate points to a classifier, the switch should be designed so that it
is able to feed information from any of the pairs (πi, Kj) and nothing else.

Classifier B is located on the second level of the overall system. It may possibly be used
as an input for the third level. For example, let us suppose that the system is required to
recognize the concept “enter into . . .” This is a dynamic concept related to time. As the
input here we must consider not one situation but rather a series—that which above was
called a moving picture of situations. With such a moving picture we say that the spot has
“entered into” a contour if at first it was outside the contour and then assumed a position
inside it. It is apparent that the discriminator of the concept “enter into” (in figure 7.4 it is
designated BB) will require at its input the output from discriminator B or from several
discriminators B' related to different frames of the moving picture (in the first case it
should have a device for storing the sequence of “yes” or “no” answers).

A hierarchy of classifiers has been obtained. For us this is not new; in chapter 2 we
considered hierarchies of classifiers. But in that chapter we limited ourselves to
Aristotelian concepts, and the hierarchy of classifiers acted solely as a means of
recognizing concepts and was not included in the definition of the concept of the
“concept.” We defined the concept of the “concept” (Aristotelian) independently of the
organization of the hierarchy of classifiers as a certain set of situations—in other words a
function that assumes a truth value of “true” in the given set of situations.

But now, searching for a cybernetic interpretation of such concepts as “inside,” we see
that we cannot define the more general concept of “concept” by relying on the level of
receptors alone; instead it can only be defined as an element of a system of concepts.
Corresponding to the concept of “inside” in figure 7.4 is the classifier B, not only as a
device which converts the given input into the given output but also as a subsystem of the
total recognition system— that is, as an element connected in a certain way with other
elements of the system (in the particular case, receiving input information from one type
[πi] classifier and one type K classifier).
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We have constructed a cybernetic model of the concept “inside” But how is this model
related to reality? What relationship does it have to the true concept of “inside,” which
manifests itself in language and appears to us as one of the elements of our thinking? Can
it be asserted that the brain has a classifier that corresponds exactly to the concept of
“inside”?

Although the general appearance of the diagram in figure 7.4 with its receptors and
classifiers reflects neurophysiological findings, the concrete functions of the classifiers
and their interrelationships reflect logical data. Therefore our diagram is not a model of
the organization of the brain, but rather a model of the functioning of the linguistic
system—or more precisely a structural diagram of a device that could perform the
functions discovered in linguistic activity. In this device the classifiers perform the
functions described by logical concepts and the switching devices (which are not shown
in the diagram but mentioned in the text) fix the domain of definition of the concepts .

The diagram shown in figure 7.4 may be embodied in a real cybernetic device whose
sources of information will be the illuminated points of a screen. But even if such a
device works very well it will not, strictly speaking, yet give us the right to consider it a
model of the organization of the brain. Possibly the division of the nerve nets into
classifiers as suggested by figure 7.4 or analogous diagrams taken from the functioning of
language does not reflect the true organization of the brain at all!

 TWO SYSTEMS

WE HAVE BEFORE US two cybernetic systems. The first system is the human brain. Its
functioning is individual human thinking. Its task is to coordinate the actions of separate
parts of the organism in order to preserve its existence. This task is accomplished,
specifically, by creating models of reality whose material body is the nerve nets and
which we therefore call neuronal models. We know that the brain is organized on the
hierarchical principle. We call the structural elements of this hierarchy classifiers. The
functions of the classifiers, considering their systems aspect—which is to say their
interrelationships—are the individual concepts (in the cybernetic sense of the word,
which simply means according to the cybernetic definition of the concept of “concept”),
which may be identified in the functioning of the brain as a whole. We will call them
neuronal concepts. The second system is language. Its functioning is linguistic activity in
society. Its task is to coordinate the actions of individual members of society in order to
preserve its existence. This task is accomplished, specifically, by creating models of
reality whose material body is linguistic objects and which we therefore call linguistic
models. Like the brain, language is organized hierarchically. The functional elements of
this hierarchical system are the logical (linguistic) concepts.

These systems are by no means independent. The linguistic system is set in motion by the
human brain. Without the brain, language is dead. On the other hand, the brain is strongly
influenced by language.
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Now the problem may be formulated as follows: what is the relationship between
neuronal and logical concepts? Let us survey the sources of information about these
systems of concepts. Logical concepts are on full display before us: phenomenologically
speaking, we know virtually everything that can be known about them. We know very
little about neuronal concepts. Neurophysiological research offers some information
about the lowest levels of the hierarchy only; about the higher levels we have absolutely
no information which is independent of language. But we do know that language is an
offspring and, in a certain sense, a continuation of the brain. Therefore a close
relationship must exist between the highest stages of neuronal concepts and the lowest
stages of logical concepts. After all, logical concepts came from somewhere! The logical
concept of an object unquestionably has a very definite neuronal correlative; that is, long
before the appearance of language and independent of it the world presented itself to
people (and animals) as an aggregate of objects. From the ease with which people and
animals recognize some relations among objects (in particular transformations in time)
we may conclude that there is also a special neuron apparatus for relations among a small
number of objects. It can scarcely be accidental that the languages of all people have
words that signify the objects surrounding human beings and words for the simplest
relations among them—such as the relation of “inside,” which we used as an example
above. Thus figure 7.4 can be considered a model of brain organization with a certain
probability after all!

When speaking of neuronal models and concepts we have in mind not only the inborn
foundation of these concepts but also those concrete concepts which form on this
foundation through the action of the stream of sensations. In higher animals and human
beings the formation of new concepts as a result of association of representations plays an
enormous part, as we know. It begins from the moment the individual appears on earth
and develops especially intensively at a young age, when the conceptual “flesh” fills out
the congenital conceptual “skeleton.” This introduces a new element into the problem of
the mutual relations of neuronal and logical concepts. Those initial neuronal concepts
which form in a baby before it begins to understand speech and talk can be considered
independent of language, and then logical concepts can be considered reflections of them.
But the more complex concepts form in a baby under the direct and very powerful
influence of language. The associations of representations which make up the basis of
these concepts are dictated by society's linguistic activity; to a significant degree they are
thrust upon the child by adults during the process of teaching the language. Therefore,
when we analyze the interrelations of linguistic activity and thinking and attempt to
evaluate the degree to which the language is a continuation of the brain we cannot view
neuronal nets as a given against which the logical concepts of the particular language
should be compared. Considering the inverse influence of linguistic activity on thinking,
the question can only be put as follows: what would the neuronal and logical concepts be
like if the development of language were to follow this or that particular path?
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 CONCEPT “PILINGS”

THE INFORMATION capacity of the brain is incomparably greater than that of language
(in the process of speech). Language does not reflect the full wealth of sensations and
cognitive representations. We know, for example, that the ancient Greek language had
just one word for both dark blue and green; as a result they had just one concept in place
of our two. Does this mean that they perceived color differently? Of course not. The
human eye distinguishes hundreds of nuances of color but only a few words exist to
denote them.

The primary logical concepts may be compared with buttresses or, better, with pilings
driven into the ground of the neuronal concepts. They penetrate to a certain depth and
occupy just a small part of the area. Floor by floor the entire building, the hierarchy of
concepts of the language, is erected on these piles. We take pride in the building because
it contains concepts which were not even conceived of at ground level, among the
neuronal concepts. But have the pilings been driven well? Could they have been driven at
other points and is it too late now to drive additional ones? How does this affect the
building? In other words, is the selection of primary predicates fundamental for the
development of language, culture, and thinking? We rarely ask ourselves this question
because we do not see the ground itself; it is covered by the edifice of language. But if we
go down under the floor we can touch the original soil and feel around in the darkness
with our hands. By doing this we may learn once again how much of the ground is not
touched by the pilings (especially in the sphere of spiritual experience) and we shall
recall the words of the poet Tyutchev: “The thought expressed is a lie.”

From this metaphor one more question arises: how good is the architecture of the
building? Is it the only possible architecture, and if not, how much does its selection
influence the functioning of the edifice, the possibility of expansion, remodeling, and so
on? In other words, is the grammar of language (at least in its most important,
fundamental features) something external and unimportant for thinking, or does it
fundamentally affect thinking and direct its development?

We have formulated both of these questions, concerning the effect of selection of primary
predicates and of grammar, in a form requiring a yes or no answer only for purposes of
clear presentation. The point is not, of course, to answer them simply by yes or no. The
answer will always, in the last analysis, contain a conditional element, and the fact that
there is some influence is undoubted. Our job is to investigate real findings regarding
language's influence on thinking.

 THE SAPIR-WHORF CONCEPTION

THE WORK of two American linguists, E. Sapir and B. Whorf, is very interesting from
this point of view. The following quote, which Whorf used as the epigraph to his article
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“The Relation of Habitual Thought and Behavior to Language,” gives an idea of Sapir's
views:

Human beings do not live in the objective world alone, nor alone in the world of
social activity as ordinarily understood, but are very much at the mercy of the
particular language which has become the medium of expression for their society. It is
quite an illusion to imagine that one adjusts to reality essentially without the use of
language and that language is merely an incidental means of solving specific problems
of communication or reflection. The fact of the matter is that the “real world” is to a
large extent unconsciously built up on the language habits of the group.... We see and
hear and otherwise experience very largely as we do because the language habits of
our community predispose certain choices of interpretation.[1]

B. Whorf takes this conception as his basis and gives it concrete form in his studies of
certain Indian languages and cultures and his comparisons of them with European
languages and culture. We will present some of Whorf's observations and thoughts on
such logical categories as space and time, form and content.[2]

Whorf notes that to correctly evaluate such categories one must first reject those views
regarding the interaction of language and thought which are ordinarily considered an
integral part of “common sense” and are called, by Whorf, “natural logic.” He writes:

Natural logic says that talking is merely an incidental process concerned strictly with
communication, not with formulation of ideas. Talking, or the use of language, is
supposed only to express what is essentially already formulated non-linguistically.
Formulation is an independent process, called thought or thinking, and is supposed to
be largely indifferent to the nature of particular languages. Languages have grammars,
which are assumed to be merely norms of conventional and social correctness, but the
use of languages is supposed to be guided not so much by them as by correct, rational,
or intelligent thinking.

Thought, in this view, does not depend on grammar but on laws of logic or reason
which are supposed to be the same for all observers of the universe—to represent a
rationale in the universe that can be “found” independently by all intelligent
observers, whether they speak Chinese or Choctaw. In our own culture, the
formulations of mathematics and of formal logic have acquired the reputation of
dealing with this order of things, i.e., with the realm and laws of pure thought. Natural
logic holds that different languages are essentially parallel methods for expressing this
one-and-the-same rationale of thought and, hence, differ really in but minor ways
which may seem important only because they are seen at close range. It holds that
mathematics, symbolic logic, philosophy, and so on, are systems contrasted with
language which deal directly with this realm of thought, not that they are themselves
specialized extensions of language.[3]

This conception has taken such deep root that we are not even aware that it can be
subjected to critical analysis. Similarly, we are only aware that we breathe air when we
begin to experience a scarcity of it. Whorf gives one more illustration. Suppose that
owing to a certain defect in vision a certain people can perceive only the color blue. For
them the very term “blue” will be deprived of the meaning which we give it by
contrasting it with red, yellow, and the other colors. In the same way, a large majority of
people who talk, or at least think, in only one language are simply unaware of the
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limitations it imposes and the arbitrary element it contains. With nothing with which they
can compare their language, its limitations and arbitrary character naturally seem to them
universal and unconditional. When linguists conducted critical investigations of large
numbers of languages, the structures of which differed greatly, they encountered
violations of rules they formerly had considered as universal. It turned out that grammar
is not simply an instrument for reproducing thought, but a program and guide for the
thinking activity of the individual. Whorf writes:

'We dissect nature along lines laid down by our native languages. The categories and
types that we isolate from the world of phenomena we do not find there because they
stare every observer in the face; on the contrary, the world is presented in a
kaleidoscopic flux of impressions which has to be organized by our minds—and this
means largely by the linguistic systems in our minds.” [4]

It should be noted here that Whorf is plainly carried away when he speaks of organizing
the stream of impressions, and he incorrectly describes the division of labor between the
neuron system and the linguistic system, ascribing the organization of impressions
“largely” to the linguistic system. In reality, of course, a very large part of the work of
initial organization of impressions is done at the neuron level and what language receives
is no longer the raw material, but rather a semifinished product processed in a completely
definite manner. Here Whorf makes the same mistake in relation to the neuron system as
“natural logic” makes (and Whorf correctly points out!) in relation to the linguistic
system. He underestimates the neuron system because it is the same in all people.

It is difficult to conclude that the linguistic system is important for the organization of
impressions if we restrict ourselves to a comparison of modern European languages, and
possibly also Latin and Ancient Greek. In their fundamental features the systems of these
languages coincide, which was an argument in favor of the conception of natural logic.
But this coincidence is entirely explained by the fact that the European languages (with
minor exceptions) belong to the single family of Indo-European languages, are
constructed generally according to the same plan, and have common historical roots,
moreover, for a long period of time they participated in creation of a common culture and
in large part this culture, especially in the intellectual area, developed under the
determining influence of two Indo-European languages: Greek and Latin. To estimate the
breadth of the range of possible grammars one must refer to more linguistic material. The
languages of the American Indians, the Hopi, Shawnee, Nutka, and others, serve as such
material for Whorf. In comparison with them the European languages are so similar to
one another that, for convenience in making comparisons, Whorf consolidates them into
one “Standard Average European” language.

 SUBSTANCE

STANDARD AVERAGE EUROPEAN has two types of nouns which denote material
parts of the world around us. Nouns in the first group—such as “a tree,” “a stick,” “a
man,” and the like—refer to definite objects which have a definite form. Nouns of the
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second group—such as “water,” “milk,” and “meat”—denote homogeneous masses that
do not have definite boundaries. There is a very clear grammatical distinction between
these groups: the nouns which denote substances do not have a plural case. In English the
article before them is dropped, while in French the partitive article is placed in front of
them. If we think deeply about the meaning of the difference between these two types of
objects, however, it becomes clear that they do not differ from one another so clearly in
reality as in language, and possibly there is no actual difference whatsoever. Water, milk,
and meat are found in nature only in the form of large or small bodies of definite shape.
The difference between the two groups of nouns is thrust upon us by language and often
proves so inconvenient that we must use constructions such as “piece of meat” or “glass
of water,” although the word “piece” does not indicate any definite shape and the word
“glass,” although it assumes a certain shape, introduces nothing but confusion because
when we say “glass of water” we have in mind only a quantity of water, not its shape in
the container. Our language would not lose any expressive force if the word “meat”
meant a piece of meat and the word “water” meant a certain amount of water.

This is exactly the case in the Hopi language. In their language all nouns denote objects
and have singular and plural forms. The nouns we translate as nouns of the second group
(substances) do not refer to bodies which have no shape and size, but rather to one where
these characteristics are not indicated, where they are ignored in the process of
abstraction just as the concept of “stone” does not indicate shape and the concept of
“sphere” does not indicate size.

Therefore the concept of substance as something which has material existence and at the
same time cannot in principle have any shape could obviously not occur among the Hopi
or be understood by a person speaking only the Hopi language. In European culture the
concept of substance emerges as a generalization of the concepts which express nouns of
the second group while the generalization of concepts which express nouns of the first
group leads to the concept of the object. For the Hopi, in whose language there is no
division of nouns into two groups, only one generalization is possible and it leads, of
course, to the concept of object (or body), for it is possible to abstract from the shape of
an observed material object but it cannot be said that it does not exist. The intellectual
division of everything existing into a certain nonmaterial form (shape) and a material, but
non-form content (substance), which is so typical of traditional European philosophy,
will probably seem to the Hopi to be an unnecessary invention. And he will be right!
(This is not Whorf's remark, but mine.) The concept of substance, which played such an
important part in the arguments among the Medieval Scholastics, has completely
disappeared in modern science.

 THE OBJECTIVIZATION OF TIME

WE WILL NOW take up one more interesting difference between the Hopi language and
the Average European Standard. In the European languages the plural forms and cardinal
numbers are used in two cases: (1) when they signify an aggregate of objects which form
a real group in space and (2) to classify events in time, when the cardinal number does
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not correspond to any real aggregate. We say ten men” and “ten days.” We can picture
ten men as a real group, for example ten men on a street corner. But we cannot picture ten
days as the aggregate of a group. If it is a group, then it is imagined and consists not of
“days,” for a day is not an object, but of some objects which are arbitrarily linked to days,
for example pages of a calendar or segments in a drawing. In this way we convey a time
sequence and a spatial aggregate with the same linguistic apparatus, and it seems to us
that this similarity is in the nature of things. In reality this is not true at all. The relations
to be “later” and “to be located near” do not have anything in common subjectively. The
resemblance between a time sequence and a spatial aggregate is not given to us in
perception, but rather in language. This is confirmed by the existence of languages in
which there is no such resemblance.

In the Hopi language the plural forms and cardinal numbers are used only to designate
objects which may form real groups. The expression “ten days” is not used. Instead of
saying '“They stayed ten days,” the Hopi will say “They left after the tenth day.” One
cannot say “Ten days is more than nine days,” one must say “The tenth day is after the
ninth.”

Whorf calls the European representation of time objectivized because it mentally
converts the subjective perception of time as something “which becomes later and later”
into some kind of objectively (or, it would be better to say, objectively) given objects
located in external space. This representation is dictated by our linguistic system, which
uses the same numbers both to express temporal relations and to measure spatial
quantities and designate spatial relations. This is objectivization. Such terms as
“summer.” “September,” morning,” and “sunset” are nouns in our languages just as the
words which designate real objects are. We say “at sunset” just as we say “at a corner,”
“in September”, just as we say “in London.”

In the Hopi language all time terms such as summer, morning, and the like are not nouns,
they are special adverbial forms (to us, the terminology of the Average European
Standard). They are a special part of speech which is distinguished from nouns, verbs, an
even from other adverbs. They are not used as subjects, objects, for any other noun
function. Of course they have to be translated “in the summer,” “in the morning,” and so
on, but they are not derivatives of any nouns. There is no objectivization of time
whatsoever.

In European culture the very concept of “time” is a result of the objectivization of the
relation of “earlier-later” combined with our notion of substance. In our imagination we
create nonexistent objects such as year,” “day,” and “second,” and we call the substance
of which they consist “time.” We say “a little time” and “a lot of time” and we ask
someone to give us an hour of time as if we were asking for a quart of milk. The Hopi
have no basis for a term with this meaning.

The tripartite (past, present, future) verbal system of the Average European Standard
directly reflects the objectivization of time. Time is represented as an infinite straight line
along which a point is moving (usually from left to right). This point is the present, while
to its left is the past and to the right is the future. In the Hopi language, as one might
assume, things are different. Their verbs do not have tenses as the European verbs do.
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Verb forms reflect the source of information and its nature. And this corresponds more
closely to reality than the three-tense system. After all, when we say “we shall go to the
movies tomorrow,” this does not reflect what will actually occur but only our intention to
go to the movies, an intention that exists now and may change at any minute. The same
thing applies to past time.

 LINGUISTIC RELATIVITY

ALL THAT HAS BEEN said in no way leads to the conclusion that the objectivization of
time is a bad thing, that we ought to renounce it and change to a Hopi-type language. On
the contrary, the most important traits of European culture which have secured such an
outstanding place for it—its historical sense (interest in the past, dating, chronicles) and
the development of the exact sciences—are linked to the objectivization of time. Science
in the only form we yet know it could not have existed without the objectivization of
time. The correlation of temporal to spatial relations and the following step, the
measurement of time, amounted to the construction of a definite model of sensory
experience. It may be that this was the first model created at the level of language. Like
any model, it contains an element of arbitrary and willful treatment of reality, but this
does not mean that it must be discarded. It must, however, be improved. To improve it,
we must conceive of it as a model, not as the primary given. In this respect linguistic
analysis is extremely useful because it teaches us to distinguish the relative from the
absolute; it teaches us to see the relative and conditional in what at first glance seems
absolute and unconditional. Thus, Whorf calls his conception the conception of linguistic
relativity.

There is a curious similarity here with the physical theory of relativity. Objectivized time
is the foundation of classical Newtonian mechanics. Because the imagined space into
which we project time is in no way linked to real space, we picture time as something that
“flows” evenly at all points in real space. Einstein dared to reconsider this notion and
showed that it is not upheld in experimental data and that it should be rejected. But as we
know very well, this rejection does not come without difficulty, because, as Whorf
writes: “The offhand answer, laying the blame upon intuition for our slowness in
discovering mysteries of the cosmos, such as relativity, is the wrong one. The right
answer is: Newtonian space, time, and matter are no intuitions. They are recepts from
culture and language. That is where Newton got them.”[5] Once again here we should
temper the statements of the enthusiastic linguist. Newtonian concepts, of course, rely
directly on our intuition. But this intuition itself is not a pure reflection of primary
sensory experience, of the “kaleidoscopic flux of impressions”; rather it is a product of
the organization of this experience, and language and culture really do play a
considerable part in this organization.
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 THE METASYSTEM TRANSITION IN LANGUAGE

LANGUAGE EMERGES when the phenomena of reality are encoded in linguistic
objects. But after its origin language itself becomes a phenomenon of reality. Linguistic
objects become very important elements of social activity and are included in human life
like tools and household accessories. And just as the human being creates new tools for
the manufacture and refinement of other tools so he creates new linguistic objects to
describe the reality which already contains linguistic objects. A metasystem transition
within the system of language occurs. Because the new linguistic objects are in their turn
elements of reality and may become objects of encoding, the metasystem transition may
be repeated an unlimited number of times. Like other cybernetic systems we have
considered in this book, language, is a part of the developing universe and is developing
itself. And like other systems, language—and together with it thinking—is undergoing
qualitative changes through metasystem transitions of varying scale, that is to say,
transitions which encompass more or less important subsystems of the language system.

With all the physical-chemical differences that exist between the linguistic system and
the neuronal system it is easy to see that, functionally, metasystem transitions in language
are a natural continuation of the metasystem transitions in the neuronal structures, serving
to create more highly refined models of reality. To clarify this thought let us look again at
the diagram in figure 7.4, this time viewing it as a diagram of a device for processing
information coming from an illuminated screen and, consequently, as a partial (and
crude) model of the organization of the brain. In the diagram we see classifiers which
correspond to the concepts of “spot,” “contour,” “inside,” and “enter into.” These
concepts stand at different levels of the hierarchy and the number of levels is in principle
unlimited. But let us ask: how is it possible that there could be a metasystem transition of
such large scale that it would be represented not by adding a new level to figure 7.4 but
as a departure from the plane of the drawing in general, as the creation of a new plane'?

If we compare our artificial system to real biological systems it corresponds to a nerve
net with a rigidly fixed hierarchy of concepts.  This is the stage of the complex reflex. To
reach a new plane would signify the transition to the stage of associating, when the
system of connections among classifiers becomes controlled.

The concepts involved in figure 7.4 are taken from language. In addition, there are in
language concepts that “go outside the plane” of the diagram. Regarding the concept
“inside” we can say that it is an example of a spatial relation among objects. Other
examples of spatial relations are the concepts “touches,” “intersects,” and “between”
Classifiers to recognize these concepts could be added to the diagram But how about the
very concept “spatial relation”? It is the sought-for metaconcept in relation to the
concepts “inside,” “between, and so on; its relation to them is that of name to meaning. If
we were able to think of a way to embody the concept of “spatial relation in the form of
some kind of device that supplements the device in figure 7.4, it would plainly have to
form a metasystem in relation to such classifiers as “inside,” “between,” and others. The
task it would be able to perform would be modifying the structure of work of these
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classifiers or creating new ones that recognize some new spatial relation. But is not the
very purpose of the appearance of the concept of “spatial relation” in language itself to
achieve a better understanding of how the linguistic system works—to modify it and
create new concepts? Most certainly it is. The metasystem transition in the development
of language performs the same role as it does in the development of neuronal structures.

 THE CONCEPT-CONSTRUCT

CONCEPTS SUCH AS that of “spatial relation” rely on reality indirectly, through the
mediation of intermediate linguistic structures. They become possible as a result of a
certain linguistic construction, and therefore we shall call them constructs. Statements
containing constructs demand a certain linguistic activity to establish their truth or
falsehood. Concept-constructs do not exist outside the linguistic system. For example, the
concept of “spatial relation” cannot arise where there are no words “inside,” “between,”
and so on, although the corresponding neuronal concepts may have existed for a long
time.

We can now make a survey of the levels of language viewed as a control hierarchy. We
shall take the signals of animals for the zero level of language. The appearance of the
standard actions of affirmation and negation, logical connectives, and predicates is, as we
have already said, a metasystem transition. They create the first level of language. The
next metasystem transition forms the second level of language, whose concepts are
constructs. Among the concepts are grammar and logic. At the first level, grammar and
logic are the highest control systems that create language but are not themselves subject
to control; however, at the second level they become objects of study and control
(artificial construction). The second level of language may be called the level of
constructs, and also the level of self-description.

The level of development of language determines the relation between the linguistic and
the neuronal systems. At the zero level, language transmits only elementary control
information: at the first level it acquires the ability to fix and transmit certain models of
reality, but only those models which already exist at the neuronal level. First-level
language may be represented as a copy or photograph of neuronal models (taking into
account the inverse of language as corrective). Finally, at the level of constructs language
becomes able to fix models of reality which could not (bearing in mind the given
biological species of the human being) occur at the neuronal level. Such models are
called theories.

We have cited numbers and operations with them as the simplest and most graphic
example of models that do not exist at the neuronal level and are created at the language
level. Arithmetic was one of the first theories created by the human race. It is easy to see
that numbers, or more precisely large numbers, are constructs. Neuronal concepts
correspond to the numbers two and three; we distinguish two objects from three and from
one at the first glance. But the number 137 is a construct; it has meaning only to the
extent that the number 136 has meaning, which in its turn relies on the number 135 and
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so on. Here there is a metasystem transition, the emergence of the process of counting
which generates concrete numbers. Within the framework of the metasystem of counting,
a hierarchy by complexity arises: the natural series of numbers. The appearance of the
concept of “number” marks a new metasystem transition which assumes that counting
has become an established part of everyday life. An abstract concept of “number” is not
required for counting: it only becomes necessary when people begin to think about
counting. The concept of the number is a construct of a higher level than concrete
numbers. The concepts of arithmetic operations are located at the same level.

On the second level of language we have consolidated all the concepts which do not rely
directly on neuronal concepts but rather require auxiliary linguistic constructions. With
such a definition the second level is the last one formally, but it contains a control
hierarchy that forms through metasystem transitions and may in principle be as high as
one likes. We have seen this in the example of concrete numbers and the concept of
“number.” Metasystem transitions can differ in scale and occur in relation to different
subsystems of language. Therefore, second-level language has a complex structure which
can be figuratively pictured not in the form of even layers lying one upon the other but in
the form of a building or complex of buildings with vertical and horizontal structure.
Different control hierarchies and hierarchies of complexity generated by the subsystems
become interwoven and form a multifaceted architectural complex. Second-level
language is the language of philosophy and science. First-level language is ordinarily
called “everyday” or “conversational” language.

 THE THINKING OF HUMANS AND ANIMALS

IT IS SOMETIMES SAID that the human being can think in abstract concepts, whereas
abstract concepts are inaccessible to the animal, who can attain only a few concrete
concepts. If the term “abstract” is understood (as is the case here) to mean devoid of
nonessential characteristics, this assertion will not withstand even the slightest criticism.
We have seen that the crucial distinguishing feature in human thinking is the presence of
control of associations, which manifests itself above all as a capability for imagination.
As for a difference in the concepts, in any case it cannot be reduced to an opposition
between abstract and concrete. Every concept is abstract. The concept of cat is abstract
for the dog because, for example, it contains an abstraction from the coloring of the cat (a
nonessential characteristic). If we measure mental capabilities by the degree of
abstraction of concepts the frog will prove to be one of the most intelligent animals, for it
thinks with just two concepts, albeit extremely abstract ones: “something small and
rapidly moving” and “something large, dark, and not moving very rapidly.” As you see,
our language does not even have special terms for these concepts.

The truly profound difference between the conceptual apparatus of higher animals and
that of human beings is that animals cannot attain concept-constructs; these concepts
assume a capability for linguistic activity. It is not abstract concepts which distinguish
human thinking; it is concept-constructs. In partial justification of the statement above,
we should note that the expression “abstract concept” is commonly used to refer to
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precisely what we call the concept construct, and people talk about the degree of
abstraction where they should actually speak of the “construct quality”
[“konstruktnost”—the degree to which constructs are used—trans.]. It is true that the
concept of number is formed by abstraction starting from concrete numbers and that the
concept of the spatial relation begins from concrete relations; but the distinctive feature
here is not actual process of abstraction (which, as we have seen, appeared in the very
early stages of the cybernetic period of life), rather it is the fact that in the process of
abstraction linguistic objects play the most essential part. The principal thing here is
construction not abstraction. Abstraction without construction simply leads to loss of
meaning, to concepts such as “something” and “some.”

[1] Quoted from Novoe v lingvistike (New Developments in Linguistics). No 1. Moscow,
1960. [Original Whorf article in Language, Culture, and Personality, Menasha.
Wisconsin, 19 41, pp 75-93.

[2] I have taken the quotes by Whorf from the above-mentioned Soviet publication.

[3] [Original article, “Science and Linguistics,” in The Technology Review 42 no 6 (April
1940), Massachusetts Institute of Technology.]

[4] “Science and Linguistics.”

[5] [Original article, “The Relation of Habitual Thought and Behavior to Language,”
published in Language, Culture and Personality (Menasha, Wisconsin: Sapir Memorial
Publication Fund 1941), pp. 75-93.]
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CHAPTER EIGHT

Primitive Thinking

 THE SYSTEM ASPECT OF CULTURE

LET US CONTINUE our excursion through the stages of evolution. The subject of our
analysis now will be the history of the development of language and thinking, the most
important component of “spiritual” culture. As we have already noted, the division of
culture into “material” and “spiritual” is quite arbitrary and the terms themselves do not
reflect the substance of the division very accurately, so that when we want to emphasize
this we place them within quotation marks. The use of a tool and, even more so, the
creation of new ones demand the work of imagination and are accompanied by emotions,
giving us grounds to consider these phenomena part of “spiritual” culture. At the same
time, the process of thinking manifests itself as definite linguistic activity directed to
completely material objects— linguistic objects. Language and thinking are very closely
interconnected with material culture. The historian who sets himself the task of
investigating the mechanism of the development of culture can only consider these
phenomena in their interrelationship. He must also take account of other aspects of
culture—above all the social structure of society—as well as the influence of natural
conditions, historical accidents, and other factors. But the present investigation is not
historical. Our task is simpler: without going into the details of historical development to
describe what happened from a cybernetic or, as is also said, from a systems point of
view. As with the question of the origin of human beings, we shall not be interested in a
profound, intricate presentation of the historical circumstances that led to the particular
step in the development of culture at the particular place and time. Our approach remains
very global and general. We are interested in just one aspect of culture (but it is the most
important one in the mechanics of development!)—its structure as a control hierarchy.
Accordingly, we will view the development of culture also as a process of increasing
complexity in this hierarchy through successive metasystem transitions. We will show, as
was also true in the case of biological development, that the most important stages in the
development of language and thinking are separated from one another by precisely these
metasystem transitions.

 THE SAVAGE STATE AND CIVILIZATION

IN THE DEVELOPMENT of culture we discern above all two clearly distinct steps: the
savage state (primitive culture) and civilization. The clear delineation between them does
not mean that there are no transitional forms at all; the transition from the savage state to



139

civilization is not carried out instantaneously, of course. But once it has begun, the
development of culture through the creation of civilization takes place so rapidly that an
obvious and indisputable difference between the new level of culture and the old
manifests itself in a period of time which is vastly smaller than the time of existence in
the savage state. The emergence of civilization is a qualitative leap forward. The total
time of existence of civilization on Earth (not more than 5,000 to 6,000 years) constitutes
a small part of the time (at least 40,000 years) during which the human race has existed as
a biologically invariable species. Thus, the emergence of civilization is a phenomenon
which belongs entirely to the sphere of culture and is in not linked to the biological
refinement of the human being. This distinguishes it from the emergence of language and
labor activity but the consequences of this phenomenon for the biosphere are truly
enormous, even if they are measured by simple quantitative indexes rather than by the
complexity of the structures which emerge. In the short time during which civilization
has existed, the human race has had incomparably more effect on the face of the planet
than during the many millennia of the savage state. The size of the human race and its
effect on the biosphere have grown at a particularly swift pace in the last three centuries;
this is a result of the advances of science, the favorite child of civilization.

This fact requires explanation. Such an abrupt qualitative leap forward in the observed
manifestations of culture must be linked to some essential, fundamental change in the
internal structure of culture. Language is the core of culture; it insures its uniformity, its
“nervous system.” We have in mind here not language as an abstract system possessing
particular grammatical characteristics and used for expressing thoughts, but rather
language as a living reality, as the social norm of linguistic activity. In other words, we
have in mind the full observed (material if you like) side of thinking. Therefore, when we
say “language” we immediately add “and thinking”. So language (and thinking) are the
nervous system of culture and it may therefore be expected that there is some important
difference between the language and thinking of primitive and of modern peoples.
Indeed, a study of the culture of backward peoples reveals that they have a way of
thinking which greatly differs from that of modern Europeans. This difference is by no
means simply one in levels of knowledge. If a European is placed under primitive
conditions he will hardly be able to use (or even show!) his knowledge of Ohm's law, the
chemical formula for water, or the fact that the Earth revolves around the Sun and not
vice versa. But the difference in way of thinking, in the approach to the phenomena of
reality, remains and will quickly show itself in behavior.

That difference can be summarized as follows. To a primitive person the observed
phenomena of the world appear to be caused by invisible, supernatural beings. The
primitives resort to incantations, ritual dances, sacrifices, strictly observed prohibitions
(taboos), and so on to appease or drive off such beings. E. Taylor, one of the founders of
the scientific study of primitive cultures, has called this view of the world animism,
assuming the existence of spirits in all objects. To primitive people, certain mysterious
relations and influences can exist between different objects (“mystic participation,” in the
terminology of the French ethnographer L. Levy Bruhl). Such relations always exist, in
particular between the object and its image, or name. From this follow primitive magic
and belief in the mystical connection between the tribe and a particular animal species
(the totem ).
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But what is most surprising to the European is not the content of the representations of
primitive people, rather it is their extreme resistance and insensitivity to the data of
experience. Primitive thinking is inconceivably conservative and closed. Obvious facts
which, in the European's opinion, would inevitably have to change the notions of the
primitive individual and force him to reconsider certain convictions do not, for some
reason, have any effect on him at all. And attempts to persuade and prove often lead to
results diametrically opposite to what was expected. It is this, not the belief in the
existence of spirits and a mystical connection among objects, which is the more profound
difference between primitive and modern thinking. In the last analysis, everything in the
world is truly interrelated! When presenting the law of universal gravity we could say
that there is a spirit of gravity in every body and each spirit strives to draw closely to the
other spirit with a force proportional to the mass of the two bodies and inversely
proportional to the square of the distance between them. This would not hinder us at all in
correctly calculating the movement of the planets. But even if we do not use the word
“spirit,” we still use the word “force.” And, in actuality, what is the Newtonian force of
gravity? It is the same spirit: something unseen, unheard, unfelt, without taste or smell,
but nonetheless really existing and influencing things.

These characteristics of the thinking of primitive people are amazingly widespread. It can
be said that they are common to all primitive peoples, regardless of their racial affiliation
and geographic conditions and despite differences in the concrete forms of culture where
they manifest themselves. This gives us grounds to speak of primitive thinking,
juxtaposing it to modern thinking and viewing it as the first, historically inevitable phase
of human thinking. Without negating the correctness of such a division or of our attempts
to explain the transition, it should be noted that, as with any division of a continuous
process into distinct phases, there are transitional forms too; in the thinking of a modern
civilized person we often discern characteristics that go back to the intellectual activity of
mammoth and cave-bear hunters.

 THE METASYSTEM TRANSITION IN LINGUISTIC
ACTIVITY

THE PRIMITIVE PHASE is the phase of thinking which follows immediately after the
emergence of language and is characterized by the fact that linguistic activity has not yet
become its own object. The transition to the phase of modern thinking is a metasystem
transition, in which there is an emergence of linguistic activity directed to linguistic
activity. The language of primitive people is first-level language, while the language of
modern people is second-level language (which specifically includes grammar and logic).
But the transition to modern thinking is not simply a metasystem transition in language if
we view language statically, as a certain possibility or method of activity. It includes a
metasystem transition in real linguistic activity as a socially significant norm of behavior.
With the transition to the phase of modern thinking it is not enough to think about
something: one must also ask why one thinks that way, whether there is an alternative
line of thought, and what would be the consequences of these particular thoughts. Thus,



141

modern thinking is critical thinking, while primitive thinking can be called precritical.
Critical thinking has become so accepted that it is taken for granted today. It is true that
we sometimes say that a particular individual thinks uncritically: however, the term itself
means that uncritical thinking is the exception, not the rule. An uncritical quality in
thinking is ordinarily considered a weakness, and attempts are made to explain it in some
way— perhaps by the influence of emotions, a desire to avoid certain conclusions, and so
on. In the case of certain convictions (dogmas. for example), uncritical thinking may be
justified by their special (or sacred) origin. But the general stream of our thinking
continues to be critical. This does not mean that it is always original and free of
stereotypes, but even when we think in stereotyped ways we are nonetheless thinking
critically because of the nature of the stereotype. It includes linguistic activity directed to
linguistic activity, it teaches to separate the name from the meaning and remember the
arbitrary nature of the connection between them, and it teaches us to think. “Why do I
talk or think this way?” Not only do we use this stereotype, we also employ the results of
its use by preceding generations.

Things are different in primitive society, where the relation between language and reality
is not yet the object of thought. There the social norm of thinking is to treat the words,
notions, and rules of one's culture as something unconditionally given, absolute, and
inseparable from other elements of reality. This is a very fundamental difference from the
modern way of thinking. Let us consider primitive thinking in more detail and show that
its basic observed characteristics follow from this feature, its precritical nature.

We use below material from the writings of L. Levy-Bruhl, Primitive Thinking.[1] This
book combines material from Levy-Bruhl's La mentalité primitive and Les fonctions
mentales dans les sociétés inférieures). This book is interesting because it collects a great
deal of material on primitive culture which convincingly demonstrates the difference
between primitive and modern thinking. A feature of Levy-Bruhl's conception is that he
describes the thinking of individual members of primitive society as controlled by the
collective representations of the given culture (actually, of course, this does not apply
only to primitive society, but Levy-Bruhl somehow does not notice this). Also to Levy-
Bruhl's credit is his observation that collective representations in primitive society differ
fundamentally from our own and therefore it is completely incorrect to explain the
thinking of a primitive person by assuming (often unconsciously) that he is modern. The
rest of Levy-Bruhl's conception is quite unimportant. He describes primitive thinking as
“prelogical,” “mystically oriented,” and “controlled by the law of participation.” These
concepts remain very vague and add nothing to the material which has been collected.
Only the term “prelogical” thinking arouses our interest: it resembles our definition of
primitive thinking as precritical.

 THE MAGIC OF WORDS

THE ASSOCIATION name-meaning Li-Ri already exists in primitive thinking for
language has become a firmly established part of life; but the association has not yet
become an object of attention, because the metasystem transition to the second level of
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linguistic activity still has not taken place. Therefore the association Li-Ri is perceived in
exactly the same way as any association Ri-Rj among elements of reality, for example the
association between lightning and thunder. For primitive thinking the relation between an
object and its name is an absolute (so to speak physical) reality which simply cannot be
doubted. In fact—and this follows from the fundamental characteristic of the
association—the primitive person thinks that there is a single object Li-Ri whose name Li

and material appearance Ri are different parts or aspects. Many investigators testify to the
existence of this attitude toward names among primitive peoples. “The Indian regards his
name not as a mere label, but as a distinct part of his personality, just as much as are his
eyes or his teeth, and believes that injury will result as surely from the malicious handling
of his name as from a wound inflicted on any part of his physical organism. This belief
was found among various tribes from the Atlantic to the Pacific.”[2] Therefore many
peoples follow the custom of not using a person s “real” name in everyday life, but
instead using a nickname which is viewed as accidental and arbitrary. A. B. Ellis, who
studied the peoples of West Africa, states that they “believe that there is a real and
material connection between a man and his name, and that by means of the name injury
may be done to the man.... In consequence of this belief the name of the king of Dahomi
is always kept secret.... It appears strange that the birth-name only, and not an alias,
should be believed capable of carrying some of the personality of the bearer elsewhere . .
. but the native view seems to be that the alias does not really belong to the man.”[3] This
division of names into “real” and “not real” is obviously the first step on the path toward
the metasystem transition.

The relation between an object and its image is perceived in exactly the same way as
between an object and its name. In general primitive thinking does not make any essential
distinction between the image and the name. This is not surprising, because the image is
connected with the original of the same association that the name is. The image is the
name and the name is the image. All images are names of an object taken together with
the object itself form a single whole something (specifically a representation created by
an association). Therefore it seems obvious that when we act on a part we act by the same
token on the whole, which also means on its other parts By making an image of a buffalo
pierced by an arrow the primitive believes that he is fostering a successful hunt for a real
buffalo. G. Catlin, an artist and scientist who lived among the Mandans of North
America, notes that they believed the pictures in the portraits he made borrowed a certain
part of the life principle from their original. One of the Mandans told him that he knew he
had put many buffalo in his book because the Indian was there while he drew them and
after that observed that there were not so many buffalo for food. Obviously the Indian
understood that the white man was not literally putting buffalo's in his book; but it was
nevertheless obvious to him that in some sense (specifically in relation to the real-
buffalo-buffalo-picture complexes) the white man was putting the buffalo in his book,
because their numbers declined. The word “put” [the Russian ulozhit'—to put in, pack,
fit] is used here in a somewhat metaphorical sense if the primary meaning refers to an
action on a “material” buffalo, but this does not affect the validity of the thought. Many
terms in all the world's languages are used metaphorically, and without this the
development of language would be impossible. When we use the Russian expression
ulozhit' sya v golove [literally—to be packed, fit in the head; the idiomatic meaning is “to
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be understood”] we do not mean that something has been put in our head in the same way
that it is packed in a suitcase.

 SPIRITS AND THE LIKE

NOW LET US MOVE ON to “spirits,” which play such an important part in primitive
thinking. We shall see that the appearance of supernatural beings is an inevitable
consequence of the emergence of language and that they disappear (with the same
inevitability as they appeared) only upon the metasystem transition to the level of critical
thinking.

First let us think about the situation where language already exists but its relation to
reality still has not become an object of study. Thanks to language, something like a
doubling of objects occurs: instead of object Ri a person deals with a complex RiLi where
Li is the name of Ri . In this complex, the linguistic object Li is the more accessible and, in
this sense, more permanent component. One can say the word “sun” regardless of
whether the sun is visible at the particular moment or not. One can repeat the name of a
person as often as one likes while the person himself may be long dead. Each time his
face will rise up in the imagination of the speaker. As a result the relation between the
name and the meaning becomes inverted: the object Li acquires the characteristics of
something primary and the object Ri becomes secondary. The normal relation is restored
only after the metasystem transition, when Ri and Li are equally objects of attention, and
the connection between them is of special importance. Until this has happened the word
Li plays the leading role in the complex RiLi , and the faithful imagination is ready to link
any pictures with each word used in social linguistic practices. Some words of the
language of primitive culture signify objects which really exist from our modern point of
view while others signify things which from our point of view do not really exist (spirits
and so on). But from the point of view of the primitive individual there is no difference
between them or perhaps simply a quantitative one. Ordinary objects may or may not be
visible (perhaps they are hidden; perhaps it is dark). They may be visible only to some.
The same is true of spirits, only it is harder to see them; either no one sees them or they
are seen by sorcerers. Among the Klamath Indians in North America, the medicine man
who was summoned to a sick person had to consult with the spirits of certain animals.
Only one who had gone through a five-year course of preparation to be a medicine man
could see these spirits, but he saw them just as plainly as the objects around himself. The
Taragumars believed that large snakes with horns and enormous eyes lived in the rivers.
But only shamans could see them. Among the Buryats the opinion was widespread that
when a child became dangerously ill the cause was a little animal called an anokkha
which was eating the top of the child s head away. The anokkha resembled a mole or cat,
but only shamans could see it. Among the Guichols there is a ritual ceremony in which
the heads of does are placed next to the heads of stags and it is considered that both the
does and the stags have antlers, although no one except the shamans see them.

There is an enormously broad variety of invisible objects in the representations of
primitive peoples. They are not just formless spirits, but also objects or beings which
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have completely defined external appearances (except that they are not always perceived
and not perceived by all). Language provides an abundance of material for the creation of
imagined essences. Any quality is easily and without difficulty converted into an essence.
The difference between a living person and a dead one produces the soul, and the
difference between a sick person and a healthy one gives us illness. The representation of
illness as something substantial, objective, which may enter and depart from a body and
move in space, is perhaps typical of all primitive peoples. The same thing is true of the
soul. It is curious that just as there are different illnesses among some peoples there also
exist different “souls” in the human being. According to the observations of A. B. Ellis
the Negroes of the West African coast distinguish two human spirits: kra and sraman.
Kra lives in the person as long as he is alive but departs when the person sleeps; dreams
are the adventures of the kra. When a person dies his kra may move to the body of
another person or animal, but it may instead wander the world. The sraman forms only
upon the death of the person and in the land of the dead continues the way of life which
the deceased had followed.

This belief shows even more clearly among the American Indians. The Maenads, for
example, believe that every person carries several spirits: one of them is white, another is
swarthy, and the third is a light color. The Dakotas believe that a person has four souls:
the corporal soul, which dies along with the person; the spirit, which lives with the body
or near it; the soul, responsible for the actions of the body; and the soul that always
remains near a lock of the deceased's hair, which is preserved by relatives until it can be
thrown onto enemy territory, whereupon it becomes a wandering ghost carrying illness
and death. G. H. Jones, a scientist who studied beliefs in Korea, writes of spirits that
occupy the sky and everywhere on earth. They supposedly lie in wait for a person along
the roads, in the trees, in the mountains and valleys, and in the rivers and streams. They
follow the person constantly even to his own home, where they have settled within the
walls, hang from the beams, and attach themselves to the room dividers.

 THE TRASH HEAP OF REPRESENTATIONS

AS WE HAVE NOTED, it is not the fact of belief in the existence of invisible things and
influences that distinguishes primitive thinking from modern thinking, but the content of
the representations and particularly the relation between the content and the data of
experience. We believe in the existence of neutrons although no one has ever seen them
and never will. But we know that all the words in our vocabulary have meaning only to
the extent that, taken together, they successfully describe observed phenomena and help
to predict them. As soon as they stop fulfilling this role, as a result of new data from
experience or owing to reorganisation of the system of word use (theory), we toss them
aside without regret. That is what happened, for example, with “phlogiston” or ether.
Even earlier, all kinds of imagined beings and objects which were so typical of the
thinking of our ancestors disappeared from language and thinking. What irritates us in
primitive thinking is not the assumption of the existence of spirits but rather that this
assumption, coming together with certain assumptions about the traits and habits of the
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spirits, explains nothing at all and often simply contradicts experience. We shall cite a
few typical observations by investigators. In his Nicobar Island diaries, V. Solomon
wrote: “The people in all villages have performed the ceremony called “tanangla,'“
signifying either “support” or “prevention.” This is to prevent the illness caused by the
north-east monsoon. Poor Nicobarese! They do the same thing year after year, but to no
effect.” [4]

And M. Dobrizhoffer observed that

A wound inflicted with a spear often gapes so wide that it affords ample room for life
to go out and death to come in: yet if the man dies of the wound they madly believe
him killed not by a weapon but by the deadly arts of the jugglers.... They are
persuaded that the juggler will be banished from amongst the living and made to atone
for their relation's death if the heart and tongue be pulled out of the dead man's body
immediately after his decease, roasted at the fire and given to dogs to devour. Though
so many hearts and tongues are devoured, and they never observed any of the jugglers
die, yet they still religiously adhere to the custom of their ancestors by cutting out the
hearts and tongues of infants and adults of both sexes, as soon as they have expired.[5]

Because primitive people are unable to make their representations an object of analysis,
these representations form a kind of trash heap. The trash heap accumulates easily but no
one works to clean it up. For the primitive there are not and cannot be meaningless
words. If he does not understand a word it frightens him as an unfamiliar animal, weapon,
or natural phenomenon would. An opinion which has arisen as a result of the chance
combination of circumstances is preserved from generation to generation without any real
basis. The explanation of some phenomenon may be completely arbitrary and nonetheless
fully satisfy the primitive. Critical thinking considers each explanation (linguistic model
of reality) alongside other competing explanations (models) and it is not satisfied until it
is shown that the particular explanation is better than its rivals. In logic this is called the
law of sufficient grounds. The law of sufficient grounds is absolutely foreign to
precritical thinking. It is here that the metasystem transition which separates modern
thinking from primitive thinking is seen most clearly.

Thanks to this characteristic the primitive's belief in the effectiveness of magic
incantations, sorcery, and the like is unconquerable. His “theory” gives an explanation
(often not just one but several!) for everything that happens around him. He cannot yet
evaluate his theory—or even individual parts of it—critically. P. Bowdich tells of a
savage who took up a fetish which was supposed to make him invulnerable. He decided
to test it and let himself be shot in the arm; it broke his bone. The sorcerer explained that
the offended fetish had just revealed to him the cause of what had happened: the young
man had had sexual relations with his wife on a forbidden day. Everyone was satisfied.
The wounded man admitted that it was true and his fellow tribesmen were only
reinforced in their belief. Innumerable similar examples could be given.[6]
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 BELIEF AND KNOWLEDGE

WHEN WE SAY that a primitive person believes in the existence of spirits or certain
actions by them we predispose ourselves to an incorrect understanding of his psychology.
When speaking of belief we juxtapose it to knowledge. But the very difference between
belief and knowledge emerges only at the level of critical thinking and reflects a
difference in the psychological validity of representations, which follows from the
difference in their sources. For a primitive there is no difference between belief and
knowledge and his attitude toward his representations resembles our attitude toward our
knowledge, not our beliefs. From a psychological point of view the primitive person
knows that spirits exist, he knows that incantations can drive out illness or inflict it, and
he knows that after death he will live in the land of the dead. Therefore we shall avoid
calling the primitive person's worldview primitive religion; the terms “primitive
philosophy” or “primitive science” have equal right to exist. These forms of activity can
only be distinguished at the level of critical thinking. This refers both to the difference
between belief and knowledge and to the difference between the “otherworldly” and that
which is “of this world.” The fact that the representations of primitive people involve
spirits, ghosts, shadows of the dead, and other devil figures still does not make these
representations religious, because all of these things are perceived as entirely of this
world and just as real (material if you like) as the animals, wind, or sunlight. L. Levy-
Bruhl, who defines the psychological activity of primitive man as mystic, nonetheless
emphasizes that this is not at all the same as mysticism in the modern meaning of the
word. “For lack of a better term,” he writes, “I am going to use this one; this is not
because of its connection with the religious mysticism of our societies, which is
something quite different, but because in the narrowest meaning of the word “mystic” is
close to belief in forces, influences, and actions which are unnoticed and intangible to the
senses but real all the same.” Many observers are struck by how real the shadows or
spirits of their ancestors seem to primitive peoples. R. Codrington writes about the
Melanesians:[7] When a native says that he is a person, he wants it understood that he is a
person not a spirit. He does not mean that he is a person not an animal. To him,
intelligent beings in the world are divided into two categories: people who are alive and
people who have died. In the Motu tribe this is ta-mur and ta-mate. When the
Melanesians see white people for the first time they take them for ta-mate, that is, for
spirits who have returned to life, and when the whites ask the natives who they are, the
latter call themselves ta-mur, that is, people not spirits. Among the Chiriguanos of South
America when two people meet they exchange this greeting: “Are you alive?”—”Yes, I
am alive.” Some other South American tribes also use this form.

 THE CONSERVATISM OF PRECRITICAL THINKING

CONSERVATISM is inherent in precritical thinking; it is a direct consequence of the
absence of an apparatus for changing linguistic models. All conceivable kinds of rules
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and prohibitions guide behavior and thinking along a strictly defined path sanctified by
tradition. Violation of traditions evokes superstitious terror. There have been cases where
people who accidentally violated a tabu died when they learned what they had done.
They knew that they were supposed to die and they died as a result of self-suggestion.

Of course, this does not mean that there is no progress whatsoever in primitive society.
Within the limits of what is permitted by custom, primitive people sometimes
demonstrate amazing feats of art, dexterity, patience, and persistence. Within the same
framework tools and weapons are refined from generation to generation and experience is
accumulated. The trouble is that these limitations are extremely narrow and rigid. Only
exceptional circumstances can force a tribe (most likely the remnants of a tribe which has
been destroyed by enemies or is dying from hunger) to violate custom. It was probably in
precisely such situations that the major advances in primitive culture were made. A
people which has fallen into isolation and owing to unfavorable natural conditions is not
able to multiply and break up into bitterly hostile peoples may maintain its level of
primitive culture unchanged for millennia.

In the stage of precritical thinking, language plays a paradoxical role. In performance of
its communicative function (communication among people, passing experience down
from generation to generation, stablizing social groups) it is useful to people. But then its
noncommunicative, modeling function causes more harm than good. This refers to those
models which are created not at the level of the association of nonlinguistic
representations but only at the level of language, that is, primarily the primitive “theory
of spirits.” As we have already noted, the communicative function itself becomes
possible only thanks to the modeling function. But as long as linguistic models merely
reflect neuronal models we speak of the purely communicative functions; when new
models (theories) are created we speak of the noncommunicative function. In primitive
society we see two theories: the rudiments of arithmetic (counting by means of fingers,
chips, and the like) and the “theory of spirits.” Arithmetic is, of course, a positive
phenomenon, but it does not play a major part in primitive life and is in fact absent
among many peoples: the “theory of spirits,” on the contrary, permeates all primitive life
and has a negative influence on it. And this is the paradox. The first independent steps of
the linguistic system, which should according to the idea lead to (and later in fact do lead
to) an enormous leap forward in modeling reality, at first produce poisonous discharges
which retard further development. This is a result of the savage so to speak, growth of the
“theory of spirits.” It can be compared with a weed which sprouts on well-fertilized soil if
the garden is not managed. As we have seen, the weed's seeds are contained in the soil
itself, in language. Only the transition to the level of critical thinking (careful cultivation
of the soil, selection of plants for crops, and weed control) produces the expected yield.

 THE EMERGENCE OF CIVILIZATION

WE KNOW THAT this transition took place. The emergence of critical thinking was the
most important milepost of evolution after the appearance of the human being. Critical
thinking and civilization arise at the same time and develop in close interdependence.
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Increasing labor productivity, contacts among different tribal cultures, and the breakup of
society into classes all inexorably weaken traditional tribal thinking and force people to
reflect upon the content of their representations and compare them with those of other
cultures. In this critical thinking takes root and gradually becomes the norm. On the other
hand, critical thinking emancipates people and leads to a high rise in labor productivity
and to the appearance of new forms of behavior. Both processes support and reinforce
one another: society begins to develop swiftly. There is a kind of 180 degree turn in the
vector of society's interest: in primitive society it is directed backward, to the past, to
observance of the laws of ancestors; in a developing situation, at least among part of
society (the “creative minority” according to A. Toynbee), it is pointed forward, into the
future, toward change in the existing situation. Thanks to a metasystem transition culture
acquires dynamism and its own internal impetus toward development. The redirection of
language activity to itself creates the stairway effect: each level of logical (language)
thinking, which has emerged as a result of the analysis of logical thinking, becomes, in its
turn an object of logical analysis. Critical thinking is an ultrametasystem capable of self-
development. Primitive tribal cultures evolve by the formation of groups and the struggle
for existence among them, just as in the animal world. Civilization evolves under the
influence of internal factors. It is true that the civilizations of the past typically stopped in
their development upon reaching a certain level; but all the same the leaps forward were
extremely great in comparison with the advances of primitive cultures, and they grew
larger as critical thinking became ever more established. Modern civilization is global, so
that the factor of its struggle for existence as a whole (that is to say, against rivals)
disappears and all its development occurs exclusively through the action of internal
contradictions. Essentially, it was only with the transition to the level of critical thinking
that the revolutionary essence of the emergence of thinking manifested itself, and the age
of reason began in earnest.

In the process of a metasystem transition there is, as we know, a moment when the new
attribute demonstrates its superiority in a way which cannot be doubted, and from this
moment the metasystem transition may be considered finally and irreversibly completed.
In the transition to critical thinking this moment was the culture of Ancient Greece,
which it is absolutely correct to call the cradle of modern civilization and culture. At that
time, about 2.500 years ago, philosophy, logic, and mathematics (mathematics in the full
sense of the word, that is to say, including proof) emerged. And from that time critical
thinking became the recognized and essential basis of developing culture.

[1] In Russian, Pervobytnoe myshlenie [Primitive Thinking]. Ateist Publishing House,
1930.

[2] Original in James Mooney, “The Sacred Formulas of the Cherokee,” 7th Annual
Report of the Bureau of Ethnology. Washington, GPO, 1885-1886, p. 343—trans.

[3] Original A B. Ellis, The Ewe-Speaking People, London. 1890. p. 98—trans.

[4] Original V. Solomon, “Extract from Diaries Kept in Car Nicobar,” Journal of the
Anthropological Institute of Great Brittain and Ireland 32 (January-June 1902); trans .
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[5]  Original in M Dobritzhoffer, An Account of the Abipones, (London, 1822), Vol 2, p.
223-trans.

[6] T. Edward Bowdich, Mission from Cape Coast Castle to Ashantee, (London: Frank
Cass and Co., Ltd, 3rd ed, 1966), p 439 - trans.

[7]  The Melanesian Languages (Oxford, 1891).
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CHAPTER NINE

Mathematics Before the Greeks

    NATURE'S MISTAKE

WE HAVE ALREADY mentioned the process of counting as an example of using a
model of reality that is not contained in the brain but is created at the level of language.
This is a very clear example. Counting is based on the ability to divide the surrounding
world up into distinct objects. This ability emerged quite far back in the course of
evolution; the higher vertebrates appear to have it in the same degree as humans do. It is
plain that a living being capable of distinguishing separate objects would find it useful in
the struggle for existence if it could also count them (for example, this would help one
become oriented in an unfamiliar area). Description by means of numbers is a natural,
integrated complement to differential description by recognition of distinct objects. Yet
the cybernetic apparatus for recognizing numbers, for counting, can be extremely simple.
This task is much easier than distinguishing among separate objects. Therefore one would
expect that, within limits imposed by the organization of the organs of sight, recognition
of numbers would have appeared in the course of evolution. The human eye can
distinguish tens and hundreds of distinct objects at once. We might expect that human
beings would be able to tell a group of 200 objects from a group of 201 just as easily as
we tell two objects from three.

But nature did not wish or was unable to give us this capability. The numbers which are
immediately recognizable are ridiculously few, usually four or five. Through training
certain progress can be made, but this is done by mentally breaking up into groups or by
memorizing pictures as whole units and then counting them in the mind. The limitation
on direct discrimination remains. It is in no way related to the organization of the organs
of sight and apparently results from some more deep-seated characteristics of brain
structure. We do not yet know what they are. One fact forces us to ponder and suggests
some hypotheses:

In addition to spatial discrimination of numbers there is temporal discrimination. You
never confuse two knocks at a door with three or one. But eight or ten knocks is already,
no doubt, “many” and we can only distinguish such sounds by their total length (this
corresponds to the total area occupied by homogeneous objects in spatial discrimination).
The limit which restricts both types of discrimination is the same. Is this a chance
coincidence? It is possible that direct discrimination of numbers always has a temporal
nature and that the capacity of the instantaneous memory limits the number of situations
it can distinguish. In this case the limitation on spatial discrimination is explained by the
hypothesis that the visual image is scanned into a time sequence (and there is a rapid
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switching of the eye's attention from object to object, which was discussed above) and is
fed to the very same apparatus for analysis.

Be that as it may, nature has left an unfortunate gap in our mental device; therefore
human beings begin work to create a “continuation of the brain” by correcting nature's
mistake—humans learn to count, and thus mathematics begins.

 COUNTING AND MEASUREMENT

FACTS TESTIFY clearly that counting emerges before the names of the numbers. In
other words, the initial linguistic objects for constructing a model are not words but
distinct, uniform objects: fingers, stones, knots, and lines. That is natural. During the
emergence of language, words refer only to those concepts which already exist, which is
to say, those which are recognized. The words “one,” “two,” and possibly “three” appear
independently of counting (taking “counting” to mean a procedure which is prolonged in
time and recognized as such) because they rely on the corresponding neuronal concepts.
There is as yet nowhere from which to take the words for large numbers. To convey the
size of some group of objects, the human being uses standard objects, establishing a one-
to-one correspondence among them, one after the other. This is counting. When counting
becomes a widespread and customary matter, word designations begin to emerge for the
most frequently encountered (in other words small) groups of standard objects. Traces of
their origin have remained in certain numbers. For example, the Russian word for five,
pyat,' is suspiciously similar to the old Slavic pyad,' which means hand (five fingers).

There are primitive peoples who have only “one,” “two,” and “three”; everything else is
“many.” But this in no way excludes the ability to count by using standard objects, or to
convey the idea of size by breaking down objects into groups of two or three, or by using
as yet unreduced expressions, such as “as many as the digits on two hands, one foot, plus
one.” The need for counting is simply not yet great enough to establish special words.
The sequence “one, two, three, many” does not reflect an inability to count to four and
beyond, as is sometimes thought, but rather a distinction the human mind makes between
the first three numbers and all the rest. For we can only unconsciously—and without
exertion—distinguish the numbers to three. To recognize a group of four we must
concentrate especially. Thus it is true for us as well as for savages that everything which
is more than three is “many.”

To convey large numbers people began to count in “large units”: fives, tens, and twenties.
In all the counting systems known to us large units are divisible by five, which indicates
that the first counting tool was always the fingers. Still larger units arose from
combinations of large units. Separate hieroglyphs depicting numbers up to ten million are
found in Ancient Egyptian papyruses.

The beginning of measurement, just as with counting, goes back to ancient times.
Measurement is already found among the primitive peoples. Measurement assumes an
ability to count, and additionally it demands the introduction of a unit of measure and a
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measurement procedure that involves comparing what is being measured against a unit of
measurement. The most ancient measures refer to the human body: pace, cubit [lit.
“elbow”; the unit was the length of the forearm], and foot.

With the emergence of civilization the need for counting and for the ability to perform
mathematical operations increases greatly. In developed social production, the regulation
of relations among people (exchange, division of property, imposition of taxes) demands
a knowledge of arithmetic and the elements of geometry. And we find this knowledge in
the most ancient civilizations known to us: Babylon and Egypt.

 NUMBER NOTATION

THE WRITING OF NUMBERS in ancient times demonstrates graphically the attitude
toward the number as a direct model of reality. Let us take the Egyptian system for
example. It was based on the decimal principle and contained hieroglyphs for the one
(vertical line) and “large ones.” To depict a number it was necessary to repeat the
hieroglyph as many times as it occurred in the number. Numbers were written in a similar
way by other ancient peoples. (figure 9.1) The Roman system is close to this very form of
notation. It differs only in that when a smaller unit stands to the left of a larger it must be
subtracted. This minor refinement (together with introduction of the intermediate units V,
L, and D) eliminated the necessity of writing out a series of many identical symbols,
giving the Roman system such vitality that it continues to exist to the present day.

An even more radical method of avoiding the cumbersome repetition of symbols is to
designate key numbers (less than 10, then even tens, hundreds, and so on) by successive
letters of the alphabet. This is precisely what the Greeks did in the eighth century B.C.
Their alphabet was large enough for ones, tens, and hundreds; numbers larger than 1,000
were depicted by letters with a small slash mark to the left and beneath. Thus, β signified
two, κ signified 20, and /β signified 2,000. Many peoples (such as the Armenians, the
Jews, the Slavs) borrowed this system from the Greeks. With alphabetic numeration the
“model” form of the number completely disappears; it becomes merely a symbol.
Simplification (for purposes of rapid writing) of characters which initially had model
form leads to the same result.
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Figure 9.1.  Number notation by different ancient peoples. Adapted from G. I.
Gleizer Istoriya matematiki v shkole (The History of Mathematics in School)

Prosveshchenie Publishing House Moscow, 1964.
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“Arabic” numerals are believed to be of Indian origin, although not all specialists agree
with this hypothesis. Numbers are first encountered in Indian writings in the third century
B.C. At this time two forms of writing were used, Kharoshti and Brahmi, and each one
had its own numerals. The Kharoshti system is interesting because the number four was
selected as the intermediate stage between 1 and 10. It is likely that the oblique cross (×)
used as a 4 tempted the creators of the Kharoshti numbers by its simplicity of writing
while still preserving the modeling quality in full (four rays). The Brahmi numerals are
more economical. It is believed that the first nine Brahmi characters finally gave rise to
our modern numerals.

Figure 9.2.  Kharoshti numerals.

Figure 9.3.  Brahmi numerals
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Figure 9.4.  The genealogy of modern numerals (according to Menninger,
Zohlwort and Ziffer)

The loss of the model form in numbers was more than compensated for in the ancient
world by the use of the abacus, a counting board with parallel grooves along which
pebbles were moved. The different grooves corresponded to units of different worth. The
abacus was probably invented by the Babylonians. It was used for all four arithmetic
operations. Greek merchants used the abacus extensively and the same kind of counting
board was common among the Romans. The Latin word for pebble, “calculus,” began
also to mean “computation.” And the Romans conceived the idea of putting the counting
pebbles on rods, which is how the abacus still in use today originated. These very simple
counting devices were enormously important and only gave way to computations on
slateboards or paper after the positional system of notation had completely formed.

 THE PLACE-VALUE SYSTEM

THE BABYLONIANS laid the foundations of the place-value system the number system
they borrowed from the Sumerians, we see two basic “large ones”: ten and sixty, from the
most ancient clay tablets which have come down to us, dating to the beginning of the
third millennium B.C. We can only guess where the number sixty was taken from. The
well-known historian of mathematics O. Neigebauer believes that it originated in the
relation between the basic monetary units in circulation in Mesopotamia: one mana (in
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Greek mina was sixty shekels). Such an explanation does not satisfy our curiosity because
the question immediately arises: why are there sixty shekels in a mana? Isn't it precisely
because a system based on sixty was used? After all, we don't count by tens and hundreds
because there are 100 kopecks in a ruble! F. Thureau-Dangin, an Assyriologist, gives
linguistic arguments to show that the number system was the primary phenomenon and
the system of measures came second. Selection of the number sixty was apparently a
historical accident, but one can hardly doubt that this accident was promoted by an
important characteristic of the number sixty, namely that it has an extraordinarily large
number of divisors 2, 3, 4, 5, 6, 10, 12, 15, 20, and 30). This is a very useful feature both
for a monetary unit (since its existent money has been evenly subdivided) and for
establishing a system of counting (if we assume that some wise man introduced it, guided
considerations of convenience in calculation).

The mathematical culture of the Babylonians is known to us from texts dating from the
Ancient Babylonian (1800-1600 B.C.) and the Seleucidae epoch (305-64 B.C.). A
comparison of these texts shows that no radical changes took place in the mathematics of
the Babylonians during this time.

The Babylonians depicted 1 by a narrow vertical wedge t, while 10 was a wide

horizontal wedge . The number 35 looked like this .

All numbers up to 59 were represented analogously. But 60 was depicted once again by a
narrow vertical wedge, just the same as 1. In the most ancient tablets it can be seen that
the wedge representing 60 is larger than the wedge for 1. Thus the number 60 was not
only understood as a “larger one” but was so represented. “Large tens” appeared
correspondingly for large units multiplied by 10. Later, the difference between large and
small wedges was lost and they began to be distinguished by their position. In this way
the positional system arose. A Babylonian would write the number 747 = 12 % 60 + 27

in the form .  The third 60-base position corresponds to the number
602 = 3,600 and so on. But the most remarkable thing is that the Babylonians also
represented fractions in this way. In a number following the number of ones, each unit

signified 1/60, in the next number each unit was 1/3,600, and so on. In modern decimal
notation we separate the whole part from the fraction part by a period or comma. The

Babylonians did not. The number could signify 1.5 or 90 with equal success.
This same uncertainty occurred in writing whole numbers: the numbers n, n × 60, n ×
602, and so on were indistinguishable. Multipliers and divisors divisible by 60 had to be
added according to the sense. Because 60 is a fairly large number, this did not cause any
particular problems.

When we compare the Babylonian positional system with our modern one we see that the
uncertainty in the multiplier 60 is a result of the absence of a character for zero, which we
would add the necessary number of times at the end of a whole number or the beginning
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of a fraction. Another result of the absence of the zero is an even more serious
uncertainty in interpreting a numerical notation that in our system requires a zero in an
intermediate position. In the Babylonian notation, how can the number 3,601 = 1.602 +
0.60 + 1 be distinguished from the number 61 = 1.60 + 1? Both of these numbers are
represented by two units (ones).  Sometimes this kind of uncertainty was eliminated by
separating the numbers, leaving an empty place for the missing position. But this method
was not used systematically and in many cases a large gap between numbers did not
mean any thing. In the astronomical tables of the Seleucidae epoch one finds the missing
position designated by means of a character resembling our period. We do not find
anything of the sort in the Ancient Babylonian epoch. But how were the ancient
Babylonians able to avoid confusion?

The solution to the riddle is believed to consist in the following.[1] The early Babylonian
mathematical texts which have come down to us are collections of problems and their
solutions, unquestionably created as learning aids. Their purpose was to teach practical
methods of solving problems. But not one of the texts describes how to perform
arithmetic operations, in particular the operations, complex for that time, of
multiplication and division. Therefore, we assume that the students knew how to do them.
It is improbable that they performed the computations in their head: they probably used
some abacus-like calculating device. On the abacus, numbers appear in their natural,
spontaneously positioned form and no special character for the zero is needed; the groove
corresponding to an empty position simply remains without pebbles. Representation of a
number on the abacus was the basic form of assigning a number, and there was no
uncertainty in this representation. The numbers given in cuneiform mathematical texts
serve as answers to stage-by-stage calculations, so that they could be used to check
correctness during the solution. The student made the calculations on the abacus and
checked them against the clay tablet. Clearly the absence of a character for empty
positions did not hinder such checking at all. When voluminous astronomical tables
became widespread and were no longer used for checks but rather as the sole source of
data, a separation sign began to be used to represent the empty positions. But the
Babylonians never put their own “zero” at the end of a word; it is obvious that they
perceived it only as a separator, and not as a number.

Having familiarized themselves with both the Egyptian and the Babylonian systems of
writing fractions and performing operations on them, the Greeks selected the Babylonian
system for astronomical calculations because it was incomparably better, but they
preserved their own alphabetic system for writing whole numbers. Thus the Greek system
used in astronomy was a mixed one: the whole part of the number was represented in the
decimal nonpositional system while the fractional part was in the 60-base positional
system—not a very logical solution by the creators of logic! Following their happy
example we continue today to count hours and degrees (angular) in tens and hundreds,
but we divide them into minutes and seconds.

The Greeks did introduce the modern character for zero into the positional system,
deriving it—in the opinion of a majority of specialists—from the first letter of the wo
doudeg, which means “nothing.” In writing whole numbers (except for the number 0) this
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character was not used, naturally, because the alphabetic system which the Greeks used
was not a positional one.

The modern number system was invented by the Indians at the beginning of the sixth
century A.D. They applied the Babylonian positional principle and the Greek character
for zero to designate an empty place to a base of 10, not 60. The system proved to be
consistent, economical, not in contradiction with tradition, and extremely convenient for
computations.

The Indians passed their system on to the Arabs. The positional number system appeared
in Europe in the twelfth century with translations of al-Kwarizmi's famous Arab
arithmetic. It came into bitter conflict with the traditional Roman system and in the end
won out. As late as the sixteenth century, however, an arithmetic textbook was published
in Germany and went through many editions using exclusively “German,” which is to say
Roman, numerals. It would be better to say “numbers,” because at that time the word
“numerals” was used only for the characters of the Indian system. In the preface of this
textbook the author writes: “I have presented this arithmetic in conventional German
numbers for the benefit and use of the uneducated reader (who will find it difficult to
learn numerals at the same time).” Decimal fractions began to be used in Europe with
Simon Stevin (1548-1620).

 APPLIED ARITHMETIC

THE MAIN LINE to modern science lies through the culture of Ancient Greece, which
inherited the achievements of the ancient Egyptians and Babylonians. The other
influences and relations (in particular the transmission function carried out by the Arabs)
were of greater or lesser importance but, evidently, not crucial. The sources of the
Egyptian and Sumerian-Babylonian civilizations are lost in the dark of primitive cultures.
In our review of the history of science, therefore, we shall limit ourselves to the
Egyptians, Babylonians, and Greeks.

We have already discussed the number notation of the Egyptians and Babylonians. All
we need now is to add a few words about how the Egyptians wrote fractions. From a
modern point of view their system was very original, and very inconvenient. The
Egyptians had a special form of notation used only for so-called 'basic” fractions. that is,
those obtained by dividing one by a whole number; in addition they used two simple
fractions which had had special hieroglyphs from ancient times: 2/3 and 3/4. In the very
latest papyruses, however, the special designation for 3/4 disappeared. To write a basic

fraction the symbol , which meant “part,” had to be placed above the
conventional number (the denominator).

Thus 

            yy yy n = 1/12.
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The Egyptians expanded the other fractions into the sum of several basic fractions. For
example, 3/8 was written as 1/4 + 1/8, and 2/7 was written as 1/4 + 1/ 28. For the result of
dividing 2 by 29 an Egyptian table gave the following expansion:

2/29 = 1/29 + 1/58 = 1/174 + 1/232.

We are not going to dwell on the computational techniques of the Egyptians and
Babylonians. It is enough to say that they both were able to perform the four arithmetic
operations on all numbers (whole, fractional, or mixed) which they met in practice. They
used auxiliary mathematical tables for operations with fractions; these were tables of
inverse numbers among the Babylonians and tables of the doubling of basic fractions
among the Egyptians. The Egyptians wrote intermediate results on papyrus, whereas the
Babylonians apparently performed their operations on an abacus and thus the details of
their technique remain unknown.

What did the ancient mathematicians calculate? One fragment of an Egyptian papyrus
from the times of the New Empire (1500-500 B.C.) describes the activity of the pharaoh's
scribes very colorfully and with a large dose of humor; for this reason it is invariably
cited in we shall not be an exception. Here is the excerpt, somewhat shortened:

I will cause you to know how matters stand with you, when you say “I am the scribe
who issues commands to the army. “. . . I will cause you to be abashed when I
disclose to you a command of your lord, you, who are his Royal Scribe.... the clever
scribe who is at the head of the troops. A building ramp is to be constructed, 730
cubits long, 55 cubits wide, containing 120 compartments, and filled with reeds and
beams; 60 cubits high at its summit, 30 cubits in the middle, with a batter of twice 15
cubits and its pavement 5 cubits. The quantity of bricks needed for it is asked of the
generals, and the scribes are all asked together, without one of them knowing
anything. They all put their trust in you and say “You are the clever scribe. my friend!
Decide for us quickly!” Behold your name is famous.... Answer us how many bricks
are needed for it?[2]

Despite its popularity, this text is not too intelligible. But it nevertheless does give an idea
of the problems Egyptian scribes had to solve.

Specifically, we see that they were supposed to be able to calculate areas and volumes
(how accurately is another question). And in fact, the Egyptians possessed a certain
knowledge of geometry. According to the very sound opinion of the Ancient Greeks, this
knowledge arose in Egypt itself. One of the philosophers of Aristotle's school begins his
treatise with the words:

Because we must survey the beginning of the sciences and arts here we will state that,
according to the testimony of many, geometry was discovered by the Egyptians and
originated during the measurement of land. This measurement was necessary because
the flooding of the Nile River constantly washed away the boundaries. There is
nothing surprising in the fact that this science, like others, arose from human need.
Every emerging knowledge passes from incomplete to complete. Originating through
sensory perception it increasingly becomes an object of our consideration and is
finally mastered by our reason. [3]
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The division of knowledge into incomplete and complete and a certain apologetic tone
concerning the “low” origin of the science are, of course, from the Greek philosopher.
Neither the Babylonians nor the Egyptians had such ideas. For them knowledge was
something completely homogeneous. They were able to make geometric constructions
and knew the formulas for the area of a triangle and circle just as they knew how to shoot
bows and knew the properties of medicinal plants and the dates of the Nile's floods. They
did not know geometry as the art of deriving “true” formulas; among them it existed, as
B. Van der Waerden expressed it, only as a division of applied arithmetic. It is obvious
that they employed certain guiding considerations in obtaining the formulas, but these
considerations were of little interest to them. They did not affect their attitude toward the
formula.

 THE ANCIENTS' KNOWLEDGE OF GEOMETRY

WHAT GEOMETRY did the Egyptians know? — the correct formulas for the area of a
triangle, a rectangle, and a trapezium. The area of an irregular quadrangle, to judge by the
one remaining document, was calculated as follows: half the sum of two opposite sides
was multiplied by half the sum of the other two opposite sides. This formula is grossly
wrong (except where the quadrangle is rectangular, in which case the formula is
unnecessary). There is no reasonable sense in which it can even be called approximate. It
appears that this is the first historically recorded example of a proposition which is
derived from “general considerations,” not from a comparison with the data of
experience. The Egyptians calculated the area of a circle by squaring 8/9, of its diameter,
a difference of about 1 percent from the value of π.

They calculated the volumes of parallelepipeds and cylinders by multiplying the area of
the base by the height. The most sophisticated achievement of Egyptian geometry known
to us is correct computation of the volume of a truncated pyramid with a square base (the
Moscow papyrus). It follows the formula

V=( a2 +ab +b2) h/3

where h is the height, a and b are the sides of the upper and lower bases.

We have only fragmentary information on the Ancient Babylonians' knowledge of
mathematics, but we can still from a general idea of it. It is completely certain that the
Babylonians were aware of what came to be called the “Pythagorean theorem”—the sum
of the squares of the sides of a right triangle is equal to the square of the hypotenuse. Like
the Egyptians they computed the areas of triangles and trapeziums correctly. They
computed the circumference and area of a circle using a value of π = 3, which is much
worse than the Egyptian approximation. The Babylonians calculated the volume of a
truncated pyramid or cone by multiplying half of the sum of the areas of the bases by the
height (an incorrect formula).
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 A BIRD'S EYE VIEW OF ARITHMETIC

THE SITUATIONS and representations in the human nervous system model the
succession of states of the environment. Linguistic objects model the succession of
situations and representations. As a result a theory is a “two-story” linguistic model of
reality.

Figure 9.5.  Diagram of the use of a linguistic model of reality

This diagram shows the use of a theory. The situation S1 is encoded by linguistic object
L1. This object may, of course, consist of a set of other objects and may have a very
highly complex structure. Object L1 is the name for S1. Sometime later situation S1

changes into situation S2. A certain linguistic activity is performed and we convert L1 into
another object L2; if our model is correct L2 is the name of S2. Then, without knowing the
real situation S2, we can get an idea of it by decoding linguistic object L2. The linguistic
model is plainly determined by both the semantics of objects L1 (the “material part”
according to Russian military terminology) and the type of linguistic activity which
converts L1 into L2.

Notice that we have not said anything about “isolating the essential aspects of the
phenomenon,” “the cause-effect relation,” or other such things which are usually set in
places of honor when describing the essence of scientific modeling. And in our
presentation, situation S1 does not “generate” situation S2 but only “changes into” it. Of
course, this is no accident. The diagram we have drawn logically precedes the above-
mentioned philosophical concepts. If we have a linguistic model (and only to the extent
that we do have one) we can talk about the essential aspect of a phenomenon,
idealization, the cause-effect relation, and the like. Although they appear to be conditions
for the creation of a linguistic model, all of these concepts are in fact nothing but
description in general terms (although very important and necessary ones) of already
existing models. Although these concepts appear to “explain” why a linguistic model can
exist in general, in reality they are elements of a linguistic model of the next level of the
control hierarchy and, of course, appear later in history than the primary linguistic models
(for example arithmetic ones). Before using these concepts, therefore, we must ascertain
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that linguistic models exist in general. And on this level of description we need not add
anything to the diagram shown in figure 9.5.

But theories are created and developed by the trial and error method. If there is a starting
point, then beginning from it a person tries to build linguistic constructions and test the
results. The phases of building and testing are constantly alternating: construction gives
rise to testing and testing gives rise to new constructions.

The starting point of arithmetic is the concept of the whole number. The aspect of reality
this concept reflects is the following: the relation of the whole to its parts, the procedure
for breaking the whole down into parts. The same thought can be expressed the other way
around: a number is a procedure for joining parts into a whole, that is, into a certain set.
Two numbers are considered identical if their parts (set elements) can be placed in a one-
to-one correspondence; establishing this correspondence is counting. It is obvious,
however, that numbers are not enough for a theory; we must also have operations with
them. These are the elements of the model's functioning, the conversions L1 → L2. Let us
take two numbers n and m and represent them schematically as two modes of breaking a
whole down into parts (figure 9.6 a).

Figure 9.6.  Operations on whole numbers

How can we from these two numbers obtain a third—that is, a third mode of breaking
down the whole into parts? Two modes come to mind immediately. They can be called
parallel and sequential joining of breakdowns. In the parallel mode both wholes form
parts of a new whole (figure 9.6 b). This breakdown (number) we call the sum of the two
numbers. With the sequential mode we take one of the breakdowns and break down each
of its parts in accordance with the other breakdown (figure 9.6 c). The new number is
called the product. It does not depend on the order of the generating numbers. This can be
seen very well if we interpret the actions with the numbers not as joining breakdowns but
as forming a new set. The sum is obviously the result of merging the two sets into one
(their union). The prototype of the product is the set of combinations of any element of
the first set with any element of the second (in mathematics such a set is called the direct
product of sets). The connection between this definition and the preceding one can be
traced as follows. Suppose the first breakdown divides whole number A into parts a1, a2, .
. . , an  and the second divides B into parts b1, b2, . . . , bm . After performing the first
breakdown we mark the parts obtained with the letters ai. Breaking down each part into
parts bj we keep the first letter and add a second. This means that in each part of the result
there will be an aj bj, and all these combinations will be different. The approaches from
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the whole to the part and from the part to the whole complement one another. It is also
easy to see from figure 9.6 c that multiplication can be reduced to repeated addition.

Of course the ancients who were creating arithmetic were far from this reasoning. But
then again, the frog did not know that its nervous system had to be organized on the
hierarchical principle either! What is important is that we know this.

Having linguistic objects that depict numbers and being able to perform addition and
multiplication with them we receive a theory that gives us working models of reality. Let
us figure a very simple example, which clarifies the diagram in figure 9.6.

Suppose a certain farmer has planted wheat in a field 60 paces long and 25 paces wide.
We shall assume that the farmer expects a yield of one bushel of wheat per square pace.
Before beginning the harvest he wants to know how many bushels of wheat he will get.
In this case S1 is the situation before the wheat harvest, specifically including the result of
measuring the width and length of the field in paces and the expected yield; S2 is the
situation after the harvest, specifically including the result of measuring the amount of
wheat in bushels; L1 is the linguistic object 60 × 25 (the multiplication sign is a reflection
of situation S1 just as the numbers 60 and 25 are; it reflects the structure of the set of
square paces on the plane as a direct product of the sets of linear paces for length and
width); S2 is the linguistic object 1,500.

Note that by theory we mean simply a linguistic model of reality which gives something
new in comparison with neuronal models. This definition does not take into account that
theories may form a control hierarchy; this fact is difficult to reflect without introducing
mathematical apparatus. More general models can generate more particular ones. We
shall consider the terms theory and linguistic model to be synonymous, but nonetheless
when we are speaking of one model generating another, we shall call the more general
one a theory and the more particular one a model.

 REVERSE MOVEMENT IN A MODEL

A THEORY THAT has just been created must first be tested comprehensively. It must be
compared with experience and searched for flaws. If the theory is valid, an attempt must
then be made to give the model “reverse movement,” to determine specific characteristics
of L1 on the basis of a given L2. This procedure is by no means without practical
importance. A person uses a model for planning purposeful activity and wants to know
what he must do to obtain the required result—what L1 should be in order to obtain a
given L2. In our example with the farmer, the question can be put as follows: given the
width of a certain field, what should the length be to obtain a given amount of wheat?

But studying the reverse movement of a model is not always dictated by practical needs
of the moment. Often it is done for pure curiosity—to “see what happens.” Nonetheless,
the result of such activity will be a better understanding of the organization and
characteristics of the model and the creation of new constructions and models which, in
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the last analysis, will lead to greatly enlarged practical usefulness. This is the supreme
wisdom of nature, which gave human beings “pure” curiosity.

In arithmetic the reverse movement of a model leads to the concept of the equation. The
simplest equations generate the operations of subtraction and division. Using modern
algebraic language. we define the difference b—a as the solution of the equation a + x =
b— in which x is the number that makes this equality true. The quotient from dividing b
by a is determined analogously. The operation of division generates a new construction:
the fraction. Repeated multiplication of a number by itself generates the construction of
exponential degree, and the reverse movement generates the operation of extracting the
root. This completes the list of arithmetic constructions in use among the Ancient
Egyptians and Babylonians.

 SOLVING EQUATIONS

WITH THE DEVELOPMENT of techniques of computation, and with the development
of civilization in general, increasingly complex equations began to appear and to be
solved. The ancients, of course, did not know modern algebraic language. They expressed
equations in ordinary conversational language as is done in our grammar school
arithmetic textbooks. Nevertheless, their substance was not changed. The ancients (and
today's school children) were solving equations.

The Egyptians called the quantity subject to determination the akha which is translated as
“certain quantity” or “bulk.” Here is an example of the wording of a problem from an
Egyptian papyrus: “A quantity and its fourth part together give 15.” In modern
mathematical terminology this is the problem of “parts,” and in algebraic language it
corresponds to the equation x + 1/4 x = 15.

Let us give an example of a more complex problem from Egyptian times. “A square and
another square whose side is 1/2 + 1/4 of a side of the first square together have an area
of 100. Calculate this for me.” The solution in modern notation is as follows:

x2 + (3/4 x)2 = 100

(1 + 9/16)x2 = 100

5/4 x= 10

x = 8, 3/4 x = 6

Here is the description of the solution in a papyrus:

“Take a square with side I and take 1/2 + 1/4 of 1, that is, 1/2 + 1/4, as the side of
the second area. Multiply 1/2 + 1/4 by itself; this gives 1/2 + 1/l6. Because the
side of the first area is taken as 1 and the second as 1/2 + 1/4, add both areas
together; this gives 1 + 1/2 + 1/16. Take the root from this: this will be 1 + 1/4.
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Take the root of the given 100: this will be 10. How many times does 1 +1/4 go
into 10? It goes eight times.”

The rest of the text has not been preserved, but the conclusion is obvious: 8 . 1 = 8 is the
side of the first square and 8 . (1/2 + 1/ 4) = 6 is the second.

The Egyptians were able to solve only linear and very simple quadratic equations with
one unknown. The Babylonians went much further. Here is an example of a problem
from the Babylonian texts:

“I added the areas of my two squares: 25 . 25/60. The side of the second square is 2/3 of
the side of the first and five more.” This is followed by a completely correct solution of
the problem. This problem is equivalent to a system of equations with two unknowns:

x2 + y2 = 25 . 25/60

y = 2/3 x + 5

The Babylonians were able to solve a full quadratic equation:

x2 +- ax = b,

cubic equations:

x3 = a

x2 (x + 1 ) = a

and other systems of equations similar to those given above as well as ones of the type

x ± y = a, Xy = b

In addition to this they used formulas

(a + b)2 = a2 + 2ab + b2

(a + b)(a-b) = (a2 - b2)

were able to sum arithmetic progressions, knew the sums of certain number series, and
knew the numbers which later came to be called Pythagorian (such whole numbers x, y,
and z that x2 + y2 = z2 ).

 THE FORMULA

THE PLACE of Ancient Egypt and Babylon in the history of mathematics can be defined
as follows: the formula first appeared in these cultures. By formula we mean not only the
alphanumeric expression of modern algebraic language but in (general any linguistic
object which is an exact (formal) prescription for how to make the conversion L1  L2, or
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any auxiliary conversions within the framework of language. Formulas are a most
important part of any elaborated theory although, of course, they do not exhaust it
because a theory also includes the meanings of linguistic objects Li. The assertion that
there is a relation between the magnitudes of the sides in a right triangle, which is
contained in the Pythagorian theorem, is a formula even though it is expressed by words
rather than letters. A typical problem with a description of the process of solution (“Do it
this way!”) and with a note that the numbers may be arbitrary (this may not be expressed
but rather assumed) is also a formula. It is precisely such formulas which have come
down to us in the Egyptian papyruses and the Babylonian clay tablets.

[1] See B. L. van der Waerden's book Ontwakende Wetenschap, in English: Science
Awakening, New York: Oxford University Press, 1969).

[2] van der Waerden, Science Awakening, p. 17.

[3] This fragment has come down to us through Procul (fitth century B.C.), a
commentator on Euclid.
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CHAPTER TEN

From Thales to Euclid

 PROOF

NEITHER IN Egyptian nor in Babylonian texts do we find anything even remotely
resembling mathematical proof. This concept was introduced by the Greeks, and is their
greatest contribution. It is obvious that some kind of guiding considerations were
employed earlier in obtaining new formulas. We have even cited an example of a grossly
incorrect formula (for the area of irregular quadrangles among the Egyptians) which was
plainly obtained from externally plausible “general considerations.” But only the Greeks
began to give these guiding considerations the serious attention they deserved. The
Greeks began to analyze them from the point of view of how convincing they were, and
they introduced the principle according to which every proposition concerning
mathematical formulas, with the exception of just a small number of “completely
obvious” basic truths, must be proved—derived from these “perfectly obvious” truths in a
convincing manner admitting of no doubt. It is not surprising that the Greeks, with their
democratic social order, created the doctrine of mathematical proof. Disputes and proofs
played an important part in the life of the citizens of the Greek city-state (polis). The
concept of proof already existed; it was a socially significant reality. All that remained
was to transfer it to the field of mathematics, which was done as soon as the Greeks
became acquainted with the achievements of the ancient Eastern civilizations. It must be
assumed that a certain part here was also played by the role of the Greeks as young,
curious students in relation to the Egyptians and Babylonians, their old teachers who did
not always agree with one another. In fact, the Babylonians determined the area of a
circle according to the formula 3r2, while the Egyptians used the formula (8/9. 2r)2.
Where was the truth? This was something to think about and debate.

The creators of Egyptian and Babylonian mathematics have remained anonymous. The
Greeks preserved the names of their wise men. The first, Thales of Miletus, is also the
first name included in the history of science. Thales lived in the sixth century B.C. in the
city of Miletus on the Asia Minor coast of the Aegean Sea. One date in his life has been
firmly established: in 585 B.C. he predicted a solar eclipse—unquestionable evidence of
Thales's familiarity with the culture of the ancient civilizations, because the experience of
tens and hundreds of years is required to establish the periodicity of eclipses. Thales had
no Greek predecessors, and could therefore only have taken his knowledge of astronomy
from the scientists of the East. Thales, the Greeks assert, gave the world the first
mathematical proofs. Among the propositions (theorems) proved by him they mention the
following:
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1 The diameter divides a circle into two equal parts.

2 The base angles of an isosceles triangle are equal.

3 Two triangles which have an identical side and identical angles adjacent to it are equal.

In addition, Thales was the first to construct a circle circumscribed about a right triangle
(and it is said that he sacrificed an ox in honor of this discovery).

The very simple nature of these three theorems and their intuitive obviousness shows that
Thales was entirely aware of the importance of proof as such. Plainly, these theorems
were proved not because there was doubt about their truth but in order to make a
beginning at systematically finding proof and developing a technique for proof. With
such a purpose it is natural to begin by proving the simplest propositions.

Suppose triangle ABC is isosceles, which is to say side AB is equal to side BC.

Figure 10.1.  Isosceles triangle.

Let us divide angle ABC into two equal parts by line BD. Let us mentally fold our
drawing along line BD. Because angle ABD is equal to angle CBD, line BA will lie on
line BC, and because the length of the segments AB and BC is equal, point A will lie on
point C. Because point D remains in place, angles BCD and BAD must be equal. Whereas
formerly it only seemed to us that angles BCD and BAD were equal (Thales probably
spoke this way to his fellow citizens), we have now proved that these angles necessarily
and with absolute precision must be equal (the Greeks said “similar”) to one another: that
is, they match when one is placed on the other.

The problem of construction is more complex and here the result is not at all obvious
beforehand. Let us draw a right triangle.
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Figure 10.2.  Construction of a circle described around a right triangle

May a circle be drawn such that all three vertices of the triangle appear on it? And if so,
how'? It is not clear. But suppose that intuition suggests a solution to us. We divide the
hypotenuse BC into two equal segments at point D. We connect it with point A. If
segment AD is equal in magnitude to segment DC (and therefore also to BD) we can
easily draw the required circle by putting the point of a compass at point D and taking
segment DC as the radius. But is it true that AD =DC, that is to say triangle ADC is an
isosceles triangle? It is not clear. It seems probable, but in any case it is far from obvious.
Now we shall take the crucial step. We shall add point E to our triangle, making rectangle
ABEC and draw in a second diagonal AE. Suddenly it becomes obvious that triangle ADC
is isosceles. Indeed, from the overall symmetry of the drawing it is clear that the
diagonals are equal and intersect at the point which divides them in half—at point D. We
have not yet arrived at proof, but we already are at that level of clarity where formal
completion of the proof presents no difficulty. For example, relying on the equality of the
opposite sides of the rectangle (which can be derived from even more obvious
propositions if we wish), we complete the proof by the following reasoning: triangles
ABC and AEC are equal because they have side AC in common, sides AB and EC are
equal, and angles BAC and ECA  are right angles; therefore angle EAC is equal to angle
BCA. That is, triangle ADC is an isosceles triangle, which is what had to be proved.

 THE CLASSICAL PERIOD

SO, FROM a few additional points and lines on a drawing, a chain of logical reasoning,
and simple and obvious truths we receive truths which are by no means simple and by no
means obvious, but whose correctness no one can doubt for a minute. This is worth
sacrificing an ox to the gods for! One can imagine the delight the Greeks experienced
upon making such a discovery. They had struck a vein of gold and they diligently began
working it. In the time of Pythagoras (550 B.C.) the study of mathematics was already
very widespread among people who had leisure time and was considered a noble,
honorable, and even sacred matter. Advances and discoveries, each more marvelous than
the one before, poured from the horn of plenty.
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The appearance of proof was a metasystem transition within language. The formula was
no longer the apex of linguistic activity. A new class of linguistic objects appeared, proof,
and there was a new type of linguistic activity directed to the study and production of
formulas. This was a new stage in the control hierarchy and its appearance called forth
enormous growth in the number of formulas (the law of branching of the penultimate
level).

The metasystem transition always means a qualitative leap forward—a flight to a new
step, swift, explosive development. The mathematics of the countries of the Ancient East
remained almost unchanged for up to two millennia, and a person of our day reads about
it with the condescension of an adult toward a child. But in just one or two centuries the
Greeks created all of the geometry our high school students sweat over today. Even more,
for the present-day geometry curriculum covers only a part of the achievements of the
initial, “classical,” period of development of Greek mathematics and culture (to 330
B.C.). Here is a short chronicle of the mathematics of the classical period.

585 B.C. Thales of Miletus. The first geometric theorems.

550 B.C. Pythagoras and his followers. Theory of numbers. Doctrine of harmony.
Construction of regular polyhedrons. Pythagorean theorem. Discovery of
incommensurable line segments. Geometric algebra. Geometric construction equivalent
to solving quadratic equations.

500 B.C. Hippasas, Pythagorean who was forced to break with his comrades because he
shared his knowledge and discoveries with outsiders (this was forbidden among the
Pythagoreans). Specifically, he gave away the construction of a sphere circumscribed
about a dodecahedron.

430 B.C. Hippocrates of Chios (not to be confused with the famous doctor Hippocrates of
Kos). He was considered the most famous geometer of his day. He studied squaring the
circle, making complex geometric constructions. He knew the relationship between
inscribed angles and arcs, the construction of a regular hexagon, and a generalization of
the Pythagorean theorem for obtuse- and acute-angled triangles. Evidently, he considered
all these things elementary truths. He could square any polygon, that is, construct a
square of equal area for it.

427-348 B.C. Plato. Although Plato himself did not obtain new mathematical results, he
knew mathematics and it sometimes played an important part in his philosophy—just as
his philosophy played an important part in mathematics. The major mathematicians of his
time, such as Archytas, Theaetetus, Eudoxus, were Plato's friends; they were his students
in the field of philosophy and his teachers in the field of mathematics.

390 B.C. Archytas of Tarentum. Stereometric solution to the problem of doubling the
cube—that is, constructing a cube with a volume equal to twice the volume of a given
cube.

370 B.C. Eudoxus of Cnidus. Elegant, logically irreproachable theory of proportions
closely approaching the modern theory of the real number. The “exhaustion method,”
which forms the basis of the modern concept of the integral.
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384-322 B.C. Aristotle. He marked the beginning of logic and physics. Aristotle's works
reveal a complete mastery of the mathematical method and a knowledge of mathematics,
although he, like his teacher Plato, made no mathematical discoveries. Aristotle the
philosopher is inconceivable without Aristotle the mathematician.

300 B.C. Euclid. Euclid lived in a new and different age, the Alexandrian Epoch. In his
famous Elements Euclid collected and systematized all the most important works on
mathematics which existed at the end of the fourth century B.C. and presented them in
the spirit of the Platonic school. For more than 2,000 years school courses in geometry
have followed Euclid's Elements to some extent.

 PLATO'S PHILOSOPHY

WHAT IS MATHEMATICS? What does this science deal with ? These questions were
raised by the Greeks after they had begun to construct the edifice of mathematics on the
basis of proofs, for the aura of absolute validity, of virtual sanctity, which mathematical
knowledge acquired thanks to the existence of the proofs immediately made it stand out
against the background of other everyday knowledge. The answer was given by the
Platonic theory of ideas. This theory formed the basis of all Greek philosophy, defined
the style and way of thinking of educated Greeks, and exerted an enormous influence on
the subsequent development of philosophy and science in the Greco-Roman-European
culture.

It is not difficult to establish the logic which led Plato to his theory. What does
mathematics talk about'? About points, lines, right triangles, and the like. But are there in
nature points which do not have dimensions? Or absolutely straight and infinitely fine
lines? Or exactly equal line segments, angles, or areas? It is plain that there are not. So
mathematics studies nonexistent, imagined things; it is a science about nothing. But this
is completely unacceptable. In the first place, mathematics has unquestionably produced
practical benefits. Of course, Plato and his followers despised practical affairs, but this
was a logical result of philosophy, not a premise. In the second place, any person who
studies mathematics senses very clearly that he is dealing with reality, not with fiction,
and this sensation cannot be rooted out by any logical arguments. Therefore, the objects
of mathematics really exist but not as material objects, rather as images or ideas, because
in Greek the word “idea” in fact meant “image” or “form.”[1] Ideas exist outside the
world of material things and independent of it. Material things perceived by the senses
are only incomplete and temporary copies (or shadows) of perfect and eternal ideas. The
assertion of the real, objective existence of a world of ideas is the essence of Plato's
teaching (“Platonism”).

For many centuries hopelessly irresolvable disputes arose among the Platonists over
attempts to in some way give concrete form to the notion of the world of ideas and its
interaction with the material world. Plato himself wisely remained invulnerable, avoiding
specific, concrete terms and using a metaphorical and poetic language. But he did have to
enter a polemic with his student Eudoxus, who not only proved mathematical theorems
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but also defended trading in olive oil. Such a position of course restricted the influx of
new problems and ideas and fostered a canonization and regimentation of scientific
thought, thus retarding its development. But beyond this, Platonism also had a more
concrete negative effect on mathematics. It prevented the Greeks from creating algebraic
language. This could be done only by the less educated and more practical Europeans.
Later on we shall consider in more detail the history of the creation of modern algebraic
language and the inhibiting role of Platonism, but first we shall discuss the answers given
by modern science to the questions posed in Platonic times and how the answers given by
Plato look in historical retrospect.

 WHAT IS MATHEMATICS?

FOR US MATHEMATICS is above all a language that makes it possible to create a
certain kind of models of reality: mathematical models. As in any other language (or
branch of language) the linguistic objects of mathematics, mathematical objects, are
material objects that fix definite functional units, mathematical concepts. When we say
that the objects “fix functional units” we take this to mean that a person, using the
discriminating capabilities of his brain, performs certain linguistic actions on these
objects or in relation to them. It is plain that it is not the concrete form (shape, weight,
smell) of the mathematical object which is important in mathematics; it is the linguistic
activity related to it. Therefore the terms “mathematical object” and “mathematical
concept” are often used as synonyms. Linguistic activity in mathematics naturally breaks
into two parts: the establishment of a relationship between mathematical objects and
nonlinguistic reality (this activity defines the meanings of mathematical concepts), and
the formulations of conversions within the language, mathematical calculations and
proofs. Often only the second part is what we call “mathematics” while we consider the
first as the “application of mathematics.”

Points, lines, right triangles, and the like are all mathematical objects. They make up our
geometric drawings or stereometric models: spots of color, balls of modeling clay, wires,
pieces of cardboard, and the like. The meanings of these objects are known. The point,
for example, is an object whose dimensions and shape may be neglected. Thus the
“point” is simply an abstract concept which characterizes the relation of an object to its
surroundings. In some cases we view our planet as a point. But when we construct a
geometric model we usually make a small spot of color on the paper and say, “Let point
A be given.” This spot of color is in fact linguistic object Li, and the planet Earth may be
the corresponding object (referent) Rj. There are no other true or ideal” points, that is,
without dimensions. It is often said that there are no “true” points in nature, but that they
exist only in our imagination. This commonplace statement is either absolutely
meaningless or false, depending on how it is interpreted. In any case it is harmful,
because it obscures the essence of the matter. There are no “true” points in our
imagination and there cannot be any. When we say that we are picturing a point we are
simply picturing a very small object. Only that which can be made up of the data of
sensory experience can be imagined, and by no means all of that. The number 1,000 for
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example, cannot be imagined. Large numbers, ideal points, and lines exist not in our
imagination, but in our language, as linguistic objects we handle in a certain way. The
rules for handling them reveal the essence of mathematical concepts, specifically the
“ideality of the point.” The dimensions of points on a drawing do not influence the
development of the proof, and if two points must be set so close that they merge into one,
we can increase the scale.

But aren't the assertions of mathematics characterized by absolute precision and
correctness which differs sharply from the content of empirical knowledge — which is
primarily approximate and hypothetical?  We can find by measurements that two
segments are approximately equal, but never that they are exactly equal; such assertions
are the privilege of mathematics.  On the basis of long centuries of human experience we
can predict every evening that the sun will rise again the next morning.  But this
prediction is nothing more than a hypothesis, although an extremely probable one.  It is
not impossible tat somewhere in the interior of the sun or outside it a cosmic catastrophe
of unknown nature is coming to a head which will cause the sun to go out or break into
parts.  But when we say that adding two and two will give four or that the equation x2 = 2
has no rational solutions, we are convinced that these predictions are absolutely correct
and will be true always and everywhere, even if the sun and the entire galaxy as well
break into little pieces.  We simply cannot imagine that it could be otherwise.
Consequently, there is a difference between mathematical models of reality and other
models which are made up of the content of our everyday experience of the natural
sciences.  What is the nature of this difference?

 PRECISION IN COMPARING QUANTITIES

IT IS EASY to see that the absolute precision in comparing measurable objects in
mathematics and the absolute definiteness of mathematical assertions are simply results
of the fact that mathematical language is a discrete cybernetic system.  But is it really
discrete?  There is no doubt with respect to arithmetic, algebra, and in general the
language of symbols.  If the top part of the numeral two is enlarged or decreased in size it
will not become 2.01 or 1.99.  A text consisting of N symbols is a cybernetic system of N
subsystems, each of which can be pictured as a cell containing a symbol.  Suppose that
the full number of different symbols is n; then each subsystem may be in one of n states.
But geometric language, the language of figures, seems at first glance to be a continuous
system.  Lines on a drawing may have arbitrary length, form arbitrary angles and so on.
Nonetheless, in action geometric language proves to be a discrete system.  The details of
a geometric drawing, such as the values of the lengths of segments and the magnitudes of
the angles, play no part in the development of the proof or in decoding the drawing.  The
only essential things are such characteristics of the drawing as whether two given straight
lines intersect, whether a given straight line passes through a given point, whether a given
point lies at the intersection of a given straight line and a given circle, and so on.   All of
this information may be coded in text using some special system of designations or
simply in the Russian or English language.  The language of geometry can be compared
with the language of chess-playing.  The chess pieces never occupy the exact centers of
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the squares of the board and they may even protrude in part outside their own square, but
this has no effect at all on the moves the pieces can make.

Assertions of the absolutely exact equality of segments, angles, and the like are simply
certain states of the “geometric language” system.  Because this system is discrete and
deterministic, on the condition that the rules of logical deduction are observed, if it
follows from the conditions of the problem that AB = BC, we shall invariably receive this
result, no matter how many times we repeat the proof (it is assumed, of course, that the
system of axioms is noncontradictory; in mathematics only such systems have a right to
exist).  Because the condition of the problem is already formatted in geometric language,
the entire path from the condition to the result is a syntactical conversion L1  L2 within a
discrete linguistic system. The assertions of empirical language have an entirely different
status. By itself this language is, of course, discrete also, but empirical assertions reflect
semantic conversions L1  S1 leading us into the area of nonlinguistic activity which is
neither discrete nor deterministic. When we say that two rods have equal length this
means that every time we measure them the result will be the same. Experience, however,
teaches us that if we can increase the precision of measurement without restriction,
sooner or later we shall certainly obtain different values for the length, because an
empirical assertion of absolutely exact equality is completely senseless. Other assertions
of empirical language which have meaning and can be expressed in the language of
predicate calculus, for example “rod no. 1 is smaller than rod no. 2,” possess the same
“absolute precision” (which is a trivial consequence of the discrete nature of the
language) as mathematical assertions of the equality of segments. This assertion is either
“exactly” true or “exactly” false. Because of variations in the measuring process,
however, neither is absolutely reliable.

 THE RELIABILITY OF MATHEMATICAL ASSERTIONS

NOW LET US DISCUSS the reliability of mathematical assertions. Plato deduced it
from the ideal nature of the object of mathematics, from the fact that mathematics does
not rely on the illusory and changing data of sensory experience. According to the
mathematician, drawings and symbols are nothing but a subsidiary means for
mathematics; the real objects Plato deals with are contained in his imagination and
represent the result of perception of the world of ideas through reason, just as sensory
experience is the result of perception of the material world through the sense organs.
Imagination obviously plays a crucial part in the work of the mathematician (as it does,
we might note, in all other areas of creative activity). But it is not entirely correct to say
that mathematical objects are contained in the imagination: basically they are still
contained in drawings and texts, and the imagination takes them up only in small parts.
Rather than holding mathematical objects in our imagination we pass them through and
the characteristics of our imagination determine the functioning of mathematical
language. As for the source which determines the content of our imagination, here we
disagree fundamentally with Plato. The source is the same sensory experience used in the
empirical sciences. Therefore, even though it uses the mediation of imagination,
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mathematics creates models of the very same. unique (as far as we know) world we live
in.

However, although they constructed a stunningly beautiful edifice of logically strict
proofs, the Greek mathematicians nonetheless left a number of gaps in the structure; and
these gaps, as we have already noticed, lie on the lowest stories of the edifice—in the
area of definitions and the most elementary properties of the geometric figures. And this
is evidence of a veiled reference to the sensory experience so despised by the Platonists.
The mathematics of Plato's times provides even clearer material than does present-day
mathematics to refute the thesis that mathematics is independent of experience.

The first statement proved in Euclid's first book contains a method of constructing an
equilateral triangle according to a given side. The method is as follows.

Figure 10.3.  Construction of an equilateral triangle.

Suppose AB is the given side of the triangle. Taking point A as the center we describe
circle πA with radius AB. We describe a similar circle (πB) from point B. We use C to
designate either of the points of intersection of these circles. Triangle ABC is equilateral,
for AC = CB = AB.

There is a logical hole in this reasoning: how does it follow that the circles constructed by
us will intersect at all'? This is a question fraught with complications, for the fact that
point of intersection C exists cannot be related either to the attributes of a circle or even
to the attributes of a pair of circles (for they by no means always intersect). We are
dealing here with a more specific characteristic of the given situation. Euclid probably
sensed the existence of a hole here, but he could not find anything to plug it with.

But how are we certain that circles πA and πB intersect? In the last analysis, needless to
say, we know from experience. From experience in contemplating and drawing straight
lines, circles, and lines in general, from unsuccessful attempts to draw circles πA and πB so
that they do not intersect.

So Plato's view that the mathematics of his day was entirely independent of experience
cannot be considered sound. But the question of the nature of mathematical reliability
requires further investigation, for to simply make reference to experience and thus equate
mathematical reliability with empirical reliability would mean to rush to the opposite
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extreme from Platonism. Certainly, we feel clearly that mathematical reliability is
somehow different from empirical reliability, but how'?

The assertion that circles of radius AB with centers of A and B intersect (for brevity we
shall designate this assertion E1) seems to us almost if not completely reliable; we simply
cannot imagine that they would not intersect. We cannot imagine.... This is how
mathematical reliability differs from the empirical! When we are talking about the sun
rising tomorrow, we can imagine that the sun will not rise and it is only on the basis of
experience that we believe that it probably will rise. Here there are two possibilities and
the prediction as to which one will happen is probabilistic. But when we say that two
times two is four and that circles constructed as indicated above intersect we cannot
imagine that it could be otherwise. We see no other possibility, and therefore these
assertions are perceived as absolutely reliable and independent of concrete facts we have
observed.

 IN SEARCH OF AXIOMS

IT IS VERY INSTRUCTIVE for an understanding of the nature of mathematical
reliability to carry our analysis of the assertion E1 through to the end. Because we still
have certain doubts that the circles in figure 10.3 necessarily intersect, let us attempt to
picture a situation where they do not. If this attempt fails completely it will mean that
assertion E1 is mathematically reliable and cannot be broken down into simpler
assertions: then it should be adopted as an axiom. But if through greater or lesser effort of
imagination we are able to picture a situation in which πA and πB do not intersect, it must
be expected that this situation contradicts some simpler and deeper assertions which do
possess mathematical reliability. Then we shall adopt them as axioms and the existence
of the contradiction will serve as proof of E1. This is the usual way to establish axioms in
mathematics.

First let us draw circle πA. Then we shall put the point of the compass at point B and the
writing element at point A and begin to draw circle πB. We shall move from the center of
circle πA toward its periphery and at a certain moment (this is how we picture it in our
imagination) we must either intersect circle πA or somehow skip over it, thus breaking
circle πB.
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Figure 10.4.

But we imagine circle πB as a continuous line and it becomes clear to us that the attributes
of continuousness, which are more fundamental and general than the other features of this
problem, lie at the basis of our confidence that circles πA and πB will intersect. Therefore
we set as our goal proving assertion E1 beginning with the attributes of continuousness of
the circle. For this we shall need certain considerations related to the order of placement
of points on a straight line. We include the concepts of continuousness and order among
the basic, undefined concepts of geometry, like the concepts of the point, the straight line,
or distance.

Here is one possible way to our goal. We introduce the concept of “inside” (applicable to
a circle) by means of the following definition:

D1: It is said that point A lies inside circle π if it does not lie on π and any straight line
passing through point A intersects π at two points in such a way that point A lies between
the points of intersection. If the point is neither on nor inside the circle it is said that it lies
outside the circle.

The concept of “between” characterizes the order of placement of three points on a
straight line. It may be adopted as basic and expressed, through the more general concept
of “order,” by the following definition:

D2: It is said that point A is located between points B1 and B2 if these three points are set
on one straight line and during movement along this line they are encountered in the
order B1, A, and B2 or B2, A, and B1.

We shall adopt the following propositions as axioms:

A1: The center of a circle lies inside it.

A2: The arc of a circle connecting any two points of the circle is continuous.

A3: If point A lies inside circle π and point B is outside it, and these two points are joined
by a continuous line, then there is a point where this line intersects the circle.

Relying on these axioms, let us begin with the proof. According to the statement of the
problem, circle πB passes through center A of circle πA. If we have confidence that there is
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at least one point of circle πB that does not lie inside πA we shall prove E1. Indeed, if it lies
on πA then E1 has been proved. If it lies outside πA then the arc of circle πB connects it
with the center, that is, with an inside point of circle πA. Therefore, according to axioms
A2 and A3 there is a point of intersection of πB and πA.

But can we be confident that there is a point on circle πB which is outside πA? Let us try to
imagine the opposite case. It is shown in figure 10.5.

Figure 10.5.

This is the second attempt to imagine a situation which contradicts the assertion being
proved. Whereas the first attempt immediately came into explicit contradiction with the
continuousness of a circle, the second is more successful. Indeed, stretching things a bit
we can picture this case. We take a compass, put its point at point B and the pencil at
point A. We begin to draw the circle without taking the pencil from the paper and when
the pencil returns to the starting point of the line we remove it and see that we have figure
10.5. And why not?

To prove that this is impossible we must prove that in this case the center of circle [πB is
necessarily outside it. We shall be helped in this by the following theorem:

T1: If circle π1, lies entirely inside circle π2 then every inside point of circle π1 is also an
inside point of circle π2.

To prove this we shall take an arbitrary inside point A of circle π1, which is shown in
figure 10.6.
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Figure 10.6.

We draw a straight line through it. According to definition D1 it intersects π1, at two
points: B1 and B2 Because B1 (just as B2) lies inside π2 this straight line also intersects π2 at
two points: C1 and C2. We have received five points on a straight line and they are
connected by the following relationships of order: A lies between B1 and B2; B1 and B2 lie
between C1 and C2. That point A proves to be between points C1 and C2 in this situation
seems so obvious to us that we shall boldly formulate it as still another axiom.

A3: If points B1 and B2 on a straight line both lie between C1 and C2, then any point A lying
between B1 and B2 also lies between C1 and C2.

Because we can take any point inside π1 as A and we can draw any straight line through
it, theorem T1 is proven.

Now it is easy to complete the proof of E1. If circle πB lies entirely inside πA then
according to theorem T1 its center B must also lie inside πA. But according to the
statement of the problem point B is located on πA. Therefore πB contains at least one point
which is not inside in relation to πA.

So to prove one assertion E1 we needed four assertions (axioms A1-A4), but then these
assertions express very fundamental and general models of reality related to the concepts
of continuousness and order and we cannot even imagine that they are false. The only
question that can be raised refers to axiom A1 which links the concept of center, which is
metrical (that is, including the concept of measurement) in nature, with the concept of
“inside,” which relies exclusively on the concepts of continuousness and order. It may be
desired that this connection be made using simpler geometric objects, under conditions
which are easier for the functioning of imagination. This desire is easily met. For axiom
A1 let us substitute the following axiom:

A1´: if on a straight line point A and a certain distance (segment) R are given, then there
are exactly two points on the straight line which are set at distance R from point A, and
point A lies between these two points.
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Relying on this axiom we shall prove assertion A1 as a theorem. We shall draw an
arbitrary straight line through the center of the circle. According to axiom A1´ there will
be two points on it which are set at distance R (radius of the circle) from the center.
Because a circle is defined as the set of all points which are located at distance R from the
center, these points belong to the circle. According to axiom A1´ the center point lies
between them and therefore, according to definition D1, it is an inside point. In this way
axiom A1 has been reduced to axiom A1´. Now try to imagine a point on a straight line
which does not have two points set on different sides from it at the given distance!

 CONCERNING THE AXIOMS OF ARITHMETIC AND LOGIC

THE PRIMARY PROPOSITIONS of arithmetic in principle possess the same nature as
the primary propositions of geometry, but they are perhaps even simpler and more
obvious and denial of them is even more inconceivable than denial of geometric axioms.
As an example let us take the axiom which says that for any number

a + 0 = a

The number 0 depicts an empty set. Can you imagine that the number of elements in
some certain set would change if it were united with an empty set? Here is another
arithmetic axiom: for any numbers a and b

a + (b + 1) = (a + b) + 1,

that is, if we increase the number b by one and add the result to a, we shall obtain the
same number as if we were to add a and b first and then increase the result by one. If we
analyze why we are unable to imagine a situation that contradicts this assertion, we shall
see that it is a matter of the same considerations of continuousness that also manifest
themselves in geometric axioms. In the process of counting, it is as if we draw continuous
lines connecting the objects being counted with the elements of a standard set and, of
course, lines in time (let us recall the origin of the concept “object”) whose
continuousness ensures that the number is identical to itself.

Natural auditory language transferred to paper gives rise to linear language, that is, a
system whose subsystems are all linear sequences of signs. Signs are objects concerning
which it is assumed only that we are able to distinguish identical ones from different
ones. The linearity of natural languages is a result of the fact that auditory language
unfolds in time and the relation of following in time can be modeled easily by the relation
of order of placement on a timeline. The specialization of natural language led to the
creation of the linear, symbolic mathematical language which now forms the basis of
mathematics.

Operating within the framework of linear symbolic languages we are constantly taking
advantage of certain other attributes which seem so obvious and self-evident that we don't
even want to formulate them in the form of axioms. As an example let us take this
assertion: if symbol a is written to the left of symbol b and symbol c is written on the
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right the same word (sequence of characters) will be received as when b is written to the
right of a and followed by c. This assertion and others like it possess mathematical
reliability for we cannot imagine that it would be otherwise. One of the fields of modern
mathematics, the theory of semi-groups, studies the properties of linear symbolic systems
from an axiomatic point of view and declares the simplest of these properties to be
axioms.

All three kinds of axioms, geometric, arithmetic, and linear-symbolic, possess the same
nature and in actuality rely on the same fundamental concepts. concepts such as identity,
motion, continuousness, and order. There is no difference in principle among these
groups of axioms. And if one term were to be selected for them they should be called
geometric or geometric-kinematic because they all reflect the attributes of our space-time
experience and space-time imagination. The only more or less significant difference
which can be found is in the group of “properly geometric” axioms; some of the axioms
concerning straight lines and planes reflect more specific experience related to the
existence of solid bodies. The same thing evidently applies to metric concepts. But this
difference too is quite arbitrary. Can we say anything serious about those concepts which
we would have if there were no solid bodies in the world?

Thus far we have been discussing the absolute reliability of axioms. But where do we get
our confidence in the reliability of assertions obtained by logical deduction from axioms?
From the same source, our imagination refuses to permit a situation in which by logical
deduction we obtain incorrect results from correct premises. Logical deduction consists
of successive steps. At each step, relying on the preceding proposition, we obtain a new
one. From a review of formal logical deduction (chapter 11) it will be seen that our
confidence that at every step we can only receive a true proposition from higher true
propositions is based on logical axioms [2] which seem to us just as reliable as the
mathematical axioms considered above. And this is for the same reason, that the opposite
situation is absolutely inconceivable. Having this confidence we acquire confidence that
no matter how many steps a logical deduction may contain it will still possess this
attribute. Here we are using the following very important axiom:

The axiom of induction: Let us suppose that function f (x) leaves attribute P (x)
unchanged, that is

( x){P (x) ⊃P [f (x)]}

We will use f n(x) to signify the result of sequential n-time application of function f (x),
that is

f 1(x) =f (x), f n(x) = f [fn -1 (x)].

Then f n(x) will also leave attribute P (x) unchanged for any n, that is

( )(  x){P (x) ⊃ P [f n(x)]}

By their origin and nature logical axioms and the axiom of induction (which is classed
with arithmetic because it includes the concept of number) do not differ in any way from
the other axioms; they are all mathematical axioms. The only difference is in how they



182

are used. When mathematical axioms are applied to mathematical assertions they become
elements of a metasystem within the framework of a system of mathematically reliable
assertions and we call them logical axioms. Thanks to this, the system of mathematically
reliable assertions becomes capable of development. The great discovery of the Greeks
was that it is possible to add one certainty to another certainty and thus obtain a new
certainty.

    DEEP-SEATED PILINGS

THE DESCRIPTION of mathematical axioms as models of reality which are true not
only in the sphere of real experience but also in the sphere of imagination relies on their
subjective perception. Can it be given a more objective characterization?

Imagination emerges in a certain stage of development of the nervous system as arbitrary
associating of representations. The preceding stage was the stage of nonarbitrary
associating (the level of the dog). It is natural to assume that the transition from
nonarbitrary to arbitrary associating did not produce a fundamental change in the material
at the disposal of the associating system, that is, in the representations which form the
associations. This follows from the hierarchical principle of the organization and
development of the nervous system in which the superstructure of the top layers has a
weak influence on the lower ones And it follows from the same principle that m the
process of the preceding transition, from fixed concepts to nonarbitrary associating, the
lowest levels of the system of concepts remained unchanged and conditioned those
universal, deep-seated properties of representations that were present before associating
and that associating could not change. Imagination cannot change them either. These
properties are invariant in relation to the transformations made by imagination. And they
are what mathematical axioms rely on.

If we picture the activity of the imagination as shuffling and fixing certain elements,
“pieces” of sensory perception, then axioms are models which are true for any piece and.
therefore, for any combination of them. The ability of the imagination to break sensory
experience up into pieces is not unlimited; emerging at a certain stage of development it
takes the already existing system of concepts as its background, as a foundation not
subject to modification. Such profound concepts as motion, identity, and continuousness
were part of this background and therefore the models which rely on these concepts are
universally true not only for real experience but also for any construction the imagination
is capable of creating.

Mathematics forms the frame of the edifice of natural sciences. Its axioms are the support
piles that drive deep into the neuronal concepts, below the level where imagination
begins to rule. This is the reason for the stability of foundation which distinguishes
mathematics from empirical knowledge. Mathematics ignores the superficial associations
which make up our everyday experience, preferring to continue constructing the skeleton
of the system of concepts which was begun by nature and set at the lowest levels of the
hierarchy. And this is the skeleton on which the “noncompulsory” models we class with
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the natural sciences will form, just as the “noncompulsory” associations of
representations which make up the content of everyday experience form on the basis of
inborn and “compulsory” concepts of the lowest level. The requirements dictated by
mathematics are compulsory: when we are constructing models of reality we cannot
bypass them even if we want to. Therefore we always refer the possible falsehood of a
theory beyond the sphere of mathematics. If a discrepancy is found between the theory
and the experiment it is the external, “noncompulsory” part of the theory that is changed
but no one would ever think of expressing the assumption that, in such a case, the
equality 2 + 2 = 4 has proved untrue.

The “compulsory” character of classical mathematical models does not contradict the
appearance of mathematical and physical theories which at first glance conflict with our
space-time intuition (for example, non-Euclidian geometry or quantum mechanics).
These theories are linguistic models of reality whose usefulness is seen not in the sphere
of everyday experience but in highly specialized situations. They do not destroy and
replace the classical models; they continue them. Quantum mechanics, for example, relies
on classical mechanics. And what theory can get along without arithmetic? The
paradoxes and contradictions arise when we forget that the concept constructs which are
included in a new theory are new concepts, even when they are given old names. We
speak of a “straight line” in non-Euclidian geometry and call an electron a “particle”
although the linguistic activity related to these words (proof of theorems and quantum
mechanics computations) is not at all identical to that for the former theories from which
the terms were borrowed. If two times two is not four then either two is not two, times is
not times, or four is not four.

The special role of mathematics in the process of cognition can be expressed in the form
of an assertion, that mathematical concepts and axioms are not the result of cognition of
reality, rather they are a condition and form of cognition. This idea was elaborated by
Kant and we may agree with it if we consider the human being to be entirely given and
do not ask why these conditions and forms of cognition are characteristic of the human
being. But when we have asked this question we must reach the conclusion that they
themselves are models of reality developed in the process of evolution (which, in one of
its important aspects, is simply the process of cognition of the world by living structures).
From the point of view of the laws of nature there is no fundamental difference between
mathematical and empirical models; this distinction reflects only the existence in
organization of the human mind of a certain border line which separates inborn models
from acquired ones. The position of this line, one must suppose, contains an element of
historical accident. If it had originated at another level, perhaps we would not be able to
imagine that the sun may tail to rise or that human beings could soar above the earth in
defiance or gravity.

 PLATONISM IN RETROSPECT

PLATO'S IDEALISM was the result of a sort of projection of the elements of language
onto reality. Plato's “ideas” have the same origin as the spirits in primitive thinking; they
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are the imagined of really existing names. In the first stages of the development of critical
thinking the nature of abstraction in the interrelationship of linguistic objects and non-
linguistic activity is not yet correctly understood. The primitive name-meaning unit is
still pressing on people an idea of a one-to-one correspondence between names and their
meanings. For words that refer to concrete objects the one-to-one correspondence seems
to occur because we picture the object as some one thing. But what will happen with
general concepts (universals)? In the sphere of the concrete there is no place at all for
their meanings; everything has been taken up by unique' concepts, for a label with a name
can be attached to each object. The empty place that form is filled by the “idea.” Let us
emphasize that Plato's idealism is far from including an assertion of the primacy of the
spiritual over the material, which is to say it is not spiritualism (this term, which is widely
used in Western literature, is little used in our country and is often replaced by the term
“idealism,” which leads to inaccuracy). According to Plato spiritual experience is just as
empirical as sensory experience and it has no relation to the world of ideas. Plato's
“ideas” are pure specters, and they are specters born of sensory, not spiritual, experience.

From a modern cybernetic point of view only a strictly defined, unique situation can be
considered a unique concept. This requires an indication of the state of all receptors that
form the input of the nervous system. It is obvious that subjectively we are totally
unaware of concepts that are unique in this sense. Situations that are merely similar
become indistinguishable somewhere in the very early stages of information processing
and the representations with which our consciousness is dealing are generalized states,
that is to say, general, or abstract, concepts (sets of situations). The concepts of definite
objects which traditional logic naively takes for the primary elements of sensory
experience and calls “unique” concepts are in reality, as was shown above, very complex
constructions which require analysis of the moving picture of situations and which rely
on more elementary abstract concepts such as continuousness, shape, color, or spatial
relations. And the more “specific” a concept is from the logical point of view, the more
complex it will be from the cybernetic point of view. Thus, a specific cat differs from the
abstract cat in that a longer moving picture of situations is required to give meaning to the
first concept than to the second. Strictly speaking the film may even be endless, for when
we have a specific cat in mind we have in mind not only its “personal file” which has
been kept since its birth, but also its entire genealogy. There is no fundamental difference
in the nature of concrete and abstract concepts; they both reflect characteristics of the real
world. If there is a difference, it is the opposite of what traditional logic discerns:
abstract, general concepts of sensory and spiritual experience (which should not be
confused with mathematical constructs) are simpler and closer to nature than concrete
concepts which refer to the definite objects. Logicians were confused by the fact that
concrete concepts appeared in language earlier than abstract ones did. But this is evidence
of their relatively higher position in the hierarchy of neuronal concepts, thanks to which
they emerged at the point of connection with linguistic concepts.

The Platonic theory of ideas, postulating a contrived, ideal existence of generalized
objects, puts one-place predicates (attributes) in a position separate from multiplace
predicates (relations). This theory assigned attributes the status of true existence but
denied it to relations, which became perfectly evident in Aristotle's loci. The concrete,
visual orientation and static quality in thinking which were so characteristic of the Greeks
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in the classical period came from this. In the next chapter we shall see how this way of
thinking was reflected in the development of mathematics.

[1] The resemblance in sound between the Greek idea and the Russian vid is not
accidental; they come from a common Indo-European root. (Compare also Latin “vidi” -
past tense of “to see.”)

[2] For those who are familiar with mathematical logic let us note that this is in the broad
sense, including the rules of inference.
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CHAPTER ELEVEN

From Euclid to Descartes

 NUMBER AND QUANTITY

DURING THE TIME of Pythagoras and the early Pythagoreans, the concept of number
occupied the dominant place in Greek mathematics. The Pythagoreans believed that God
had made numbers the basis of the world order. God is unity and the world is plurality.
The divine harmony in the organization of the cosmos is seen in the form of numerical
relationships. A substantial part in this conviction was played by the Pythagoreans
discovery of the fact that combinations of sounds which are pleasant to hear are created
in the cases where a string is shortened by the ratios formed by whole numbers such as
1:2 (octave), 2:3 (fifth), 3:4 (fourth), and so on. The numerical mysticism of the
Pythagoreans reflected their belief in the fact that, in the last analysis, all the uniformities
of natural phenomena derive from the properties of whole numbers.

We see here an instance of the human inclination to overestimate new discoveries. The
physicists of the late nineteenth century, like the Pythagoreans, believed that they had a
universal key to all the phenomena of nature and with proper effort would be able to use
this key to reveal the secret of any phenomenon. This key was the notion that space was
filled by particles and fields governed by the equations of Newton and Maxwell. With the
discovery of radioactivity and the diffraction of electrons, however, the physicists'
arrogant posture crumbled.

In the case of the Pythagoreans the same function was performed by discovery of the
existence of incommensurable line segments, that is, segments such that the ratio of their
lengths is not expressed by any ratio of whole numbers (rational number). The side of a
square, and its diagonal are incommensurable, for example. It is easy to prove this
statement using the Pythagorean theorem. In fact, let us suppose the opposite, namely that
the diagonal of a square stands in some ratio m:n to its side. If the numbers m and n have
common factors they can be reduced, so we shall consider that m and n do not have
common factors. This means that in measuring length by some unitary segment, the
length of the side is n and the length of the diagonal is m. It follows from the Pythagorean
theorem that the equality m2= 2n2 must occur. Therefore, m2 must be divisible by 2, an
consequently 2 must be among the factors of m, that is, m = 2m1. Making this substitution
we obtain 4m1

2 = 2n2 , that is, 2m1
2 = n2 . This means that n also must be divisible by 2,

which contradicts the assumption that m and n do not have common factors. Aristotle
often refers to this proof. It is believed that the proof had already been discovered by the
Pythagoreans.
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If there are quantities which for a given scale are not expressed by numbers then the
number can no longer be considered the foundation of foundations; it is removed from its
pedestal. Mathematicians then must use the more general concept of geometric quantity
and study the relations among quantities that may (although only occasionally) be
expressed in a ratio of whole numbers. This approach lies at the foundation of all Greek
mathematics beginning with the classical period. The relations we know as algebraic
equalities were known to the Greeks in geometric formulation as relations among lengths,
areas, and volumes of figures constructed in a definite manner.

 GEOMETRIC ALGEBRA

FIGURE 11.1 shows the well-known geometric interpretation of the relationship
(a +b)2 = a2+2ab+b2.

Figure 11.1.  Geometric interpretation of the identity (a + b)2 = a2+2ab+b2.

The equality (a+b)(a-b) = a2 - b2, which is equally commonplace from an algebraic point
of view, requires more complex geometric consideration. The following theorem from
the second book of Euclid's Elements corresponds to it.
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Figure 11.2.  Geometric interpretation of the identity (a -b)(a +b) = a2 - b2

“If a straight line be cut into equal and unequal segments, the rectangle contained by the
unequal segments of the whole together with the square on the straight line between the
points of the section is equal to the square on the half.”[1]

The theorem is proved as follows. Rectangle ABFE is equal to rectangle BDHF.
Rectangle BCGF is equal to rectangle GHKJ. If square FGJI is added to these two
rectangles (which together form rectangle ACGE which is “contained by the unequal
segments of the whole”) what we end up with is precisely rectangle BDKI, which is
constructed “on the half.” Thus we have the equality (a + b)(a - b) + b2 = a2 which is
equivalent to the equality above but does not contain the difficult-to-interpret subtraction
of areas.

Clearly, if these very simple algebraic relations require great effort to understand the
formulation of the theorem—as well as inventiveness in constructing the proof—when
they are expressed geometrically, then it is impossible to go far down this path. The
Greeks proved themselves great masters in everything concerning geometry proper, but
the line of mathematical development that began with algebra and later gave rise to the
infinitesimal analysis and to modern axiomatic theories (that is to say, the line of
development involving the use of the language of symbols rather than the language of
figures) was completely inaccessible to them. Greek mathematics remained limited,
confined to the narrow framework; of concepts having graphic geometric.

 ARCHIMEDES AND APOLLONIUS

DURING THE ALEXANDRIAN EPOCH (330 200 B.C.) two great learned men lived in
whose work Greek mathematics reached its highest point. They were Archimedes (287-
212 B.C.) and Apollonius (265? - 170? B.C.)

In his works on geometry Archimedes goes far beyond the limits of the figures formed by
straight lines and circles. He elaborates the theory of conic sections and studies spirals.
Archimedes's main achievement in geometry is his many theories on the areas. volumes,
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and centers of gravity of figures and bodies formed by other than just straight lines and
plane surfaces. He uses the “method of exhaustion.” To illustrate the range of problems
solved by Archimedes we shall list the problems included in his treatise entitled The
Method whose purpose, as can be seen from the title, is not a full summary of results but
rather an explanation of the method of his work. The Method contains solutions to the
following 13 problems: area of a parabolic segment, volume of a spherE, volume of a
spheroid (ellipsoid of rotation), volume of a segment of a paraboloid of rotation, center of
gravity of a segment of a paraboloid of rotation, center of gravity of a hemisphere,
volume of a segment of a sphere, volume of a segment of a spheroid, center of gravity of
a segment of a sphere, center of gravity of a segment of a spheroid, center of gravity of a
segment of a hyperboloid of rotation, volume of a segment of a cylinder, and volume of
the intersection of two cylinders (the last problem is without proof).

Archimedes's investigations in the field of mechanics were just as important as his work
on geometry. He discovered his famous “law” and studied the laws of equilibrium of
bodies. He was extraordinarily skillful in making different mechanical devices and
attachments. It was thanks to machines built under his direction that the inhabitants of
Syracuse, his native city, repulsed the Romans' first attack on their city. Archimedes
often used mechanical arguments as support in deriving geometric theorems. It would be
a mistake to suppose, however, that Archimedes deviated at all from the traditional Greek
way of thinking. He considered a problem solved only when he had found a logically
flawless geometric proof. He viewed his mechanical inventions as amusements or as
practical concerns of no scientific importance whatsoever. “Although these inventions,”
Plutarch writes, “made his superhuman wisdom famous, he nonetheless wrote nothing on
these matters because he felt that the construction of all machines and all devices for
practical use in general was a low and ignoble business. He himself strove only to remove
himself, by his handsomeness and perfection, far from the kingdom of necessity.”

Of all his achievements Archimedes himself was proudest of his proof that the volume of
a sphere inscribed in a cylinder is two thirds of the volume of the cylinder. In his will he
asked that a cylinder with an inscribed sphere be shown on his gravestone. After the
Romans took Syracuse and one of his soldiers (against orders, it is said) killed
Archimedes, the Roman general Marcellus authorized Archimedes' relatives to carry out
the wish of the deceased.

Apollonius was primarily famous for his work on the theory of conic sections. His work
is in fact a consistent algebraic investigation of second-order curves expressed in
geometric language. In our day any college student can easily repeat Appolonius' results
by employing the methods of analytic geometry. But Apollonius needed to show
miraculous mathematical intuition and inventiveness to do the same thing within a purely
geometric approach.
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 THE DECLINE OF GREEK MATHEMATICS

“AFTER APOLLONIUS,” writes B. van der Waerden, “Greek mathematics comes to a
dead stop. It is true that there were some epigones, such as Diocles and Zenodorus, who,
now and then, solved some small problem, which Archimedes and Apollonius had left for
them, crumbs from the board of the great. It is also true that compendia were written,
such as that of Pappus of Alexandria (300 A.D.); and ,geometry was applied to practical
and to astronomical problems, which led to the development of plane and spherical
trigonometry. But apart from trigonometry, nothing great nothing new appeared. The
,geometry of the conics remained in the form Apollonius gave it, until Descartes. Indeed
the works of Apollonius were but little read and were even partly lost. The Method of
Archimedes was lost sight of and the problem of integration remained where it was, until
it was attacked new in the seventeenth century. . . “[2]

The decline of Greek mathematics was in part caused by external factors—the political
storms that engulfed Mediterranean civilization. Nonetheless, internal factors were
decisive. In astronomy, van der Waerden notes, development continued steadily along an
ascending line; there were short and long periods of stagnation, but after them the work
was taken up again from the place where it had stopped. In geometry, however,
regression plainly occurred. The reason is found, of course, in the lack of an algebraic
language.

“Equations of the first and second degree,” we read in van der Waerden, “can be
expressed clearly in the language of geometric algebra and, if necessary, also those of the
third degree. But to get beyond this point, one has to have recourse to the bothersome tool
of proportions .

“Hippocrates, for instance, reduced the cubic equation x3 = V to the proportion

a :x =x :y = y:b.

and Archimedes wrote the cubic

x2 (a-x) = bc2

in the form

(a-x) :b = c2: x2.”

“In this manner one can get to equations of the fourth degree; examples can be found
in Apollonius.... But one cannot get any further; besides, one has to be a
mathematician of genius, thoroughly versed in transforming proportions with the aid
of geometric, to obtain results by this extremely cumbersome method. Anyone can use
our algebraic notation, but only a gifted mathematician can deal with the Greek theory
of proportions and with geometric algebra.

Something has to be added, that is, the difficulty of the written tradition.



191

Reading a proof in Apollonius requires extended and concentrated study. Instead of a
concise algebraic formula, one finds a long sentence, in which each line segment is
indicated by two letters which have to be located in the figure. To understand the line
of thought, one is compelled to transcribe these sentences in modern concise formulas
. . .

An oral explanation makes it possible to indicate the line segments with the fingers;
one can emphasize essentials and point out how the proof was found. All of this
disappears in the written formulation of the strictly classical style. The proofs are
logically sound, but they are not suggestive. One feels caught as in a logical mouse
trap, but one fails to see the guiding line of thought.

As long as there was no interruption, as long as each generation could hand over its
method to the next, everything went well and the science flourished. But as soon as
some external cause brought about an interruption in the oral tradition, and only books
remained, it became extremely difficult to assimilate the work of the great precursors
and next to impossible to pass beyond it.[3]

But why, despite their high mathematical sophistication and abundance of talented
mathematicians, did the Greeks fail to create an algebraic language? The usual answer is
that their high mathematical sophistication was in fact what hindered them, more
specifically their extremely rigorous requirements for logical strictness in a theory, for
the Greeks could not consider irrational numbers, in which the values of geometric
quantities are ordinarily expressed, as numbers: if line segments were incommensurate it
was considered that a numerical relationship for them simply did not exist. Although this
explanation is true in general, still it must be recognized as imprecise and superficial.
Striving toward logical strictness cannot by itself be a negative factor in the development
of mathematics. If it acts as a negative factor this will evidently be only in combination
with certain other factors and the decisive role in this combination should certainly not be
ascribed to the striving for strictness. Perfect logical strictness in his final formulations
and proofs did not prevent Archimedes from using guiding considerations which were not
strict. Then why did it obstruct the creation of an algebraic language? Of course, this is
not simply a matter of a high standard of logical strictness, it concerns the whole way of
thinking, the philosophy of mathematics. In creating the modern algebraic language
Descartes went beyond the Greek canon, but this in no way means that he sinned against
the laws of logic or that he neglected proof. He considered irrational numbers to be
“precise” also, not mere substitutions for their approximate values. Some problems with
logic arose after the time of Descartes, during the age of swift development of the
infinitesimal analysis. At that time mathematicians were so carried away by the rush of
discoveries that they simply were not interested in logical subtleties. In the nineteenth
century came time to pause and think, and then a solid logical basis was established for
the analysis.

We shall grasp the causes of the limitations of Greek mathematics after we review the
substance of the revolution in mathematics made by Descartes.
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 ARITHMETIC ALGEBRA

ADVANCES IN GEOMETRY forced the art of solving equations into the background.
But this art continued to develop and gave rise to arithmetie algebra. The emergence of
algebra from arithmetic was a typical metasystem transition. When an equation must be
solved, whether it is formulated in everyday conversational language or in a specialized
language, this is an arithmetic problem. And when the general method of solution is
pointed out—by example, as is done in elementary school. or even in the form of a
formula—we still do not go beyond arithmetic. Algebra begins when the equations
themselves become the object of activity, when the properties of equations and rules for
converting them are studied. Probably everyone who remembers his first acquaintance
with algebra in school (if this was at the level of understanding, of course, not blind
memorization) also remembers the happy feeling of surprise experienced when it turns
out that various types of arithmetic problems whose solutions had seemed completely
unrelated to one another are solved by the same conversions of equations according to a
few simple and understandable rules. All the methods known previously fall into place in
a harmonious system, new methods open up, new equations and whole classes of
equations come under consideration (the law of branching growth of the penultimate
level), and new concepts appear which have absolutely no meaning within arithmetic
proper: negative, irrational, and imaginary numbers.

In principle the creation of a specialized language is not essential for the development of
algebra. In fact, however, only with the creation of a specialized language does the
metasystem transition in people's minds conclude. The specialized language makes it
possible to see with one's eyes that we are dealing with some new reality, in this case
with equations, which can be viewed as an object of computations just as the objects
(numbers) of the preceding level were. People typically do not notice the air they breathe
and the language they speak. But a newly created specialized language goes outside the
sphere of natural language and is in part nonlinguistic activity. This facilitates the
metasystem transition. Of course, the practical advantages of using the specialized
language also play an enormous part here; among them are making expressions visible,
reducing time spent recopying, and so on.

The Arab scholar Muhammed ibn Musa al-Khwarizmi (780-850) wrote several treatises
on mathematics which were translated into Latin in the twelfth century and served as the
most important textbooks in Europe for four centuries. One of them, the Arithmetic, gave
Europeans the decimal system of numbers and the rules (algorithms—the name is based
on al-Khwarizmi) for performing the four arithmetic operations on numbers written in
this system. Another work was entitled Book of Al Jabr Wa'l Muqabala. The purpose of
the book was to teach the art of solving equations, an art which is essential, as the author
writes, “in cases of inheritance, division of property, trade, in all business relationships,
as well as when measuring land, laying canals, making geometric computations, and in
other cases....” Al Jabr and al Mugabala are two methods al-Khwarizmi uses to solve
equations. He did not think up these methods himself; they were described and used in
the Arithmetica of the Greek mathematician Diophantus (third century A.D.), who was
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famous for his methods of solving whole-number (“diophantine”) equations. In the same
Arithmetica of Diophantus we find the rudiments of letter symbolism. Therefore, if
anyone is to be considered the progenitor of arithmetic algebra it should obviously be
Diophantus. But Europeans first heard of algebraic methods from al-Khwarizmi while the
works of Diophantus became known much later. There is no special algebraic symbolism
in al-Khwarizmi, not even in rudimentary form. The equations are written in natural
language. But for brevity's sake, we shall describe these methods and give our examples
using modern symbolic notation.

Al Jabr involves moving elements being subtracted from one part of the equation to the
other; al Muqabala involves subtracting the same element from both parts of the equation.
Al-Khwarizmi considers these procedures different because he does not have the concept
of a negative number. For example let us take the equation

7x - 11 = 5x - 3.

Applying the al Jabr method twice, for the 11 and 3, which are to be subtracted, we
receive:

7x + 3 = 5x + 11.

Now we use the al Muqabala method twice, for 3 and 5x. We receive

2x = 8.

From this we see that

x = 4.

So although al-Khwarizmi does not use a special algebraic language, his book contains
the first outlines of the algebraic approach. Europeans recognized the merits of this
approach and developed it further. The very word algebra comes from the name of the
first of al-Khawarizmi's methods.

 ITALY, SIXTEENTH CENTURY

IN THE FIRST HALF of the sixteenth century the efforts of Italian mathematicians led to
major changes in algebra which were associated with very dramatic events. Scipione del
Ferro (1465-1526). a professor at the University of Bologna, found a general solution to
the cubic equation x3 +px = q where p and q are positive. But del Ferro kept it secret,
because it was very valuable in the problem-solving competitions which were held in
Italy at that time. Before his death he revealed his secret to his student Fiore. In 1535
Fiore challenged the brilliant mathematician Niccolo Tartaglia (1499-1557) to a contest.
Tartaglia knew that Fiore possessed a method of solving the cubic equation, so he made
an all-out effort and found the solution himself. Tartaglia won the contest, but he also
kept his discovery secret. Finally, Girolamo Cardano (1501-1576) tried in vain to find the
algorithm for solving the cubic equation. In 1539 he finally appealed to Tartaglia to tell
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him the secret. Having received a “sacred oath” of silence from Cardano, Tartaglia
unveiled the secret, but only partially and in a rather unintelligible form. Cardano was not
satisfied and made efforts to familiarize himself with the manuscript of the late del Ferro.
In this he was successful, and in 1545 he published a book in which he reported his
algorithm, which reduces the solution of a cubic equation to radicals (the “Cardano
formula”). This same book contained one more discovery made by Cardano's student
Luigi (Lodovico) Ferrari (1522-1565): the solution of a quartic equation in radicals.
Tartaglia accused Cardano of violating his oath and began a bitter and lengthy polemic. It
was under such conditions that modern mathematics made its first significant advances.

Using a tool suggests ways to improve it. While striving toward a uniform solution to
equations, mathematicians found that it was extremely useful in achieving this goal to
introduce certain new objects and treat them as if these were numbers. And in fact they
were called numbers although it was understood that they differed from “real” numbers:
this was seen in the fact that they were given such epithets as “false” “fictitious,”
“incomprehensible,” and “imaginary.” What they correspond to in reality remained
somewhat or entirely unclear. Whether their use was correct also remained debatable.
Nonetheless, they began to be used increasingly widely, because with them it was
possible to obtain finite results containing only “real” numbers which could not be
obtained otherwise. A person consistently following the teachings of Plato could not use
“unreal” numbers. But the Indian, Arabic, and Italian mathematicians were by no means
consistent Platonists. For them a healthy curiosity and pragmatic considerations
outweighed theoretical prohibitions. In this, however, they did make reservations and
appeared to be apologizing for their “incorrect” behavior.

All “unreal” numbers are products of the reverse movement in the arithmetic model:
formally they are solutions to equations that cannot have solutions in the area of “real”
numbers. First of' all we must mention negative numbers. They are found in quite
developed form in the Indian mathematician all Bahascara (twelfth century), who
performed all four arithmetic operations on such numbers. The interpretation of the
negative number as a debt was known to the Indians as early as the seventh century.  In
formulating the rules of operations on negative numbers. Bhascara calls them “debts,”
and calls positive numbers “property.” He does not choose to declare the negative
number an abstract concept like the positive number. “People do not approve of abstract
negative numbers,” Bhascara writes. The attitude toward negative numbers in Europe in
the fifteenth and sixteenth centuries was similar. In geometric interpretation negative
roots are called “false” as distinguished from the 'true” positive roots. The modern
interpretation of negative numbers as points lying to the left of the zero point did not
appear until Descartes' Géométrie (1637). Following tradition, Descartes called negative
roots false.

Formal operations on roots of numbers that cannot be extracted exactly go back to deep
antiquity, when the concept of incommensurability of line segments had not yet appeared.
In the fifteenth and sixteenth centuries people handled them cavalierly: they were helped
here, of course, by the simple geometric interpretation. An understanding of the
theoretical difficulty which arises from the incommensurability of line segments can be
.seen by the fact that the numbers were called “irrational.”
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The square of any number is positive: therefore the square root of a negative number does
not exist among positive, negative, rational, or irrational numbers. But Cardano was
daring enough to use (not w without reservations) the roots of negative numbers. '
Imaginary” numbers thus appeared. The logic of using algebraic language drew
mathematicians inexorably down an unknown path. It seemed wrong and mysterious. but
intuition suggested that all these impossible numbers were profoundly meaningful and
that the new path would prove useful. And it certainly did.

 LETTER SYMBOLISM

THE RUDIMENTS of algebraic letter symbolism are first encountered, as mentioned
above, in Diophantus. Diophantus used a character resembling the Latins to designate an
unknown. It is hypothesized that this designation originates from the last letter of the
Greek word for number:  (arithmos). He also had abbreviated notations for the
square cube, and other degrees of the unknown quantity. He did not have an addition
sign: quantities being added were written in a series, something like an upside-down
Greek letter  was used as the subtraction sign, while the first letter of the Greek word

 for “equal” was used as the equal sign, everything else was expressed in words.
Known quantities were always written in concrete numerical form while there were no
designations for known, but arbitrary numbers.

Diophantus' Arithmetica became known in Europe in 1463. In the late fifteenth and early
sixteenth centuries European mathematicians first Italians and then others began to use
abbreviated notations. These abbreviations gradually wandered from arithmetic algebra to
geometric, and unknown geometric quantities also began to be designated by letters. In
the late sixteenth century the Frenchman François Vieta (1540-1603) took the next
important step. He introduced letter designations for known quantities and was thus able
to write equations in general form. Vieta also introduced the term “coefficient.” In
external appearance Vieta's symbols are still rather far from modern ones. For example,
Vieta writes

instead of our notation

D(2B3 - D3)

B3 + D3

By the beginning of the seventeenth century the situation in European mathematics was
as follows. There were two algebras. The first was arithmetic based on symbols created
by the Europeans themselves and representing a substantial advance in comparison with
the arithmetic of the ancients. The second algebra, geometric algebra, was part of
geometry. It was taken, as was the whole of geometry, from the Greeks. The
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fundamentals were from Euclid's Elements and the further development came primarily
from the works of Pappus of Alexandria and Apollonius, who had been thoroughly
studied by that time. Nothing fundamentally new had been done in this field. We cannot
say that there was no relationship at all between these two algebra: equation of degrees
higher than the first could only receive geometric interpretation, for where else could
squares, cubes, and higher degrees of an unknown number occur but in computing areas,
volumes and manipulations of line segments related to complex systems of proportions?
The very names of the second and third degrees, the square and the cube, illustrate this
very eloquently. Nonetheless, the gap between the concepts of quantity (or magnitude)
and number remained and in full conformity with the Greek canon only geometric proofs
w ere considered real. When geometric objects—lengths, areas, and volumes—appeared
in equations they operated either as geometric quantities or as concrete numbers.
Geometric quantities were thought of as necessarily something spatial and, because of
incommensurability not reducible to a number.

This was the situation that René Descartes (1596-1650), one of the greatest thinkers who
has ever lived, encountered.

 WHAT DID DESCARTES DO?

DESCARTES' ROLE as a philosopher is generally recognized. But when Descartes as a
mathematician is discussed it is usually indicated that he “refined algebraic notations and
created analytical geometry.” Sometimes it is added that at approximately the same time
the basic postulates of analytic geometry were proposed, independently of Descartes, by
his countryman Pierre de Fermat (1601-1665), while Vieta had already made full use of
algebraic symbols. It comes out, thus, that there is no special cause to praise Descartes
the mathematician, and in fact many authors writing about the history of mathematics do
not give him his due. However, Descartes carried out a revolution in mathematics. He
created something incomparably greater than analytic geometry (understood as the theory
of curves on a plane). What he created was a new approach to describing the phenomena
of reality: the modern mathematical language.

It is sometimes said that Descartes “reduced geometry to algebra” which means, of
course numerical algebra, arithmetic algebra. This is a flagrant mistake. It is true that
Descartes overcame the gap between quantity and number, between geometry and
arithmetic. He did not achieve this by reducing one language to the other, however: he
created a new language, the language of algebra. Not arithmetic algebra, not geometric
algebra, simply algebra. In syntax the new language coincided with arithmetic algebra.
but by semantics it coincided with geometric. In Descartes' language the symbols do not
designate number or quantities, but relations of quantities. This is the essence of the
revolution called out by Descartes.

The modern reader will perhaps shrug his shoulders and think “So what”? Could this
logical nuance really have been very important?” As it turns out, it was. It was precisely
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this “nuance” that had prevented the Greeks from taking the next step in their
mathematics.

We have become so accustomed to placing irrational numbers together with rational ones
that we are no longer aware of the profound difference which exists between them. We
write  as we write 4/5 and we call  number and, when necessary, substitute an
approximate value for it. And there is no way we can understand why the ancient Greeks
responded with such pain to the incommensurability of line segments. But if we think a
little, we cannot help agreeing with the Greeks that  is not a number. It can be
represented as an infinite process which generates the sequential characters of expansion
of  in decimal fractions. It can also be pictured in the form of a boundary line in the
field of rational numbers—one that divides rational numbers into two classes: those
which are less than  and those which are greater than . In this case the rule is very
simple: the rational number a belongs to the first class if a2 < 2 and to the second where
this is not true. Finally,  can be pictured in the form of a relation between two line
segments, between the diagonal of a square and its side in the particular case. These
representations are equivalent to one another but they are not at all equivalent to the
representation of the whole or fractional number.

This by no means implies that we are making a mistake or not being sufficiently strict
when we deal with  as a number. The goal of mathematics is to create linguistic
models of reality, and all means which lead to this goal are good. Why shouldn't our
language contain characters of the type  in addition to ones such as 4/5? It is my
language and I will do what I want to with it.” The only important thing is that we be able
to interpret these characters and perform linguistic conversions on them. But we are able
to interpret . In practical computations the first of the three representations in the
preceding paragraph may serve a. the basis of interpretation. while in geometry the third
can be used. We can also carry out other computations with them. All that remains now is
to refine the terminology. Let us stipulate that we shall use the term rational numbers for
what were formerly called numbers, name the new objects irrational numbers, and use
the term numbers for both (real numbers according to modern mathematical
terminology). Thus, in the last analysis, there is no difference in principle between 
and 4/5 and we have proved wiser than the Greeks. This wisdom was brought in as
contraband by all those who operated with the symbol  as a number, while recognizing
that it was “irrational.” It was Descartes who substantiated this wisdom and established it
as law.

 THE RELATION AS AN OBJECT

THE GREEKS' failure to create algebra is profoundly rooted in their philosophy. They
did not even have arithmetic algebra. Arithmetic equations held little interest for them:
after all, even quadratic equations do not, generally speaking, have exact numerical
solutions. And approximate calculations and everything bound up with practical
problems were uninteresting to them. On the other hand, the solution could have been
found by geometric construction! But even if we assume that the Greek mathematicians
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of the Platonic school were familiar with arithmetic letter symbols it is difficult to
imagine that they would have performed Descartes' scientific feat. To the Greeks
relations were not ideas and therefore did not have real existence. Who would ever think
of using a letter to designate something that does not exist? The Platonic idea is a
generalized image, a form, a characteristic: it can be pictured in the imagination as a
more or less generalized object. All this is primary and has independent existence an
existence even more real than that of things perceived by the senses. But what is a
relation of line segments? Try to picture it and you will immediately see that what you
are picturing is precisely two line segments, not any kind of relation. The concept of the
relation of quantities reflects the process of measuring one by means of the other. But the
process is not an idea in the Platonic sense: it is something secondary that does not really
exist. Ideas are eternal and invariable, and by this alone have nothing in common with
processes.

Interestingly, the concept of the relation of quantities, which reflects characteristics of the
measurement process, was introduced in strict mathematical form as early as Eudoxus
and was included in the fifth book of Euclid's Elements. This was exactly the concept
Descartes used. But the relation as an object is not found in Eudoxus or in later Greek
mathematicians: after being introduced it slowly gave way to the proportion which it is
easy to picture as a characteristic of four line segments formed by two parallel lines
intersecting the sides of an angle.

The concept of the relation of quantities is a linguistic construct, and quite a complex
one. But Platonism did not permit the introduction of constructs in mathematics: it
limited the basic concepts of mathematics to precisely representable static spatial images.
Even fractions were considered somehow irregular by the Platonic school from the point
of view of real mathematics. In The Republic we read: “If you want to divide a unit.
learned mathematicians will laugh at you and will not permit you to do it: if you change a
unit for small pieces of money they believe it has been turned into a set and are careful to
avoid viewing the unit as consisting of parts rather than as a whole.” With such an
attitude toward rational numbers, why even talk about irrational ones!

We can briefly summarize the influence of Platonic idealism on Greek mathematics as
follows. By recognizing mathematical statements as objects to work with. the Greeks
made a metasystem transition of enormous importance but then they immediately
objectivized the basic elements of mathematical statements and began to view them as
part of a nonlinguistic reality, “the world of ideas.” In this way they closed off the path to
further escalation of critical thinking to becoming aware of the basic elements (concepts)
of mathematics as phenomema of language and to creating increasingly more complex
mathematical constructs. The development of mathematics in Europe was a continuous
liberation from the fetters of Platonism.
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 DESCARTES AND FERMAT

IT IS VERY INSTRUCTIVE to compare the mathematical world of Descartes and
Fermat. As a mathematician Fermat was as gifted as Descartes, perhaps even more so.
This can be seen from his remarkable works on number theory. But he was an ardent
disciple of the Greeks and continued the traditions. Fermat set forth his discoveries on
number theory in remarks in the margins of Diophantus' Arithmetica His works on
geometry originated as the result of efforts to prove certain statements referred to by
Pappus as belonging to Apollonius, but presented without proofs. Reflecting on these
problems, Fermat began to systematically represent the position of a point on a plane by
the lengths of two line segments: the abscissa and the cardinal and represent the curve as
an equation relating these segments. This idea was not at all new from a geometric point
of view: it was a pivotal idea not only in Apollonius but even as far back as Archimedes,
and it originates with even more ancient writers. Archimedes describes conic sections by
their “symptoms” that is, the proportions which connect the abscissas and ordinates of the
points. As an example, let us take an ellipsis with the longer (major) axis AB.

Figure 11.3.

Perpendicular line PQ which is dropped from a certain point of the ellipsis P to axis AB is
called the ordinate, and segments AQ and QB are the abscissas of this point (both terms
are Latin translations of Archimedes' Greek terms). The ratio of the area of a square
constructed on the ordinate to the area of the rectangle constructed on the two abscissas is
the same for all points P lying on the ellipsis. This is the “symptom” of the ellipsis, that
is, in essence, its equation. It can be written as Y2: X 1 X2 = const. Analogous symptoms
are established for the hyperbola and parabola. How is this not a system of coordinates ?

Unlike the ancients, Fermat formulates the symptoms as equations in Vieta's language,
not in the form of proportions described by words. This makes conversions easier:
specifically, it can be seen immediately that it is more convenient to leave one abscissa
than two. But the approach continues to be purely geometric, spatial.

Fermat set forth his ideas in the treatise “Ad locos planos et solidos isagoge”
(Introduction to Plane and Solid Loci). This work was published posthumously in 1679,
but it had been known to French mathematicians as early as the 1630s, somewhat earlier
than Descartes' mathematical works.



200

Descartes famous Géométrie came out in 1637. Descartes was not of course, at all
influenced by Fermat (it is unknown whether he even read Fermat's treatise); Descartes'
method took shape in the 1620's, long before the Géométrie was published. Nonetheless,
the properly geometrical ideas of Descartes and Fermat are practically identical. But
Descartes created a new algebra based on the concept of the relation of geometric
quantities. In Vieta only similar quantities can be added and subtracted and coefficients
must include an indication of their geometric nature. For example, the equation which we
would write as

A3 + BA = D.

Vieta wrote as follows:

A cubus + B planum in A aequatur D solido.

This means the cube with edge A added to area B multiplied by A is equal to the volume
D. Vieta and Fermat are intellectual prisoners of the Greek geometric algebra. Descartes
breaks with it decisively. The relations Descartes' algebra deals with are not geometric,
spatial objects, but theoretical concepts, “numbers.” Descartes is not restricted by the
requirement for uniformity of things being added or the general requirement of a spatial
interpretation; he understands raising to a power as repeated multiplication and indicates
the number of factors by a small digit above and to the right. Descartes' symbolism
virtually coincides with our modern system.

 THE PATH TO DISCOVERY

FERMAT WAS ONLY a mathematician; Descartes was above all a philosopher. His
reflections went far beyond mathematics and dealt with the problems of the essence of
being and knowledge. Descartes was the founder of the philosophy of rationalism which
affirms the human being's unlimited ability to understand the world on the basis of a
small number of intuitively clear truths and proceeding forward step by step using
definite rules or methods. These two words are key words for all Descartes' philosophy.
The name of his first philosophical composition was Regulae ad directionem ingenii
(Rules for the Direction of the Mind), and his second was Discours de la méthode
(Discourse on the Method). The Discours de la méthode was published in 1637 in a
single volume with three physico-mathematical treatises: “La Dioptrique” (the Dioptric),
“les Meteores” (Meteors) and “la Gémétrie” (Geometry). The Discours preceded them as
a presentation of the philosophical principles on which the following parts were based. In
this Discours Descartes proposes the following four principles of investigation:

The first of these was to accept nothing as true which I did not clearly recognize to be so:
that is to say, carefully to avoid precipitation and prejudice in judgements and to accept in
them nothing more than what was presented to my mind so clearly and distinctly that I
could have no occasion to doubt it.
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The second was to divide up each of the difficulties which I examined into as many parts
as possible, and as seemed requisite in order that it might be resolved in the best manner
possible.

The third was to carry on my reflections into order, commencing with objects that were the
more simple and easy to understand, in order to rise little by little, or by degrees, to
knowledge of the most complex assuming order, even it a fictitious one, among those
which do not follow a natural sequence relatively to one another.

The last was in all cases to make enumerations so complete and reviews so general that I
should be certain of having omitted nothing.[4]

Descartes arrived at his mathematical ideas guided by these principles. Here is how he
himself describes his path in Discours de la méthode:

And I have not much trouble in discovering which objects it was necessary to begin with,
for I already knew that it was with the most simple and those most easy to apprehend.
Considering also that of all those who have hitherto sought for the truth in the Sciences, it
has been the mathematicians alone who have been able to succeed in making any
demonstrations, that is to say, producing reasons which are evident and certain. I did not
doubt that it had been by means of a similar kind that they carried on their investigations....
But for all that I had no intention of trying to master all those particular sciences that
receive in common the name of Mathematics; but observing that, although the objects are
different, they do not fail to agree in this, that they take nothing under consideration but the
various relationships or proportions which are present in these objects. I thought that it
would be better if I only examined those proportions in their general aspect, and without
viewing them otherwise than in the objects which would serve most to facilitate a
knowledge of them. Not that I should in any way restrict them to these objects. for I might
later on all the more easily apply them to all other objects to which they were applicable.
Then, having carefully noted that in order to comprehend the proportions I should
sometimes require to consider each one in particular, and sometimes merely keep them in
mind, or take them in groups,  I thought that in order the better to consider them in detail, I
should picture them in the form of lines, because I could find no method more simple nor
more capable of being distinctly represented to my imagination and senses. I considered,
however, that in order to keep them in my memory or to embrace several at once, it would
be essential that I should explain them by means of certain formulas, the shorter the better.
And for this purpose it was requisite that I should borrow all that is best in Geometrical
Analysis and Algebra, and correct the errors of the one by the other.[5]

We can see from this extremely interesting testimony that Descartes was clearly aware of
the semantic novelty of his language based on the abstract concept of the relation and
applicable to all the phenomena of reality. Lines serve only to illustrate the concept of the
relation, just as a collection of little sticks serves to illustrate the concept of number. In
their mathematical works Descartes and subsequent mathematicians have followed
tradition and used the term “quantity” for that which is designated by letters, but
semantically these are not the spatial geometric quantities of the Greeks but rather their
relations. In Descartes the concept of quantity is just as abstract as the concept of number.
But of course, it cannot be reduced to the concept of number in the exact meaning of the
word, that is, the rational number. Explaining his notations in the Géométrie, Descartes
points out that they are similar (but not identical) to the notations of arithmetic algebra:
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Just as arithmetic consists of only four or five operations, namely, addition, subtraction,
multiplication, division, and the extraction of roots, which may be considered a kind of
division, so in geometry, to find required lines it is merely necessary to add or subtract
other lines: or else, taking one line which I shall call unit) in order to relate it as closely) as
possible to numbers, and which can in general be chosen arbitrarily and having given two
other lines, to find a fourth line which shall be to one of the given lines as the other is to
unity which is the same as multiplication: or, again, to find a fourth line which is to one of
the given lines as unity is to the other (which is equivalent to division): or, finally, to find
one, two, or several mean proportionals between units and some other line (which is the
same as extracting the square root. cube root, etc., of the given line). And I shall not
hesitate to introduce these arithmetical terms into geometry, for the sake of greater
clearness.”[6]

The semantics of Descartes' algebraic language are much more complex than the
semantics of the arithmetic and geometric languages which rely on graphic images. The
use of such a language changes one's view of the relation between language and reality. It
is discovered that the letters of mathematical language may signify not only numbers and
figures, but also something much more abstract (to be more precise “constructed”). This
is where the invention of new mathematical languages and dialects and the introduction
of new constructs began. The precedent was set by Descartes. Descartes in fact laid the
foundation for describing the phenomena of reality by means of formalized symbolic
languages.

The immediate importance of Descartes' reform was that it untied the hands of
mathematicians to create, in abstract symbolic form, the infinitesimal analysis whose
basic ideas in geometric form were already known to the ancients. If we go just half a
century from the publication date of the Géométrie we find ourselves in the age of
Leibnitz and Newton, and 50 more years brings us to the age of Euler.

The history of science shows that the greatest glory usually doesnot go to those who lay
the foundations and, of course, not to those who work on the small finishing touches:
rather it goes to those who are the first in a new line of thought to obtain major results
which strike the imagination of their contemporaries or immediate descendants. In
European physico-mathematical science this role was played by Newton. But as Newton
said, “If I have seen further than Descartes, it is by standing on the shoulders of giants.”
This is, of course, evidence of the modesty of a brilliant scientist but it is also a
recognition of the debt of the first great successes to the pioneers who showed the way.
The apple which made Newton famous grew on a tree planted by Descartes.

[1] The Thirteen Books of Euclid's Elements, translated and annotated by T. L. Heath,
(Cambridge: Cambridge University Press, 1908), vol. 1. p. 382.

[2] B. van der Waerden Science Awakening (New York: Oxford University Press, 1969),
p. 264.

[3] B. van der Waerden Science Awakening, p. 266.
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[4] Descartes, Spinoza, Great Books of the Western World, Encyclopaedia Britanica Inc.,
Vol 31, 1952, p. 47.

[5] Descartes, ibid., p. 47.

[6] Descartes, ibid., p. 295
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CHAPTER TWELVE

From Descartes to Bourbaki

     FORMALIZED LANGUAGE

“THE NEXT STOP IS APRELEVKA STATION”, a hoarse voice announces through the
loudspeaker. “I repeat Aprelevka Station. The train does not have a stop at Pobeda
Station.”

You are riding a commuter train on the Kiev Railroad and because you have forgotten to
bring a book and there is nothing for you to do you begin reflecting on how carelessly we
still treat our native language. Really, what an absurd expression “does not have a stop.”
Wouldn't it be simpler to say “does not stop”? Of these bureaucratic governmental
expressions, people write about it all the time, but it hasn't done any good yet.

If you do not get off at Aprelevka, however, and you have time for further reflection you
will see that this is by no means a matter of a careless attitude toward our native
language; in fact “does not have a stop” does not mean quite the same thing as “does not
stop.” The concept of the stop in railroad talk is not the same as the concept of ceasing
movement. The following definition, not too elegant but accurate enough, can be given: a
stop is a deliberate cessation of the train's movement accompanied by the activities
necessary to ensure that passengers get on and off the train. This is a very important
concept for railroad workers and it is linked to the noun “stop” not to the verb “to stop.”
Thus if the engineer stopped the train but did not open the pneumatic doors, the train
“stopped” but it did not “have a stop.”

The railroad worker who made the announcement did not, of course, perform such a
linguistic analysis. He simply used the ordinary professional term, which enabled him to
express his thought exactly, even if it seemed somewhat clumsy to a nonprofessional.
This is an instance of a very common phenomenon: when language is used for
comparatively narrow professional purposes there is a tendency to limit the number of
terms used and to give them more precise and constant meanings. We say the language is
formalized. If this process is carried through to its logical conclusion the language will be
completely formalized.

The concept of a formalized language can be defined as follows. Let us refer to our
diagram of the use of linguistic models of reality (see figure 9.5) and put the question:
how is the conversion L1 → L2 performed, on what information does it depend? We can
picture two possibilities:
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1. The conversion L1 → L2 is determined exclusively by linguistic objects L1 which
participate in it and do not depend on those nonlinguistic representations S1 which
correspond to them according to the semantics of the language. In other words, the
linguistic activity depends only on the “form” of the language objects not on their
“content” (meaning).

2. The result of the conversion of linguistic object Li depends less on the type of object Li

itself than on representation Si it generates in the person's mind, on the associations in
which it is included, and therefore on the person's personal experience of life.

In the first case we call the language formalized, while in the second case it is
unformalized. We should emphasize that complete formalization of a language does not
necessarily mean complete algorithmization of it, the situation where all linguistic
activity amounts to fulfilling precise and unambiguous prescriptions as a result of which
each linguistic object L1 is converted into a completely definite object L2. The rules of
conversion  L1 → L2 can be formalized as more or less rigid constraints and leave a
certain freedom of action; the only important thing is that these constraints depend on the
type of object L1 and potential objects L2 by themselves alone and not on the meanings of
the linguistic objects.

The definition we have given of a formalized language applies to the case where
language is used to create models of reality. When a language serves as a means of
conveying control information (the language of orders) there is a completely analogous
division into two possible types of responses:

1. The person responds in a strictly formal manner to the order, that is, his actions
depend only on the information contained in the text of the order, which is viewed as an
isolated material system.

2. The person's actions depend on those representations and associations the order
evokes in him. Thus, he actually uses much more information than that contained in the
text of the order.

There is no difference in principle between the language of orders and the language of
models. The order “Hide!” can be interpreted as the model “If you don't hide your life is
in danger.” The difference between the order and the model is a matter of details of
information use. In both cases the formalized character of the language leads to a definite
division of syntax and semantics, a split between the material linguistic objects and the
representations related to them; the linguistic objects acquire the characteristics of an
independent system.

Depending on the type of language which is used we may speak of informal and formal
thinking. In informal thinking, linguistic objects are primarily important to the extent that
they evoke definite sets of representations in us. The words here are strings by which we
extract from our memory particles of our experience of life; we relive them, compare
them, sort through them, and so on. The result of this internal work is the conversion of
representations S1 → S2, which models the changes R1 → R2 in the environment. But this
does not mean that informal thinking is identical to nonlinguistic thinking. In the first
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place, by itself the dismembering of the stream of perceptions depends on a system of
concepts fixed in language. In the second place, in the process of the conversion S1 -> S 2

the “natural form” of the linguistic object, the word, plays a considerable part. Very often
we use associations among words, not among representations. Therefore the formula for
nonformal thinking can be represented as follows: (S1, L1) → (S2, L2).

In formal thinking we operate with linguistic objects as if they were certain independent
and self-sufficient essences, temporarily forgetting their meanings and recalling them
only when it is necessary to interpret the result received or refine the initial premises. The
formula for formal thinking is as follows: S1 → L1→ L2 → S2.

In order for formal thinking to yield correct results, the semantic system of the language
must possess certain characteristics we describe by such terms as “precision,”
“definiteness,” and “lack of ambiguity.” If the semantic system does not possess these
characteristics, we shall not be able to introduce such formal conversions L1 → L2 in order
that, by using them, we may always receive a correct answer. Of course, it is possible to
establish the formal rules of conversions somehow and thus obtain a formalized
language, but this will be a language that sometimes leads to false conclusions. Here is an
example of a deduction which leads to a false result because of ambiguity in the semantic
system:

Vanya is a gypsy.
The gypsies came to Europe from India.

Therefore, Vanya came to Europe from India.

In practice, thus, semantic precision and syntactical formalization are inseparable, and a
language that satisfies both criteria is called formalized. But the leading criterion is the
syntactical one, for the very concept of a precise semantic system can be defined strictly
only through syntax. And indeed, the semantic system is precise if it is possible to
establish formalized syntax which yields only true models of reality.

 THE LANGUAGE MACHINE

BECAUSE the syntactical conversions L1 → L2 within the framework of a formalized
language are determined entirely by the physical type of objects Li, the formalized
language is in essence a machine that produces different changes of symbols. For a
completely algorithmized language, such as the language of arithmetic, this thesis is
perfectly obvious and is illustrated by the existence of machines in the ordinary, narrow
sense of the word (calculators and electronic computers) that carry out arithmetic
algorithms. If the rules of conversion are constraints only, it is possible to construct an
algorithm that determines whether the conversion L1 → L2 is proper for given L1 and L2. It
is also possible to construct an algorithm (a “stupid” one) which for a given L1 begins to
issue all proper results for L2 and continues this process to infinity if the number of



207

possible L2 is unlimited. In both cases we are dealing with a certain language machine,
that can work without human intervention.

The formalization of a language has two direct consequences. In the first place, the
process of using linguistic models is simplified because precise rules for converting L1 →
L2 appear. In the extreme case of complete algorithmization, this conversion can
generally be carried out automatically. In the second place, the linguistic model becomes
independent of the human brain which created it, and becomes an objective model of
reality. Its semantic system reflects, of course, concepts that have emerged in the process
of the development of the culture of human society, but in terms of syntax it is a language
machine that could continue to work and preserve its value as a model of reality even if
the entire human race were to suddenly disappear. By studying this model an intelligent
being with a certain knowledge of the object of modeling would probably be able to
reproduce the semantic system of the language by comparing the model to his own
knowledge. Let us suppose that people have built a mechanical model of the Solar
System in which the planets are represented by spheres of appropriate diameters
revolving on pivots around a central sphere, representing the sun, in appropriate orbits
with appropriate periods. Then let us suppose that this model has fallen into the hands
(perhaps the tentacles?) of the inhabitants of a neighboring stellar system, who know
some things about our Solar System—for example, the distances of some planets from
the sun or the times of their revolutions. They will be able to understand what they have
in front of them, and they will receive additional information on the Solar System. The
same thing is true of scientific theories, which are models of reality in its different
aspects, built with the material of formalized symbolic language. Like a mechanical
model of the Solar System, each scientific theory can in principle be deciphered and used
by any intelligent beings.

 FOUR TYPES OF LINGUISTIC ACTIVITY

Language can be characterized not only by the degree of its formalization but also by the
degree of its abstraction, which is measured by the abundance and complexity of the
linguistic constructs it uses. As we noted in chapter 7, it would be more correct to speak
of the “construct quality” of a language rather than of its abstractness, but the former term
[the Russian “konstruktnost”] has not yet been accepted. Therefore we shall use the term
“abstractness.” We shall call a language which does not use constructs or uses only those
of the very lowest level “concrete,” and we shall call a language which does use complex
constructs “abstract.” Although this is a conditional and relative distinction, its meaning
is nonetheless perfectly clear. And it does not depend on dividing languages into
formalized and unformalized, which are different aspects of language. By combining all
these aspects we obtain four types of languages used in the four most important spheres
of linguistic activity. They can be arranged according to the table below:
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Concrete Language Abstract Language

Unformalized Language Art Philosophy

Formalized Language Descriptive Sciences Theoretical sciences (mathematics)

Neither the vertical nor the horizontal division is strict and unambiguous; the differences
are more of a quantitative nature. There are transitional types on the boundaries between
these “pure” types of language.

Art is characterized by unformalized and concrete language. Words are important only as
symbols which evoke definite complexes of representations and emotions. The emotional
aspect is ordinarily decisive, but the cognitive aspect is also very fundamental. In the
most significant works of art these aspects are inseparable. The principal expressive
means is the image, which may be synthetic but always remains concrete.

Moving leftward across the table, we come next to philosophy, which is characterized by
abstract-act, informal thinking. The combination of an extremely high degree of
constructs among the concepts used and an insignificant degree of formalization requires
great effort by the intuition and makes philosophical language unquestionably the most
difficult of the tour types of language. When art raises abstract ideas it comes close to
philosophy. On the other hand, philosophy will use the artistic image now and again to
stimulate the intuition, and here it borders on art.

On the bottom right half of our table we find the theoretical sciences, characterized by an
abstract and formalized language. Science in general is characterized by formalized
language; the difference between the descriptive and theoretical sciences lies in a
different degree of use of concept-constructs. The language of descriptive science must
be concrete and precise; formalization of syntax by itself does not play a large part, but
rather acts as a criterion of the precision of the semantic system (logical consistency of
definitions, completeness of classifications, and so on).

The models of the world given by the descriptive sciences [bottom left of the table] are
expressed in terms of ordinary neuronal concepts or concepts with a low degree of
construct usage and, properly speaking, as models they are banal and monotypic: if some
particular thing is done (for example, a trip to Australia or cutting open the abdominal
cavity of a frog) it will be possible to see some other particular thing. On the other hand,
the whole essence of the theoretical sciences is that they give fundamentally new models
of reality: scientific theories based on concept-constructs not present at the neuronal
levels. Here the formalization of syntax plays the decisive part. The most extreme of the
theoretical sciences is mathematics, which contains the most complex constructs and uses
a completely formalized language. Properly speaking mathematics is the formalized
language used by the theoretical sciences.

Moving back up from the descriptive sciences we are again in the sphere of art.
Somewhere on the border between the descriptive sciences and art lies the activity of the
journalist or naturalist-writer.



209

 SCIENCE AND PHILOSOPHY

ALTHOUGH THE LANGUAGE of science is formalized, scientists cannot restrict
themselves to purely formal thinking. The use of a complete and finished theory does
indeed demand formal operations that do not go outside the framework of a definite
language, but the creation of a new theory always involves going beyond the formal
system; it is always a metasystem transition of greater or lesser degree.

Of course, we certainly cannot say that everyone who does not break down old
formalisms is working on banal and uncreative things. This applies only to those who
operate in accordance with already available algorithms, essentially performing the
functions of a language machine. But fairly complex formal systems cannot be
algorithmized and they offer a broad area for creative activity. Actions within the
framework of such a system can be compared to playing chess. In order to play chess
well one must study for a long time, memorize different variations and combinations, and
acquire a specific chess intuition. In the same way the scientist who is dealing with a
complex formalized language (that is to say, with mathematics either pure or applied)
develops in himself, through long study and training, an intuition for his language, often a
very narrow one, and obtains new theoretical results. This is, of course, activity which is
both noble and creative.

All the same, going beyond the old formalism is an even more serious creative step. If the
scientists we were discussing above could be called chess-player-scientists, then the
scientists who create new formalized languages and theories can be called philosopher-
scientists. We saw an example of these two types of scientist in our discussion of Fermat
and Descartes in chapter 11. The concepts of new theories do not emerge in precise and
formalized form from a vacuum. They become crystallized gradually, during a process of
abstract but not formalized thinking—i.e., philosophical thinking. And whereas here too
intuition is required, it is of a different type— philosophical. “The sciences,” Descartes
wrote in his Discours de la méthode “borrow their principles from philosophy.”

The creation of fundamental scientific theories lies in the borderline area between
philosophy and science. As long as a scientist operates with conventional concepts within
the framework of conventional formalized language he does not need philosophy. He is
like the chess player who pictures the same pieces on the same board, but solves different
problems. And he does obtain new results, relying on his intuition for chess. But in this
he will never, in his game of chess, go beyond the limits inherent in his language. To
improve language itself, to formalize what has not yet been formalized means to go into
philosophy. If a new theory does not contain this element it is only a consequence of old
theories. It can be said that the amount of what is new in any theory corresponds exactly
to the amount of philosophy in it.

From the above discussion the importance of philosophy for the activity of the scientist is
clear. In the Dialectic of Nature, F. Engels wrote:
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Naturalists imagine that they are free of philosophy when they ignore or downgrade it. But
because they cannot take a step without thinking, and thinking demands logical categories
and they borrow these categories uncritically either from the everyday, general
consciousness of so-called educated people among whom the remnants of long-dead
philosophical systems reign, from crumbs picked up in required university courses in
philosophy (which are not only fragmentary views, but also a hodgepodge of the views of
people affiliated with the most diverse and usually the most despicable schools), or from
uncritical and unsystematic reading of every kind of philosophical works—in the end they
are still subordinate to philosophy but, unfortunately, it is usually the most despicable
philosophy and those who curse philosophy most of all are slaves to the worst vulgarized
remnants of the worst philosophical systems.[1]

That sounds amazingly modern!

 FORMALIZATION AND THE METASYSTEM TRANSITION

THE CONVERSION of language, occurring as a result of formalization, into a reality
independent of the human mind which creates it has far-reaching consequences. The just-
created language machine (theory), as a part of the human environment, becomes an
object of study and description by means of the new language. In this way a metasystem
transition takes place. In relation to the described language the new language is a
metalanguage and the theories formulated in this language and concerned with theories in
the language-object are metatheories. If the metalanguage is formalized, it may in turn
become an object of study by means of the language of the next level and this
metasystem transition can be repeated without restriction.

In this way, the formalization of a language gives rise to the stairway effect (see chapter
5). Just as mastering the general principles of making tools to influence objects gives rise
to multiple repetitions of the metasystem transition and the creation of the hierarchical
system of industrial production, so mastering the general principle of describing
(modeling) reality by means of a formalized language gives rise to creation of the
hierarchical system of formalized languages on which the modern exact sciences are
based. Both hierarchies have great height. It is impossible to build a jet airplane with bare
hands. The same thing is true of the tools needed to build an airplane. One must begin
with the simplest implements and go through the whole hierarchy of complexity of
instruments before reaching the airplane. In exactly the same way, in order to teach the
savage quantum mechanics, one must begin with arithmetic.

 THE LEITMOTIF OF THE NEW MATHEMATICS

THE ESSENCE of what occurred in mathematics in the seventeenth century was that the
general principle of using formalized language was mastered. This marked the beginning
of movement up the stairway; it led to grandiose achievements and continues to the
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present day. It is true that this principle was not formulated so clearly then as now, and
the term “formalized language” did not appear until the twentieth century. But such a
language was in fact used. As we saw. Descartes' reform was the first step along this
path. The works of Descartes, in particular the quotations given above, show that this step
was far from accidental: rather it followed from his method of learning the laws of nature
which, if we put it in modern terms, is the method of creating models using formalized
language. Descartes was aware of the universality of his method and its mathematical
character. In the Regulae ad directionem ingenii he expresses his confidence that there
must be “some general science which explains everything related to order and measure
without going into investigation of any particular objects.” This science,” he writes,
should be called “universal mathematics.”

Another great mathematician-philosopher of the seventeenth century, G. Leibnitz (1646-
1716), understood fully the importance of the formalization of language and thinking.
Throughout his life Leibnitz worked to develop a symbolic calculus to which he ,gave the
Latin name characteristica universalis. Its goal was to express all clear human thoughts
and reduce logical deduction to purely mechanical operations. In one of his early works
Leibnitz states, “The true method should be our Ariadne's thread, that is, a certain
palpable and rough means which would guide the reason like lines in geometry and the
forms of operations prescribed for students of arithmetic. Without this our reason could
not make the long journey without getting off the road.” This essentially points out the
role of formalized language as the material fixer of concept-constructs—i.e., its main
role. In his historical essay on the foundations of mathematics[2] N. Bourbaki writes:

The many places in the works of Leibnitz where he mentions his grandiose project and the
progress which would follow upon its realization show how clearly he understood
formalized language as a pure combination of characters in which only their coupling is
important, so that a machine will be able to derive all theorems and it will be possible to
resolve all incomplete or mistaken understanding by simple calculation. Although such
hopes might seem excessive, it must be admitted that it was in fact under the constant
influence of them that Leibnitz created a significant share of his mathematical writings,
above all his works on the symbolism of infinitesimal calculus. He himself was very well
aware of this and openly linked his ideas of introducing indexes and determinants and his
draft of the “geometric calculus” to his “charateristica.” But he felt that his most significant
work would be symbolic logic.... And although he was not able to create such calculus, at
least he started work to carry out his intention three times.

Leibnitz's ideas on the characteristica universalis. were not elaborated in his day. The
work of formalizing logic did not get underway until the second half of the nineteenth
century. But Leibnitz's ideas are testimony to the fact that the principle of describing
reality by means of formalized logic is an inborn characteristic of European mathematics,
and has always been the source of its development, even though different authors have
been aware of this to different degrees.

It is not our purpose to set forth the history of modern mathematics or to give a detailed
description of the concepts on which it is based; a separate book would be required for
that. We shall have to be satisfied with a brief sketch that only touches that aspect of
mathematics which is most interesting to us in this book—specifically, the system aspect.
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The leitmotif in the development of mathematics during the last three centuries has been
the gradually deepening awareness of mathematics as a formalized language and the
resulting growth of multiple levels in it, occurring through metasystem transitions of
varying scale.

We shall now review the most important manifestations of this process; they can be
called variations on a basic theme, performed on different instruments and with different
accompaniment. Simultaneously with upward growth in the edifice of mathematics there
was an expansion of all its levels, including the lowest one—the level of applications .

 “NONEXISTENT” OBJECTS

WE HAVE ALREADY spoken of “impossible” numbers—irrational, negative, and
imaginary numbers. From the point of view of Platonism the use of such numbers is
absolutely inadmissible and the corresponding symbols are meaningless. But Indian and
Arabic mathematicians began to use them in a minor way, and then in European
mathematics they finally and irreversibly took root and received reinforcement in the
form of new “nonexistent” objects, such as an infinitely remote point of a plane. This did
not happen all at once, though. For a long time the possibility of obtaining correct results
by working with “nonexistent” objects seemed amazing and mysterious. In 1612 the
mathematician Clavius, discussing the rule that “a minus times a minus yields a plus”
wrote: “Here is manifested the weakness of human reason which is unable to understand
how this can be true.” In 1674, discussing a certain relation between complex numbers,
Huygens remarked: “There is something incomprehensible to us concealed here.” A
favorite expression of the early eighteenth century was the “incomprehensible riddles of
mathematics.” Even Cauchy in 1821 had very dim notions of operations on complex
quantities.[3]

The last doubts and uncertainties related to uninterpreted objects were cleared up only
with the introduction of the axiomatic approach to mathematical theories and final
awareness of the “linguistic nature” of mathematics. We now feel that there is no more
reason to be surprised at or opposed to the presence of such objects in mathematics than
to be surprised at or opposed to the presence of parts in a car in addition to the four
wheels, which are in direct contact with the ground and set the car in motion. Complex
numbers and objects like them are the internal “wheels” of mathematical models; they are
connected with other “wheels,” but not directly with the “ground,” that is, the elements of
nonlinguistic reality. Therefore one may go right on and operate with them as formal
objects (that is, characters written on paper) in accordance with their properties as defined
by axioms. And there is no reason to grieve because you cannot go to the pastry shop and
buy square root (-15) rolls.
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 THE HIERARCHY OF THEORIES

AWARENESS OF THE PRINCIPLE of describing reality by means of formalized
language gives rise, as we have seen, to the stairway effect. Here is an example of a
stairway consisting of three steps. Arithmetic is a theory we apply directly to such objects
of nonlinguistic reality as apples, sheep, rubles, and kilograms of goods. In relation to it
school algebra is a metatheory that knows only one reality—numbers and numerical
equalities—while its letter language is a metalanguage in relation to the language of the
numerals of arithmetic. Modern axiomatic algebra is a metatheory in relation to school
algebra. It deals with certain objects (whose nature is not specified) and certain
operations on these objects (the nature of the operations is also not specified). All
conclusions are drawn from the characteristics of the operations. In the applications of
axiomatic algebra to problems formulated in the language of school algebra, objects are
interpreted as variables and operations are arithmetic operations. But modern algebra is
applied with equal success to other branches of mathematics, for example to analysis and
geometry.

A thorough study of mathematical theory generates new mathematical theories which
consider the initial theory in its different aspects. Therefore, each of these theories is in a
certain sense simpler than the initial theory, just as the initial theory is simpler than
reality, which it always considers in some certain aspect. The models are dismembered
and a set of simpler models is isolated from the complex one. Formally speaking, new
theories are just as universal as the initial theory: they can be applied to any objects,
regardless of their nature, if they satisfy the axioms. With the axiomatic approach
different mathematical theories form what is, strictly speaking, a hierarchy of complexity,
not of control. When we consider the models that in fact express laws of nature (the ones
used in applications of mathematics), however, we see that mathematical theories are
very clearly divided into levels according to the nature of the objects to which they are
actually applied. Arithmetic and elementary geometry are in direct contact with
nonlinguistic reality, but a certain theory of groups is used to create new physical theories
from which results expressed in the language of algebra and analysis are extracted and
then “put in numbers”: only after this are they matched with experimental results. This
distribution of theories by levels corresponds overall to the order in which they arose
historically, because they arose through successive metasystem transitions. The situation
here is essentially the same as in the hierarchy of implements of production. It is possible
to dig up the ground with a screwdriver, but that tool was not invented for this purpose
and really is needed only by someone working with screws and bolts. Group theory can
be illustrated by simple examples from everyday life or elementary mathematics, but it is
really used only by mathematicians and theoretical physicists. A clerk in a store or an
engineer in the field has no more use for group theory than the primitive has for a
screwdriver.



214

 THE AXIOMATIC METHOD

ACCORDING TO THE ancient Greeks, the objects of mathematics had real existence in
the “world of ideas.” Some of the properties of these objects seemed in the mind to be
absolutely indisputable; they were declared axioms. Others, which were not so obvious,
had to be proved using the axioms. With such an approach there was no great need to
precisely formulate and to completely list all the axioms: if some “indisputable” attribute
of objects is used in a proof, it is not that important to know whether it has been included
in a list of axioms or not: the truth of the property being proved does not suffer. Although
Euclid did give a list of definitions and axioms (including postulates) in his Elements as
we saw in chapter 10, now and again he used assumptions which are completely obvious
intuitively but not included in the list of axioms. As for his definitions, there are more of
them than there are objects defined, and they are completely unsuitable for use in the
proof process. The list of definitions in the first book of the Elements begins as follows:

1. The point is that which does not have parts.

2. The line is a length without width.

3. The ends of lines are points.

4. A straight line is a line which lies the same relative to all its points.

There are a total of 34 definitions. The Swiss geometer G. Lambert (1728-1777) noted in
this regard: “What Euclid offers in this abundance of definitions is something like a
nomenclature. He really proceeds like, for example, a watchmaker or other artisan who is
beginning to familiarize his apprentices with the names of the tools of his trade.”

The trend toward formalization of mathematics generated a trend toward refinement of
definitions and axioms. Leibnitz called attention to the fact that Euclid's construction of
an equilateral triangle relies on an assumption that does not follow from the definitions
and axioms (we reviewed this construction in chapter 10). But it was only the creation of
non-Euclidean geometry by N. 1. Lobachevsky (1792- 1856), J. Bolyai (1802-1860), and
K. Gauss (1777- 1855) which brought universal recognition of the axiomatic approach to
mathematical theories as the fundamental method of mathematics. At first Lobachevsky's
“imaginary” (conceptual) geometry, like all “imaginary” phenomena in mathematics,
encountered distrust and hostility. Soon the irrefutable fact of the existence of this
geometry began to change the point of view of mathematicians concerning the relation
between mathematical theory and reality. The mathematician could not refuse
Lobachevsky's geometry the right to exist, because this geometry was proved to be
noncontradictory. It is true that Lobachevsky's geometry contradicted our geometrical
intuition, but with a sufficiently small parameter of spatial curvature it was
indistinguishable from Euclidean geometry in small spatial volumes. As for the cosmic
scale, it is not at all obvious that we can trust our intuition there, because our intuition
forms under the influence of experience limited to small volumes. Thus we face two
competing geometries and the question arises: which of them is “true”?
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When we ponder this question it becomes clear that the word “true” is not placed in
quotation marks without reason. Strictly speaking, the experiment cannot answer the
question of the truth or falsehood of geometry: it can only answer the question of its
usefulness or lack of usefulness, or more precisely its degree of usefulness, for there are
perhaps no theories which are completely useless. The experiment deals with physical,
not geometric, concepts. When we turn to the experiment we are forced to give some
kind of interpretation to geometric objects, for example to consider that straight lines are
realized by light beams. If we discover that the sum of the angles of a triangle formed by
light beams is less than 180 degrees, this in no way means that Euclidean geometry is
“false.” Possibly it is “true,” but the light is propagated not along straight lines but along
arcs of circumference or some other curved lines. To speak more precisely, this
experiment will demonstrate that light beams cannot be considered as Euclidean straight
lines. Euclidean geometry itself will not be refuted by this. The same thing applies, of
course, to non-Euclidean geometry also. The experiment can answer the question of
whether the light beam is an embodiment of the Euclidean straight line or the
Lobachevsky straight line, and this of course is an important argument in choosing one
geometry or the other as the basis for physical theories. But it does not take away the
right to existence of the geometry which “loses out.” It may perhaps do better next time
and prove very convenient for describing some other aspect of reality.

Such considerations led to a reevaluation of the relative importance of the nature of
mathematical objects and their properties (including relations as properties of pairs,
groups of three, and other such objects). Whereas formerly objects seemed to have
independent, real existence while their properties appeared to be something secondary
and derived from their nature, now it was the properties of the objects, fixed in axioms,
which became the basis by which to define the specific nature of the given mathematical
theory while the objects lost all specific characteristics and, in general, lost their “nature,”
which is to say, the intuitive representations necessarily bound up with them. In
axiomatic theory the object is something which satisfies the axioms. The axiomatic
approach finally took root at the turn of the twentieth century. Of course, intuition
continued to be important as the basic (and perhaps only) tool of mathematical creativity,
but it came to be considered that the final result of creative work was the completely
formalized axiomatic theory which could be interpreted to apply to other mathematical
theories or to nonlinguistic reality.

 METAMATHEMATICS

THE FORMALIZATION of logic was begun (if we do not count Leibnitz's first
attempts) in the mid-nineteenth century in the works of G. Boole (1815-1864) and was
completed by the beginning of the twentieth century, primarily thanks to the work of
Schroeder, C. S. Peirce, Frege, and Peano. The fundamental work of Russell and
Whitehead, the Principia Mathematica, which came out in 1910, uses a formalized
language which, disregarding insignificant variations, is still the generally accepted one
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today. We described this language in chapter 6, and now we shall give a short outline of
the formalization of logical deduction.

There are several formal systems of logical deduction which are equivalent to one
another. We shall discuss the most compact one. It uses just one logical connective,
implication ⊃, and one quantifier, the universal quantifier . But then it includes a logical
constant which is represented by the symbol 0 and denotes an identically false statement.
Using this constant it is possible to write the negation of statement p as p ⊃ 0, and from
negation and implication it is easy to construct the other logical connectives. The
quantifier of existence is expressed through negation and the quantifier of generality, so
our compressed language is equivalent to the full language considered in chapter 6.

The formal system (language machine) contains five axioms and two rules of inference.
The axioms are the following:

• A1. p ⊃ (q ⊃ p)

• A2. [p ⊃ (q ⊃ r)] ⊃ [(p ⊃ q ) ⊃ (p ⊃ r)]

• A3. [(p ⊃ 0) ⊃ 0] ⊃ p

• A4. ( x)[ p ⊃ q (x)] ⊃ [p ⊃ ( x)q (x)]

• A5. ( x)q (x) ⊃ q (t)]

In this p, q, and r are any propositions; in A4 and A5 the entry q(r) means that one of the
free variables on which proposition q depends has been isolated: the entry q(t) means that
some term t has been substituted for this variable: finally, in A4 it is assumed that
variable r does not enter p as a free variable.

It is easy to ascertain that these axioms correspond to our intuition. Axioms A1-A3
involve only propositional calculus and their truth can be tested by the truth tables of
logical connectives.  It turns out that they are always true, regardless of the truth values
assumed by propositions p, q, and r. A4 says that if q(r) follows for any r from
proposition p which does not depend on r, the truth of q(r) for any r follows from p. A5 is
in fact a definition of the universal quantifier: if q(r) is true for all r, then it is also true for
any t.

The rules of inference may be written concisely in the following way:

In this notation the premises are above the line and the conclusion is below. The first rule
(which traditionally bears the Latin name modus ponens) says that if there are two
premises, proposition p and a proposition which affirms that q follows from p, then we
deduce proposition p as the conclusion. The second rule, the rule of generalization, is

MP
p / p ⊃ q

q
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based on the idea that if it has been possible to prove a certain proposition p(x), which
contains free variable r, it may be concluded that the proposition will be true for any
value of this variable.

The finite sequence of formulas D = (d1, d2, . . . , dn) such that dn coincides with q and
each formula dn is either a formula from a set of premises X, a logical axiom, or a
conclusion obtained according to the rules of inference from the preceding formulas dj is
called the logical deduction of formula q from the set of formulas (premises) X. When we
consider axiomatic theory, the aggregate of all axioms of the given theory figures as the
set X and the logical deduction of a certain formula is its proof.

Thus, the formula's proof itself became a formal object, a definite type of formula
(sequence of logical statements) and as a result the possibility of purely syntactical
investigation of proofs as characteristics of a certain language machine. This possibility
was pointed out by the greatest mathematician of the twentieth century, David Hilbert
(1862-1943), who with his students laid the foundations of the new school. Hilbert
introduced the concept of the metalanguage and called the new school metamathematics.
The term metasystem which we introduced at the start of the book (and which is now
generally accepted) arose as a result of generalizing Hilbert's terminology. Indeed, the
transition to investigating mathematical proofs by mathematical means is a brilliant
example of a large-scale metasystem transition.

The basic goal pursued by the program outlined by Hilbert was to prove that different
systems of axioms were consistent (noncontradictory). A system of axioms is called
contradictory if it is possible to deduce from it a certain formula q and its negation —q. It
is easy to show that if there is at least one such formula, that is to say if the theory is
contradictory, then any formula can be deduced from it. For an axiomatic theory,
therefore, the question of the consistency of the system of axioms on which it is based is
extremely important. This question admits a purely syntactical treatment: is it possible
from the given formulas (strings of characters), following the given formal rules, to
obtain a given formal result? This is the formulation of the question from which Hilbert
began: it then turned out that there are also other important characteristics of theories
which can be investigated by syntactical methods. Many very interesting and important
results, primarily of a negative nature, were obtained in this way.

 THE FORMALIZATION OF SET THEORY

THE CONCEPT of the aggregate or set is one of the most fundamental concepts given to
us by nature: it precedes the concept of number. In its primary form it is not differentiated
into the concepts of the finite and infinite sets, but this differentiation appears very early:
in any case, in very ancient written documents we can already find the concept of infinity
and the infinite set. This concept was used in mathematics from ancient times on,
remaining purely intuitive, taken as self-explanatory and not subject to special
consideration, until Georg Cantor (1845- 1918) developed his theory of sets in the 1870s.
It soon became the basis of all mathematics. In Cantor the concept of the set (finite or
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infinite) continues to be intuitive. He defines it as follows: “By a set we mean the joining
into a single whole of objects which are clearly distinguishable by our intuition or
thought.” Of course, this “definition” is no more mathematical than Euclid's “definition”
that “The point is that which does not have parts.” But despite such imprecise starting
points, Cantor (once again, like the Greek geometers) created a harmonious and logically
consistent theory with which he was able to put the basic concepts and proofs of
mathematical analysis into remarkable order. (“It is simply amazing,” writes Bourbaki,
“what clarity is gradually acquired in his writing by concepts which, it seemed, were
hopelessly confused in the classical conception of the “continuum.”)[4] In set theory
mathematicians received a uniform method of creating new concept-constructs and
obtaining proofs of their properties. For example, the real number is the set of all
sequences of rational numbers which have a common limit: the line segment is a set of
real numbers: the function is the set of pairs (x, f) where x and f are real numbers.

By the end of the nineteenth century Cantor's set theory had become recognized and was
naturally combined with the axiomatic method. But then the famous “crisis of the
foundations” of mathematics burst forth and continued for three decades. “Paradoxes,”
which is to say constructions leading to contradiction, were found in set theory. The first
paradox was discovered by Burali-Forti in 1897 and several others appeared later. As an
example we will give Russell's paradox (1905), which can be presented using only the
primary concepts of set theory and at the same time not violating the requirements of
mathematical strictness. This is the paradox. Let us define M as the set of all those sets
which do not contain themselves as an element. It would seem that this is an entirely
proper definition because the formation of sets from sets is one of the bases of Cantor's
theory. However, it leads to a contradiction. In order to make this clearer we shall use
P(x) to signify the property of set X of being an element of itself. In symbolic form this
will be

P(x) ≡ x  x         (1)

Then, according to the definition of set M, all its elements X gave the property which is
the opposite of P(x):

x  M ≡ -P(x)        (2)

Then we put the question: is set M itself an element, that is, is P(M) true? If P(M) is true,
then M  M according to definition (1). But in this case, substituting M for X in
proposition (2) we receive –P(x) , for if M is included in set M, then according to the
definition of the latter it should not have property P. On the other hand, if P(M) is false,
then -P(M) occurs; then according to (2) M should be included in M, that is, P(M) is true.
Thus, P(M) cannot be either true or false. From the point of view of formal logic we have
proved two implications:

P(M)  –P(M)

–P(M)  P(M)
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If the implication is expressed through negation and disjunction and we use the property
of disjunction A A = A, the first statement will become -P(M) while the second will
become P(M). Therefore, a formal contradiction takes place and therefore anything you
like may be deduced from set theory!

The paradoxes threatened set theory and the mathematical analysis based on it. Several
philosophical-mathematical schools emerged which proposed different ways out of this
blind alley. The most radical school was headed by Brouwer and came to be called
intuitionism; this school demanded not only a complete rejection of Cantor's set theory,
but also a radical revision of logic. Intuitionist mathematics proved quite complex and
difficult to develop, and because it threw classical analysis onto the scrap heap most
mathematicians found this position unacceptable. “No one can drive us from the heaven
which Cantor created for us,” Hilbert announced, and he found a solution which kept the
basic content of set theory and at the same time eliminated the paradoxes and
contradictions. With his followers Hilbert formulated the main channel along which the
current of mathematical thought flowed.

Hilbert's solution corresponds entirely to the spirit of development of European
mathematics. Whereas Cantor viewed his theory from a profoundly Platonist standpoint,
as an investigation of the attributes of really existing and actually infinite sets, according
to Hilbert the sets must be viewed as simply certain objects that satisfy axioms, while the
axioms must be formulated so that definitions leading to paradoxes become impossible.
The first system of set theory axioms which did not give rise to contradictions was
proposed in 1908 by Zermelo and later modified. Other systems were also proposed, but
the attitude toward set theory remained unchanged. In modern mathematics set theory
plays the role of the frame, the skeleton which joins all its parts into a single whole but
cannot be seen from the outside and does not come in direct contact with the external
world. This situation can be truly understood and the formal and contentual aspects of
mathematics combined only from the “linguistic” point of view regarding mathematics.
This point of view, which we have followed persistently throughout this book, leads to
the following conception. There are no actually infinite sets in reality or in our
imagination. The only thing we can find in our imagination is the notion of potential
infinity—that is, the possibility of repeating a certain act without limitation. Here we
must agree fully with the intuitionist criticism of Cantor's set theory and give due credit
to its insight and profundity. To use set theory in the way it is used by modern
mathematics, however, it is not at all necessary to force one's imagination and try to
picture actual infinity. The “sets” which are used in mathematics are simply symbols,
linguistic objects used to construct models of reality. The postulated attributes of these
objects correspond partially to intuitive concepts of aggregateness and potential infinity;
therefore intuition helps to some extent in the development of set theory, but sometimes it
also deceives. Each new mathematical (linguistic) object is defined as a “set” constructed
in some particular way. This definition has no significance for relating the object to the
external world, that is for interpreting it: it is needed only to coordinate it with the frame
of mathematics, to mesh the internal wheels of mathematical models. So the language of
set theory is in fact a metalanguage in relation to the language of contentual mathematics,
and in this respect it is similar to the language of logic. If logic is the theory of proving
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mathematical statements, then set theory is the theory of constructing mathematical
linguistic objects.

Precisely why did the intuitive concept of the set form the basis of mathematical
construction? To define a newly introduced mathematical object means to point out its
semantic ties with objects introduced before. With the exception of the trivial case where
we are talking about redesignation, replacing a sign with a sign, there are always many
such ties, and many objects introduced earlier can participate in them. And so, instead of
saying that the new object is related in such-and-such ways to such-and-such old objects,
it is said that the new object is a set constructed of the old objects in such-and-such a
manner. For example, a rational number is the result of dividing two natural numbers: the
numerator by the denominator. The number 5/7 is object X such that the value of the
function “numerator” (X) is 5 and the value of the function “denominator” (X) is 7. In
mathematics, however, the rational number is defined simply as a pair of natural
numbers. In exactly the same way it would be necessary to speak only of the realization
of a real number by different sequences of rational numbers, understanding this to mean a
definite semantic relation between the new and old linguistic objects. Instead of this, it is
said that the real number is a set of sequences of rational numbers. At the present time the
terminology should be considered a vestige of Platonic views according to which what is
important is not the linguistic objects but the elements of “ideal reality” concealed behind
them, and therefore an object must be defined as a “real” set to acquire the right to exist.
The idea of the set was promoted to “executive work” in mathematics as one of the
aspects of the relation of name and meaning (specifically, that the meaning is usually a
construction which includes a number of elements), and it is hardly necessary to prove
that the relation of name and meaning always has been and always will be the basis of
linguistic construction.

 BOURBAKI'S TREATISE

AT THE CONCLUSION of this chapter we cannot help saying a few words about
Bourbaki's multivolume treatise entitled Eléments de mathematique. Nicholas Bourbaki
is a collective pseudonym used by a group of prominent mathematicians, primarily
French, who joined together in the 1930s. Eléments de mathematique started publication
in 1939.

Specialists from different fields of mathematics joined together in the Bourbaki group on
the basis of a conception of mathematics as a formalized language. The goal of the
treatise was to present all the most important achievements of mathematics from this
point of view and to represent mathematics as one formalized language. And although
Bourbaki's treatise has been criticized by some mathematicians for various reasons, it is
unquestionably an important milestone in the development of mathematics along the path
of self-awareness.

Bourbaki's conception was set forth in layman's terms in the article “The Architecture of
Mathematics.” At the start of the article the author asks: is mathematics turning into a
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tower of Babel, into an accumulation of isolated disciplines? Are we dealing with one
mathematics or with several? The answer given to this question is as follows. Modern
axiomatic mathematics is one formalized language that expresses abstract mathematical
structures that are not distinct, independent objects but rather form a hierarchical system.
By a “structure” Bourbaki means a certain number of relations among objects which
possess definite properties. Leaving the objects completely undefined and formulating the
properties of relations in the form of axioms and then extracting the consequences from
them according to the rules of logical inference, we obtain an axiomatic theory of the
given structure. Translated into our language, a structure is the semantic aspect of a
mathematical model. Several types of fundamental generating structures may be
identified. Among them are algebraic structures (which reflect the properties of the
composition of objects), structures of order, and topological structures (properties related
to the concepts of contiguity, limit, and continuity). In addition to the most general
structure of the given type—that is, the structure with the smallest number of
axioms—we find in each type of generating structure structures obtained by including
additional axioms. Thus, group theory includes the theory of finite groups, the theory of
abelian groups, and the theory of finite abelian groups. Combining generating structures
produces complex structures such as, for example, topological algebra. In this way a
hierarchy of structures emerges.

How is the axiomatic method employed in creative mathematics? This is where,
Bourbaki writes, the axiomatic method is closest to the experimental method. Following
Descartes, it “divides difficulties in order to resolve them better.” In proofs of a complex
theory it tries to break down the main groups of arguments involved and, taking them
separately, deduce consequences from them (the dismemberment of models or structures,
which we discussed above). Then, returning to the initial theory, it again combines the
structures which have been identified beforehand and studies how they interact with one
another. We conclude with this citation:

From the axiomatic point of view, mathematics appears thus as a storehouse of abstract
forms—the mathematical structures: and it so happens—without our knowing why—that
certain aspects of empirical reality fit themselves into these forms, as if through a kind of
preadaptation. Of course, it cannot be denied that most of these forms had originally a
very definite intuitive content; but it is exactly by deliberately throwing out this content
that it has been possible to give these forms all the power which they were capable of
displaying and to prepare them for new interpretations and for the development of their
full power.[5]

[1] Engels, F. Dialektika prirody (The Dialectic of Nature). Gospolitizdat Publishing
House, 1955, p. 165.

[2] Bourbaki, N. Elements d'histoire des mathematiques. Paris: Hermann. The quote is
from the first essay, in the session “Formalization of Logic.”

[3] This opinion and the quotations cited above were taken from H. Weyl's book The
Philo.sophy of Mathematics (Russian edition O filosofi matematiki. Moscow-Leningrad,
1934).
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[4] Bourbaki, first essay, section “Set Theory.”

[5] Bourbaki, “The Architecture of Mathematiques.”
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CHAPTER THIRTEEN

Science and Metascience

 EXPERIMENTAL PHYSICS

WHEN THE FOUNDATIONS of the new mathematics were being constructed at the
turn of the seventeenth century, the basic principles of experimental physics were also
developed. Galileo (1564-1642) played a leading role in this process. He not only made
numerous discoveries and inventions which constituted an epoch in themselves, but
also—in his books, letters, and conversations—taught his contemporaries a new method
of acquiring knowledge. Galileo's influence on the minds of others was enormous.
Francis Bacon (1566-1626) was also important in establishing experimental science. He
gave a philosophical analysis of scientific knowledge and the inductive method.

Unlike the ancient Greeks, the European scientists were by no means contemptuous of
empirical knowledge and practical activity. At the same time they were full masters of
the theoretical heritage of the Greeks and had already begun making their own
discoveries. This combination engendered the new method. “Those who have treated of
the sciences,” Bacon writes.

“have been either empirics or dogmatical. The former like ants only heap up and use their
store, the latter like spiders spin out their own webs. The bee, a mean between both,
extracts matter from the flowers of the garden and the field, but works and fashions it by its
own efforts. The true labor of philosophy resembles hers, for it neither relies entirely nor
principally on the powers of the mind, nor yet lays up in the memory the matter afforded
by the experiments of natural history and mechanics in its raw state, but changes and works
it in the understanding. We have good reason, therefore, to derive hope from a closer and
purer alliance of these faculties (the experimental and rational) than has yet been
attempted.[1]

 THE SCIENTIFIC METHOD

THE CONCEPT of the experiment assumes the existence of a theory. Without a theory
there is no experiment: there is only observation. From the cybernetic (systems) point of
view the experiment is a controlled observation: the controlling system is the scientific
method, which relies on theory and dictates the organization of the experiment. Thus, the
transition from simple observation to the experiment is a metasystem transition in the
realm of experience and it is the first aspect of the emergence of the scientific method. Its
second aspect is awareness of the scientific method as something standing above the
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theory—in other words, mastering the general principle of describing reality by means of
formalized language, which we discussed in the previous chapter. As a whole, the
emergence of the scientific method is one metasystem transition which creates a new
level of control, including control of observation (organization of the experiment) and
control of language (development of theory). The new metasystem is what we mean by
science in the modern sense of the word. Close direct and feedback ties are established
between the experiment and the theory within this metasystem. Bacon describes them this
way: “Our course and method . . . are such as not to deduce effects from effects, nor
experiments from experiments (as the empirics do), but in our capacity of legitimate
interpreters of nature, to deduce causes and axioms from effects and experiments.”[2]

We can now give a final answer to the question: what happened in Europe in the early
seventeenth century? A very major metasystem transition took place, engulfing both
linguistic and nonlinguistic activity. In the sphere of nonlinguistic activity it took shape
as the experimental method. In the realm of linguistic activity it gave rise to the new
mathematics, which has developed by metasystem transitions (the stairway effect) in the
direction of ever-deeper self-awareness as a formalized language used to create models of
reality. We described this process in the preceding chapter without going beyond
mathematics. We can now complete this description by showing the system within which
this process becomes possible. This system is science as a whole with the scientific
method as its control device—that is, the aggregate of all human beings engaged in
science who have mastered the scientific method together with all the objects used by
them. When we were introducing the concept of the stairway effect in chapter 5 we
pointed out that it takes place in the case where there is a metasystem Y which continues
to be a metasystem in relation to systems of the series X, X', X”,. . . , where each
successive system is formed by a metasystem transition from the preceding one and,
while remaining a metasystem, at the same time insures the possibility of metasystem
transitions of smaller scale from X to X', from X” to X”', and so on. Such a system Y
possesses inner potential for development: we called it an ultrametasystem. In the
development of physical production ultrametasystem Y is the aggregate of human beings
who have the ability to convert means of labor into objects of labor. In the development
of the exact sciences ultrametasystem Y is the aggregate of people who have mastered the
scientific method—that is, who have the ability to create models of reality using
formalized language.

We have seen that in Descartes the scientific method, taken in its linguistic aspect, served
as a lever for the reform of mathematics. But Descartes did not just reform mathematics;
while developing the same aspect of the same scientific method he created a set of
theoretical models or hypotheses to explain physical, cosmic, and biological phenomena.
If Galileo may be called the founder of experimental physics and Bacon its ideologist,
then Descartes was both the founder and ideologist of theoretical physics. It is true that
Descartes' models were purely mechanical (there could be no other models at that time)
and imperfect, and most of them soon became obsolete. But those imperfections are not
so important as the fact that Descartes established the principle of constructing theoretical
models. In the nineteenth century, when the first knowledge of physics was accumulated
and the mathematical apparatus was refined, this principle demonstrated its full utility.
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It will not be possible here to give even a brief survey of the evolution of the ideas of
physics and its achievements or the ideas and achievements of the other natural sciences.
We shall dwell on two aspects of the scientific method which are universally important,
namely the role of general principles in science and the criteria for selecting scientific
theories, and then we shall consider certain consequences of the advances of modern
physics in light of their great importance for the entire system of science and for our
overall view of the world. At the conclusion of this chapter we shall discuss some
prospects for the development of the scientific method.

 THE ROLE OF GENERAL PRINCIPLES

BACON SET FORTH a program of gradual introduction of more and more general
statements (“causes and axioms”) beginning with unique empirical data. He called this
process induction (that is to say, introduction) as distinguished from deduction of less
general theoretical statements from more general principles. Bacon was a great opponent
of general principles; he said that the mind does not need wings to raise it aloft, but lead
to hold it on the ground. During the period of the “initial accumulation” of empirical facts
and very simple empirical rules this conception still had some justification (it was also a
counterbalance to Medieval Scholasticism), but it turned out later that the mind still needs
wings more than lead. In any case, that is true in theoretical physics. To confirm this let
us turn to Albert Einstein. In his article entitled “The Principles of Theoretical Physics,”
he writes:

To apply his method the theoretician needs a foundation of certain general assumptions,
so-called principles, from which he can deduce consequences. His activity thus breaks into
two stages. In the first place he must search for the principles, and in the second place he
must develop the consequences which follow from these principles. School has given him
good weapons to perform the second task. Therefore, if the first task has been
accomplished for a certain area, that is to say a certain aggregate of interdependencies, the
consequences will not be long in coming. The first task mentioned, establishing the
principles which can serve as the basis for deduction, is categorically different. Here there
is no method which can be taught and systematically applied to achieve the goal. What the
investigator must do is more like finding in nature precisely formulated general principles
which reflect definite general characteristics of the set of experimentally determined
facts.[3]

In another article entitled “Physics and Reality,”[4] Einstein speaks very categorically:
“Physics is a developing logical system of thinking whose foundations cannot be
obtained by extraction from past experience according to some inductive methods, but
come only by free fantasy.” The words about “free fantasy” do not mean, of course, that
general principles do not depend on experience at all but rather that they are not
determined uniquely by experience. The example Einstein often gave is that Newton's
celestial mechanics and Einstein's general theory of relativity were constructed from the
same facts of experience. But they began from completely different (in a certain sense
even diametrically opposed) general principles, which is also seen in their different
mathematical apparatuses.
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As long as the edifice of theoretical physics had just a few “stories” and the consequences
of general principles could be deduced easily and unambiguously, people were not aware
that they had a certain freedom in establishing the principles. The distance between the
trial and the error (or the success) in the trial and error method was so slight that they did
not notice that they were using this method, but rather thought that they were deducing
(although it was called inducing, not deducing) principles directly from experience.
Einstein writes: “Newton, the creator of the first vast, productive system of theoretical
physics still thought that the basic concepts and principles of his theory followed from
experience. Apparently this is how his statement, 'Hypotheses non fingo' (I do not
compose hypotheses) must be understood.” With time, however, theoretical physics
changed into a multistory construction and the deduction of consequences from general
principles became a complex and not always unambiguous business, for it often proved
necessary in the process of deduction to make additional assumptions, most frequently
“unprincipled” simplifications without which the reduction to numerical calculation
would have been impossible. Then it became clear that between the general principles of
the theory and the facts permitting direct testing in experience there is a profound
difference: the former are free constructions of human reason, while the latter are the raw
material reason receives from nature. True, we should not overestimate the profundity of
this difference. If we abstract from human affairs and strivings it will appear that the
difference between theories and facts disappears: both are certain reflections or models of
the reality outside human beings. The difference lies in the level at which the models
originate. The facts, if they are completely “deideologized,” are determined by the effect
of the external world on the human nervous system which we are compelled (for the
present) to consider a system that does not permit alteration, and therefore we relate to
facts as the primary reality. Theories are models embodied in linguistic objects. They are
entirely in our power and thus we can throw out one theory and replace it with another
just as easily as we replace an obsolete tool with a more highly refined one.

Growth in the abstractness (construct quality) of the general principles of physical
theories and their remoteness from the immediate facts of experience leads to a situation
in which it becomes increasingly more difficult using the trial and error method to find a
trial which has a chance of success. Reason begins to experience an acute need for wings
to soar with, as Einstein too is saying. On the other hand, the increase in the distance
between general principles and verifiable consequences makes the general principles
invulnerable to experience within certain limits, which was also frequently pointed out by
the classics of modern physics. Upon finding a discrepancy between the consequences of
a theory and the experiment, the investigator faces two alternatives: look for the causes of
the discrepancy in the general principles of the theory or look for them somewhere
between the principles and the concrete consequences. In view of the great value of
general principles and the significant expenditures required to revise the theory as a
whole, the second path is always tried first. If the deduction of consequences from the
general principles can be modified so that they agree with the experiment, and if this is
done in a sufficiently elegant manner, everyone is appeased and the problem is
considered solved. But sometimes the modification very clearly appears to be a patch,
and sometimes patches are even placed on top of patches and the theory begins to tear
open at the seams: nonetheless, its deductions are in agreement with the data of
experience and continue to have their predictive force. Then these questions arise: what
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attitude should be taken toward the general principles of such a theory? Should we try to
replace them with some other principles? What point in the “patchwork” process, how
much “patching,” justifies discarding the old theory?

 CRITERIA FOR THE SELECTION OF THEORIES

FIRST OF ALL let us note that a clear awareness of scientific theories as linguistic
models of reality substantially lessens the impact of the competition between scientific
theories and the naive point of view (related to Platonism) according to which the
linguistic objects of a theory only express some certain reality, and therefore each theory
is either “really” true if this reality actually exists or “really” false if this reality is
fabricated. This point of view is engendered by transferring the status of the language of
concrete facts to the language of concept-constructs. When we compare two competing
statements such as “There is pure alcohol in this glass” and “There is pure water in this
glass,” we know that these statements permit an experimental check and that the one
which is not confirmed loses all meaning as a model and all truth value. It is in fact false
and only false. Things are entirely different with statements which express the general
principles of scientific theories. Many verifiable consequences are deduced from them
and if some of these prove false it is customary to say that the initial principles (or
methods of deducing consequences) are not applicable to the given sphere of experience;
it is usually possible to establish formal criteria of applicability. In a certain sense,
therefore, general principles are “always true”: to be more precise, the concepts of truth
and falsehood are not applicable to them, but the concept of their greater or lesser utility
for describing real facts is applicable. Like the axioms of mathematics, the general
principles of physics are abstract forms into which we attempt to squeeze natural
phenomena. Competing principles stand out by how well they permit this to be done. But
what does “well” mean'?

If a theory is a model of reality, then obviously it is better if its sphere of application is
broader and if it can make more predictions. Thus, the criterion of the generality and
predictive power of a theory is the primary one for comparing theories. A second
criterion is simplicity; because theories are models intended for use by people they are
obviously better when they are simpler to use.

If scientific theories were viewed as something stable, not subject to elaboration and
improvement, it would perhaps be difficult to suggest any other criteria. But the human
race is continuously elaborating and improving its theories, which gives rise to one more
criterion, the dynamic criterion, which is also the decisive one. In The Philosophy of
Science this criterion was well stated by Phillip Frank:

If we investigate which theories have actually been preferred because of their simplicity,
we find that the decisive reason for acceptance has been neither economic nor esthetic, but
rather what has often been called “dynamic.” This means that the theory was preferred that
proved to make science more “dynamic,” i.e., more fit to expand into unknown territory.
This can be made clear by using an example that we have invoked frequently in this book:
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the struggle between the Copernican and the Ptolemaic systems. In the period between
Copernicus and Newton a great many reasons had been invoked on behalf of one or the
other system. Eventually, however, Newton advanced his theory of motion, which
accounted excellently for all motions of celestial bodies (e.g., comets), while Copernicus as
well as Ptolemy had accounted for only the motions in our planetary system. Even in this
restricted domain, they neglected the “perturbations” that are due to the interactions
between the planets. However, Newton's laws originated in generalizations of the
Copernican theory, and we can hardly imagine how they could have been formulated if he
had started with the Ptolemaic system. In this respect and in many others, the Copernican
theory was the more “dynamic” one or, in other words, had the greater heuristic value. We
can say that the Copernican theory was mathematically “simpler” and also more dynamic
than the Ptolemaic theory.[5]

The esthetic criterion or the criterion of the beauty of a theory, which is mentioned by
Frank, is difficult to defend as one independent of other criteria. But it becomes very
important as an intuitive synthesis of all the above-mentioned criteria. To a scientist a
theory seems beautiful if it is sufficiently general and simple and he feels that it will
prove to be dynamic. Of course, he may be wrong in this too.

 THE PHYSICS OF THE MICROWORLD

IN BOTH PHYSICS and pure mathematics, as the abstractness of the theories increased
the understanding of their linguistic nature became solidly rooted. The decisive impetus
was given to this process in the early twentieth century when physics entered the world of
atoms and elementary particles, and quantum mechanics and the theory of relativity were
created. Quantum mechanics played a particularly large part. This theory cannot be
understood at all unless one constantly recalls that it is just a linguistic model of the
microworld, not a representation of how it would “really” look if it were possible to see it
through a microscope with monstrous powers of magnification; there is no such
representation nor can there be one. Therefore the notion of the theory as a linguistic
model of reality became a constituent part of modern physics, essential for successful
work by physicists. Consequently their attitude toward the nature of their work also
began to change. Formerly the theoretical physicist felt himself to be the discoverer of
something which existed before him and was independent of him, like a navigator
discovering new lands; now he feels he is more a creator of something new, like a master
artisan who creates new buildings, machines, and tools and has complete mastery of his
own tools. This change has even appeared in our way of talking. Traditionally, Newton is
said to have “discovered” [otkryl] infinitesimal calculus and celestial mechanics; when
we speak of a scientist today we say that he has “created” [sozdal], “proposed”
[predlozhil], or “worked out” [razrabotal] a new theory. The expression “discovered”
sounds archaic. Of course, this in no way diminishes the merits of the theoreticians, for
creation is as honorable and inspiring an occupation as discovery.

But why did quantum mechanics require awareness of the “linguistic quality” of theories?



229

According to the initial atomistic conception, atoms were simply very small particles of
matter, small corpuscles which had, in particular, a definite color and shape which
determined the color and physical properties of larger accumulations of atoms. The
atomic physics of the early tenth century transferred the concept of indivisibility from the
atom to elementary particles—the electron, the proton, and soon after the neutron. The
word “atom” began to mean a construction consisting of an atomic nucleus (according to
the initial hypothesis it had been an accumulation of protons and electrons) around which
electrons revolved like planets around the sun. This representation of the structure of
matter was considered hypothetical but extremely plausible. The hypothetical quality was
understood in the sense discussed above: the planetary model of the atom must be either
true or false. If it is true (and there was virtually no doubt of this) then the electrons
“really” are small particles of matter which describe certain trajectories around a nucleus.
Of course, in comparison with the atoms of the ancients, the elementary particles were
already beginning to lose some properties which would seem to be absolutely essential
for particles of matter. It became clear that the concept of color had absolutely no
application to electrons and protons. It was not that we did not know what color they
were; the question was simply meaningless, for color is the result of interaction with light
by at least the whole atom, and more precisely by an accumulation of many atoms.
Doubts also arose regarding the concepts of the shape and dimensions of electrons. But
the most sacred element of the representation of the material particle, that the particle has
a definite position in space at each moment, remained undoubted and taken for granted.

 THE UNCERTAINTY RELATION

QUANTUM MECHANICS destroyed this notion, through the force of new experimental
data. It turned out that under certain conditions elementary particles behave like waves,
not particles; in this case they are not “blurred” over a large area of space, but keep their
small dimensions and discreteness. The only thing that is blurred is the probability of
finding them at a particular point in space.

As an illustration of this let us consider figure 13.1.

Figure 13.1.  Diffraction of electrons.
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The figure shows an electron gun which sends electrons at a certain velocity toward a
diaphragm behind which stands a screen. The diaphragm is made of a material which is
impervious to electrons, but it has two holes through which electrons pass to strike the
screen. The screen is coated with a substance that fluoresces when acted upon by
electrons, so that there is a flash at the place struck by an electron. The stream of
electrons from the gun is sufficiently infrequent so that each electron passes through the
diaphragm and is recorded on the screen independently of others. The distance between
the holes in the diaphragm is many times greater than the dimensions of the electrons
(according to any estimate of their size) but comparable with the quantity h/p where h is
the Planck constant and p is the momentum of the electron—i.e., the product of its
velocity and mass. These are the conditions of the experiment. The result of the
experiment is a distribution of flashes on the screen. The first conclusion from analyzing
the results of the experiment is the following: electrons strike different points of the
screen and it is impossible to predict which point each electron will strike. The only thing
that can be predicted is the probability that a particular electron will strike a particular
point—that is, the average density of flashes after a very large number of electrons have
struck the screen. But this is just half the trouble. One can imagine that different electrons
pass through different parts of the hole in the diaphragm, experience effects of differing
force from the edges of the holes, and therefore are deflected differently. The real
troubles arise when we begin to investigate the average density of flashes on the screen
and compare it with the results which are obtained when we close one of the holes in the
diaphragm. If an electron is a small particle of matter, then when it reaches the region of
the diaphragm it is either absorbed or passes through one of the holes. Because the holes
in the diaphragm are set symmetrically relative to the electron gun, on the average half of
the electrons pass through each hole. This means that if we close one hole and pass 1
million electrons through the diaphragm then close the second hole and open the first and
pass 1 million more electrons through, we should receive the same average density of
flashes as if we were to pass 2 million electrons through the diaphragm with two holes
open. But it turns out that this is not the case! With two holes open the distribution is
different; it contains maximums and minimums as is the case in diffraction of waves.

The average density of flashes can be calculated by means of quantum mechanics,
relating the electrons to the so-called wave function, which is a certain imaginary field
whose intensity is proportional to the probability of the observed events.

It would take too much space to describe all the attempts, none successful, which have
been made to correlate the representation of the electron as a “conventional” particle
(such particles have come to be called classical as opposed to quantum particles) with the
experimental data on electron behavior. There is a vast literature, both specialized and
popular, devoted to this question. The following two things have become clear. In the
first place. if we simultaneously measure the coordinate of a quantum particle (any such
particle, not necessarily an electron) on a certain axis X and the momentum in this
direction p, the errors of measurement, which we designate x and p respectively,
comply with Heisenberg's uncertainty relation:

x p  ≥ h
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No clever tricks can get around this relation. When we try to measure coordinate X more
exactly the spread of magnitudes of momentum p is larger, and vice versa. The
uncertainty relation is a universally true law of nature, but because the Planck constant h
is very small, the relation plays no part in measurements of bodies of macroscopic size.

In the second place, the notion that quantum particles really move along certain
completely definite trajectories—which is to say at each moment they really have a
completely definite coordinate and velocity (and therefore also momentum) which we are
simply unable to measure exactly—runs up against insurmountable logical difficulties.
On the other hand, the refusal on principle to ascribe a real trajectory to the quantum
particle and adoption of the tenet that the most complete description of the state of a
particle is an indication of its wave function yields a logically flawless, mathematically
simple and elegant theory which fits brilliantly with experimental facts; specifically. the
uncertainty relation follows from it immediately. This is the theory of quantum
mechanics. The work of Niels Bohr (1885-1962) the greatest scientist-philosopher of our
time, played the major part in clarifying the physical and logical foundations of quantum
mechanics and interpreting it philosophically.

 GRAPHIC AND SYMBOLIC MODELS

SO AN ELECTRON does not have a trajectory. The most that can be said of an electron
is an indication of its wave function whose square will give us the probability of finding
the electron in the proximity of a particular point in space. But at the same time we say
that the electron is a material particle of definite (and very small) dimensions. Combining
these two representations, as was demanded by observed facts, proved a very difficult
matter and even today there are still people who reject the standard interpretation of
quantum mechanics (which has been adopted by a large majority of physicists following
the Bohr school) and want to give the quantum particles back their trajectories no matter
what. Where does such persistence come from? After all, the expropriation of color from
the electrons was completely painless and, from a logical point of view, recognizing that
the concept of trajectory cannot apply to the electron is no different in principle from
recognizing that the concept of color does not apply. The difference here is that when we
reject the concept of color we are being a little bit hypocritical. We say that the electron
has no color, but we ourselves picture it as a little greyish (or shiny, it is a matter of taste)
sphere. We substitute an arbitrary color for the absence of color and this does not hinder
us at all in using our model. But this trick does not work in relation to position in space.
The notion of an electron which is located somewhere at every moment hinders
understanding of quantum mechanics and comes into contradiction with experimental
data. Here we are forced to reject completely the graphic geometric representation of
particle movement. And this is what causes the painful reaction. We are so accustomed to
associating the space-time picture with true reality, with what exists objectively and
independently of us, that it is very difficult for us to believe in an objective reality which
does not fit within this conception. And we ask ourselves again and again: after all, if the
electron is not “blurred” in space, then it must really be somewhere, mustn't it?
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It requires real mental effort to recognize and feel the meaninglessness of this question.
First we must be aware that all our knowledge and theories are secondary models of
reality, that is, models of the primary models which are the data of sensory experience.
These data bear the ineradicable imprint of the organization of our nervous system and
because space-time concepts are set in the very lowest levels of the nervous system, none
of our perceptions and representations, none of the products of our imagination, can go
outside the framework of space-time pictures. But this framework can still be broadened
to some extent. This must be done, however, not by an illusory movement “downward,”
toward objective reality “as it is, independent of our sense organs,” but rather by a
movement “upward,” that is, by constructing secondary symbolic models of reality.
Needless to say, the symbols of the theory preserve their continuous space-time existence
just as the primary data of experience do. But in the relations between the one and the
other, which is to say in the semantics of the theory, we can allow ourselves significant
freedom if we are guided by the logic of new experimental facts, and not by our
customary space-time intuition. And we can construct a sign system whose functioning is
in no way related to graphic representations but is entirely appropriate to the condition of
adequately describing reality. Quantum mechanics is such a system. In this system the
quantum particle is neither a little greyish sphere nor a shiny one, and it is not a
geometric point; it is a certain concept, a functional node of the system which, together
with the other nodes, ensures description and anticipation of the real facts of experience:
flashes on the screen, instrument readings, and the like.

Let us return to the question of how the electron “really” moves. We have seen that,
owing to the uncertainty relation, the experiment cannot in principle give an answer to
this question. This question is therefore meaningless as an '“external part” of the physical
model of reality. All that we can do is to ascribe a purely theoretical meaning to it. But
then it loses its direct linkage with observed phenomena and the expression “really”
becomes pure deception! When we go outside the sphere of perception and declare that
such-and-such “really” takes place we are always moving upward, not downward; we are
constructing a pyramid of linguistic objects and it is only because of the optical illusion
that it seems to us we are going deeper into the realm which lies beneath sensory
experience. To put it metaphorically, the plane that separates sensory experience from
reality is absolutely impervious; and when we attempt to discern what is going on
beneath it we see only the upside-down reflection of the pyramid of theories. This does
not mean that true reality is unknowable and our theories are not correct models of it; one
must remember, however, that all these models lie on this side of sensory experience and
it is meaningless to correlate distinct elements of theories with the illusory “realities” on
the other side, as was done by Plato for example. The representation of the electron as a
little sphere moving along a trajectory is just as much a construction as is the interlinking
of the symbols of quantum theory. It differs only in that it includes a space-time picture
to which, following convention, we ascribe illusory reality by using the expression
“really,” which is meaningless in this case.

The transition to conscious construction of symbolic models of reality that do not rely on
any graphic representations of physical objects is the great philosophical achievement of
quantum mechanics. In fact physics has been a symbolic model since Newton's time and
it owes its successes (numerical calculations) to precisely this symbolic nature; but
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graphic representations were present as an essential element. Now they are not essential
and this has broadened the class of possible models. Those who want to bring back the
graphic quality no matter what, although they see that the theory works better without it,
are in fact asking that the class of models be narrowed. They will hardly be successful.
They are like the odd fellow who hitched his horse to a steam locomotive for, although he
could see that the train moved without a horse, it was beyond his powers to recognize
such a situation as normal. Symbolic models are a steam engine which has no need to be
harnessed to the horse of graphic representations for each and every concept.

 THE COLLAPSE OF DETERMINISM

THE SECOND IMPORTANT result of quantum mechanics, the collapse of determinism,
was significant in general philosophy. Determinism is a philosophical concept. It is the
name used for the view which holds that all events occurring in the world have definite
causes and necessarily occur; that is, they cannot not occur. Attempts to make this
definition more precise reveal the logical defects in it which hinder precise formulation of
this viewpoint as a scientific proposition without introducing any additional
representations about objective reality. In fact, what does “events have causes” mean?
Can it really be possible to indicate some finite number of “causes” of a given event and
say that there are no others? And what does it mean that the event “cannot not occur?” If
this means only that it has occurred then the statement becomes a tautology.

Philosophical determinism can, however, obtain a more precise interpretation within the
framework of a scientific theory which claims to be a universal description of reality. It
actually did receive such an interpretation within the framework of mechanism
(mechanical philosophy), the philosophical-scientific conception which emerged on the
basis of the advances of classical mechanics in application to the motions of the celestial
bodies. According to the mechanistic conception the world is three-dimensional
Euclidean space filled with a multitude of elementary particles which move along certain
trajectories. Forces operate among the particles depending on their arrangement relative
to one another and the movement of particles follows the laws of Newton's mechanics.
With this representation of the world, its exact state (that is, the coordinates and velocities
of all particles) at a certain fixed moment in time uniquely determines the exact state of
the world at any other moment. The famous French mathematician and astronomer P.
Laplace (1749-1827) expressed this proposition in the following words:

Given for one instance an intelligence which could comprehend all the forces by which
nature is animated and the respective situation of the beings who compose it—an
intelligence sufficiently vast to submit these data to analysis—it would embrace in the
same formula the movements of the greatest bodies of the universe and those of the lightest
atom; for it, nothing would be uncertain and the future, as the past, would be present to its
eyes.[6]

This conception became called Laplacian determinism. It is a proper and inevitable
consequence of the mechanistic conception of the world. It is true that Laplace's
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formulation requires a certain refinement from a modern point of view because we cannot
recognize as proper the concepts of an all-knowing reason or absolute precision of
measurement. But it can be modernized easily, almost without changing its meaning. We
say that if the coordinates and velocities of all particles in a sufficiently large volume of
space are known with adequate precision then it is possible to calculate the behavior of
any system in any given time interval with any given precision. The conclusion that all
future states of the universe are predetermined can be drawn from this formulation just as
from Laplace's initial formulation. By unrestrictedly increasing the precision and scope of
measurements we unrestrictedly extend prediction periods. Because there are no
restrictions in principle on the precision and range of measurements (that is, restrictions
which follow not from the limitations of human capabilities but from the nature of the
objects of measurement) we can picture the extreme case and say that really the entire
future of the world is already absolutely and uniquely determined today. In this case the
expression “really” acquires a perfectly clear meaning: our intuition easily recognizes
that this “really” is proper and we object to its discrediting.

Thus, the mechanistic conception of the world leads to the notion of the complete
determinism of phenomena. But this contradicts our own subjective feeling of free
choice. There are two ways out of this: to recognize the feeling of freedom of choice as
“illusory” or to recognize the mechanistic conception as unsuitable as a universal picture
of the world. It is already difficult today to say how thinking people of the “pre-quantum”
age were divided between these two points of view. If we approach the question from a
modern standpoint, even knowing nothing of quantum mechanics, we must firmly adhere
to the second point of view. We now understand that the mechanistic conception, like any
other conception, is only a secondary model of the world in relation to the primary data
of experience; therefore the immediate data of experience always have priority over any
theory. The feeling of freedom of choice is a primary fact of experience just like other
primary facts of spiritual and sensory experience. A theory cannot refute this fact; it can
only correlate new facts with it, a procedure which, where certain conditions are met, we
call explanation of the fact. To declare freedom of choice “illusory” is just as
meaningless as telling a person with a toothache that his feeling is “illusory.” The tooth
may be entirely healthy and the feeling of pain may be a result of stimulation of a certain
segment of the brain, but this does not make it “illusory.”

Quantum mechanics destroyed determinism. Above all the representation of elementary
particles as little corpuscles moving along definite trajectories proved false, and as a
consequence the entire mechanistic picture of the world—which was so understandable,
customary, and seemingly absolutely beyond doubt—also collapsed. Twentieth-century
physicists can no longer tell people what the world in which they live is really like, as
nineteenth-century physicists could. But determinism collapsed not only as a part of the
mechanistic conception, but also as a part of any picture of the world. In principle one
could conceive of a complete description (picture) of the world that would include only
really observed phenomena but would give unambiguous predictions of all phenomena
that will ever be observed. We now know that this is impossible. We know situations
exist in which it is impossible in principle to predict which of the sets of conceivable
phenomena will actually occur. Moreover, according to quantum mechanics these
situations are not the exception; they are the general rule. Strictly determined outcomes
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are the exception to the rule. The quantum mechanics description of reality is a
fundamentally probabilistic description and includes unequivocal predictions only as the
extreme case.

As an example let us again consider the experiment with electron diffraction depicted in
figure 13.1. The conditions of the experiment are completely determined when all
geometric parameters of the device and the initial momentum of the electrons released by
the gun are given. All the electrons propelled from the gun and striking the screen are
operating under the same conditions and are described by the same wave function.
However, they are absorbed (produce flashes) at different points of the screen, and it is
impossible to predict beforehand at what point an electron will produce a flash. It is even
impossible to predict whether the electron will be deflected upward or downward in our
picture; all that can be done is to indicate the probability of striking different segments of
the screen.

It is permissible, however, to ask the following question: why are we confident that if
quantum mechanics cannot predict the point which an electron will strike no other future
theory will be able to do this?

We shall give two answers to this question. The first answer can be called formal.
Quantum mechanics is based on the principle that description by means of the wave
function is a maximally complete description of the state of the quantum particle. This
principle, in the form of the uncertainty relation that follows from it, has been confirmed
by an enormous number of experiments whose interpretation contains nothing but
concepts of the lowest level, directly linked to observed quantities. The conclusions of
quantum mechanics, including the more complex mathematical calculations, have been
confirmed by an even larger number of experiments. And there are absolutely no signs
that we should doubt this principle. But this is equivalent to the impossibility of
predicting the exact outcome of an experiment. For example, to indicate what point on
the screen an electron will strike one must have more knowledge about it than the wave
function provides.

The second answer requires an understanding of why we are so disinclined to agree that it
is impossible to predict the point the electron will strike. Centuries of development in
physics have accustomed people to the thought that the movement of inanimate bodies is
controlled exclusively by causes external to them and that these causes can always be
discovered by sufficiently precise investigation. This statement was completely justified
as long as it was considered possible to watch a system without affecting it, which held
true for experiments with macroscopic bodies. Imagine that figure 13.1 shows the
distribution of cannonballs instead of electrons. and that we are studying their movement.
We see that in one case the ball is deflected upward while in another it goes downward;
we do not want to believe that this happens by itself, but are convinced that the difference
in the behavior of the cannonballs can be explained by some real cause. We photograph
the flight of the ball, do some other things, and finally find phenomena A1 and A2, which
are linked to the flight of the cannonball in such a way that where A1 is present the ball is
deflected upward and where A2 is present it goes downward. We therefore say that A1 is
the cause of deflection upward while A2 is the cause of deflection downward. Possibly our
experimental area will prove inadequate or we shall simply get tired of investigating and
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not find the sought-for cause. We shall still remain convinced that a cause really exists,
and that if we had looked harder we would have found phenomena A1 and A2.

In the experiment with electrons, once again we see that the electron is deflected upward
in some cases and downward in others and in the search for the cause we try to follow its
movement, to peek behind it. But it turns out here that we cannot peek behind the
electron without having a most catastrophic effect on its destiny. A stream of light must
be directed at the electron if we are to “see” it. But the light interacts with the substance
in portions, quanta, which obey the same uncertainty relation as do electrons and other
particles. Therefore it is not possible to go beyond the uncertainty relation by means of
light or by any other investigative means. In attempting to determine the coordinate of the
electron more precisely by means of photons we either transfer such a large and
indeterminate momentum to it that it spoils the entire experiment or we measure the
coordinate so crudely that we do not find out anything new about it. Thus, phenomena A1

and A2 (the causes according to which the electron is deflected upward in some cases and
downward in others) do not exist in reality. And the statement that there “really” is some
cause loses any scientific meaning.

Thus, there are phenomena that have no causes, or more precisely, there are series of
possibilities from which one is realized without any cause. This does not mean that the
principle of causality should be entirely discarded: in the same experiment, by turning off
the electron gun we cause the flashes on the screen to completely disappear, and turning
off the gun does cause this. But this does mean that the principle must be narrowed
considerably in comparison with the way it was understood in classical mechanics and
the way it is still understood in the ordinary consciousness. Some phenomena have no
causes; they must be accepted simply as something given. That is the kind of world we
live in.

The second answer to the question about the reasons for our confidence that
unpredictable phenomena exist is that the uncertainty relation assists us in clarifying not
only a mass of new facts but also the nature of the break regarding causality and
predictability that occurs when we enter the microworld. We see that belief in absolute
causality originated from an unstated assumption that there are infinitely subtle means of
watching and investigating, of “peeking” behind the object. But when they came to
elementary particles physicists found that there is a minimum quantum of action
measurable by the Planck constant h, and this creates a vicious circle in attempts to make
the description of one particle by means of another detailed beyond measure. So absolute
causality collapsed, and with it went determinism. From a general philosophical point of
view it is entirely natural that if matter is not infinitely divisible then description cannot
be infinitely detailed so that the collapse of determinism is more natural than its survival
would have been.

 “CRAZY” THEORIES AND METASCIENCE[7]

THE ABOVEMENTIONED SUCCESSES of quantum mechanics refer primarily to the
description of nonrelativistic particles—that is, particles moving at velocities much
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slower than the velocity of light, so that effects related to relativity theory (relativistic
effects) can be neglected. We had nonrelativistic quantum mechanics in mind when we
spoke of its completeness and logical harmony. Nonrelativistic quantum mechanics is
adequate to describe phenomena at the atomic level, but the physics of elementary high-
energy particles demands the creation of a theory combining the ideas of quantum
mechanics with the theory of relativity. Only partial successes have been achieved thus
far on this path; no single, consistent theory of elementary particles which explains the
enormous material accumulated by experimenters exists. Attempts to construct a new
theory by superficial modifications of the old theory do not yield significant results.
Creation of a satisfactory theory of elementary particles runs up against the uniqueness of
this realm of phenomena, phenomena which seem to take place in a completely different
world and demand for their explanation completely unconventional concepts which differ
fundamentally from our customary scheme of concepts.

In the late 1950s Heisenberg proposed a new theory of elementary particles. Upon
becoming familiar with it Bohr said that it could hardly prove true because it was “not
crazy enough.” The theory was not in fact recognized, but Bohr's pointed remark became
known to all physicists and even entered popular writing. The word “crazy” [Russian
sumasshedshaya, literally “gone out of the mind”] was naturally associated with the
epithet “strange,” which was applied to the world of elementary particles. But does
“crazy” mean just “strange,” “unusual”? Probably if Bohr had said “not unusual enough,”
it would not have become an aphorism. The word “crazy” has a connotation of
“unreasoned,” “coming from an unknown place,” and brilliantly characterizes the current
situation of the theory of elementary particles, in which everyone recognizes that the
theory must be fundamentally revised, but no one knows how to do it.

The question arises: does the “strangeness” of the world of elementary particles—the fact
that our intuition, developed in the macroworld, does not apply to it—doom us to wander
eternally in the darkness?

Let us look into the nature of the difficulties which have arisen. The principle of creating
formalized linguistic models of reality did not suffer in the transition to study of the
microworld. But if the wheels of these models, the physical concepts, came basically
from our everyday macroscopic experience and were only refined by formalization, then
for the new, “strange” world we need new, “strange” concepts. But we have nowhere to
take them from; they will have to be constructed and also combined properly into a whole
scheme. In the first stage of study of the microworld the wave function of nonrelativistic
quantum mechanics was constructed quite easily by relying on the already existing
mathematical apparatus used to describe macroscopic phenomena (the mechanics of the
material point, the mechanics of continuous media, and matrix theory). Physicists were
simply lucky. They found prototypes of what they needed in two (completely different)
concepts of macroscopic physics and they used them to make a “centaur,” the quantum
concept of the wave-particle. But we cannot count on luck all the time. The more deeply
we go into the microworld the greater are the differences between the wanted concept-
constructs and the ordinary concepts of our macroscopic experience: it thus becomes less
and less probable that we shall be able to improvise them, without any tools, without any
theory. Therefore we must subject the very task of constructing scientific concepts and
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theories to scientific analysis, that is, we must make the next metasystem transition. In
order to construct a definite physical theory in a qualified manner we need a general
theory of the construction of physical theories (a metatheory) in the light of which the
way to solve our specific problem will become clear.

The metaphor of the graphic models of the old physics as a horse and the abstract
symbolic models as a steam engine can be elaborated as follows. Horses were put at our
disposal by nature. They grow and reproduce by themselves and it is not necessary to
know their internal organization to make use of them. But we ourselves must build the
steam engine. To do this we must understand the principles of its organization and the
physical laws on which they are based and furthermore we must have certain tools for the
work. In attempting to construct a theory of the “strange” world without a metatheory of
physical theories we are like a person who has decided to build a steam engine with his
bare hands or to build an airplane without having any idea of the laws of aerodynamics.

And so the time has come for the next metasystem transition. Physics needs . . . I want to
say “metaphysics,” but, fortunately for our terminology, the metatheory we need is a
metatheory in relation to any natural science theory which has a high degree of
formalization and therefore it is more correct to call it a metascience. This term has the
shortcoming of creating the impression that a metascience is something fundamentally
outside of science whereas in fact the new level of the hierarchy created by this
metasystem transition must, of course, be included in the general body of science, thereby
broadening it. The situation here is similar to the situation with the term
metamathematics: after all, metamathematics is also a part of mathematics. Inasmuch as
the term “metamathematics was acceptable nonetheless, the term “metascience” may also
be considered acceptable. But because a very important part of metascientific
investigation is investigation of the concepts of a theory, the term conceptology may also
be suggested.

The basic task of metascience can be formulated as follows. A certain aggregate of facts
or a certain generator of facts is given. How can one construct a theory that describes
these facts effectively and makes correct predictions?

If we want metascience to go beyond general statements it must be constructed as a full-
fledged mathematical theory and its object the natural science theory, must be presented
in a formalized (albeit simplified: such is the price of formalization) manner, subject to
mathematics. Represented in this form the scientific theory is a formalized linguistic
model whose mechanism is the hierarchical system of concepts, a point of view we have
carried through the entire book. From it, the creation of a mathematical metascience is the
next natural metasystem transition, and when we make this transition we make our
objects of study formalized languages as a whole—not just their syntax but also, and
primarily, their semantics, their application to description of reality. The entire course of
development of physico-mathematical science leads us to this step.

But in our reasoning thus far we have been basing ourselves on the needs of physics.
How do things stand from the point of view of pure mathematics?
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Whereas theoretical physicists know what they need but can do little, “pure”
mathematicians might rather be reproached for doing a great deal but not knowing what
they need. There is no question that many pure mathematical works are needed to give
cohesion and harmony to the entire edifice of mathematics, and it would be silly to
demand immediate “practical” application from every work. All the same, mathematics is
created to learn about reality, not for esthetic or sporting purposes like chess, and even
the highest stages of mathematics are in the last analysis needed only to the extent that
they promote achievement of this goal.

Apparently, upward growth of the edifice of mathematics is always necessary and
unquestionably valuable. But mathematics is also growing in breadth and it is becoming
increasingly difficult to determine what is needed and what is not and, if it is needed, to
what extent. Mathematical technique has now developed to the point where the
construction of a few new mathematical objects within the framework of the axiomatic
method and investigation of their characteristics has become almost as common, although
not always as easy, a matter as computations with fractions were for the Ancient
Egyptian scribes. But who knows whether these objects will prove necessary? The need
is emerging for a theory of the application of mathematics, and this is actually a
metascience. Therefore, the development of metascience is a guiding and organizing task
in relation to the more concrete problems of mathematics.

The creation of an effective metascience is still far distant. It is difficult today to even
picture its general outlines. Much more preparatory work must be done to clarify them.
Physicists must master “Bourbakism” and develop a “feel” for the play of mathematical
structures, which leads to the emergence of rich axiomatic theories suitable for detailed
description of reality. Together with mathematicians they must learn to break symbolic
models down into their individual elements of construction in order to compose the
necessary blocks from them. And of course, there must be development of the technique
of making formal computations with arbitrary symbolic expressions (and not just
numbers) using computers. Just as the transition from arithmetic to algebra takes place
only after complete assimilation of the technique of arithmetic computations, so also the
transition to the theory of creating arbitrary sign systems demands highly sophisticated
techniques for operations on symbolic expressions and a practical answer to the problem
of carrying out cumbersome formal computations. Whether the new method will
contribute to a resolution of the specific difficulties that now face the theory of
elementary particles or whether they will be resolved earlier by “oldtime” manual
methods we do not know and in the end it is not important because new difficulties will
undoubtedly arise. One way or another, the creation of a metascience is on the agenda.
Sooner or later it will be solved, and then people will receive a new weapon for
conquering the strangest and most fantastic worlds.

[1] Francis Bacon, Novum Organum, Great books of the Western World, Encyclopedia
Britannica, 1955, Aphorism 95, p 126.

[2] Bacon, Aphorism 117, p 131.
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[3] See the collection A. Einstein, Fizika i real'nost (Phyics and Reality). Moscow:
Nauka Publishing House, 1965. The quotations below are also taken from this Russian
work [Original article available in Mein Weltbild, Amsterdam, 1934 -trans.]

[4]  Original article in Franklin Institute Journal, vol 221, 1936, pp. 313-57 - trans.

[5] Phillip Frank, The Philosophy of Science (Englewood Cliffs, New York: Prentice
Hall, 1957).

[6] Laplace. P., Opyt filosofi terertt veroyatnostei, Moscow, 1908. p 9 [Original Essai
philosophique des probabilités, 1814. English translation, A Philosophical Essay on
Probabilities, New York: Dover Publications. 1951—trans.]

[7] This section is written on the motifs of the author's article published under the same
title in the journal Voprosy filosofi (Questions of Philosophy), No 5, 1968.
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CHAPTER FOURTEEN

The Phenomenon of Science

 THE HIGHEST LEVEL OF THE HIERARCHY

THE UNIVERSE IS EVOLVING. The organization of matter is constantly growing
more complex. This growing complexity occurs through metasystem transitions from
which new levels of organization emerge which are levels of the control hierarchy. The
inorganic world, plants, animals, the human being—such has been the course of
evolution on our planet, and as far as we know this is the greatest advance which has
been made in the part of space that surrounds us. It also seems highly probable that the
human being is the crown of evolution of the entire cosmos. In any case, we do not have
any direct indications or even the slightest hints of the existence of a higher level of
organization. Therefore all we can do is consider ourselves the highest.

The appearance of the human being marks the beginning of the Age of Intellect, when the
leading force of development becomes conscious human creativity and the highest level
of organization is the culture of human society. In its development culture generates the
next level of the hierarchy within itself. This is critical thinking which, in its turn, gives
rise to modern science, constructing models of reality using sign systems. These are new
models; they did not and could not exist in the minds of individual human beings outside
of civilization and culture, and they enlarge human power over nature colossally. They
make up the continuously improving and developing super-brain of the super-being
which is humanity as a whole. Thus, science is the highest level of the hierarchy in the
organization of cosmic matter. It is the highest growth point of a growing tree, the
leading shoot in the evolution of the universe. This is the significance of the cosmic
phenomenon of science as a part of the phenomenon of man.

 SCIENCE AND PRODUCTION

JUST AS IN THE EVOLUTION of animals there was a stage when the central nervous
system formed and as a result profound changes occurred in the structure, behavior, and
external appearance of the organism, an age of swift and profound changes under the
direct influence of science has now arrived in the development of society. At the
beginning of the first industrial revolution science played a relatively small part, but then
came discoveries in physics and chemistry which led to revolutionary changes in
technology and the conditions of societal life. In the 1950s the second industrial
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revolution began, indebted entirely to scientific advances. It is still picking up speed
today and even its very immediate repercussions are difficult to anticipate.

It is now widely recognized that science has become a direct productive force. On the
other hand, it cannot develop without the development of industrial production, and that
is becoming increasingly expensive. Modern production requires not only that ready
formulas from science be used but also that scientific research and the scientific approach
be introduced in all elements of production. More and more it comes to resemble science.
On the other hand, science, attracting a significant part of the human and physical
resources of society and becoming a regulated, mass occupation, is acquiring the
characteristics of production. Science and production are growing together into a single
hierarchical system. The uppermost growth point sends out leaves which grow rapidly at
first but then stop and become standard, stable forms of interaction with physical reality:
electrical motors, airplanes, machines to produce synthetic fabrics, and genetic methods
of selection. But the growth point rises higher and higher and generates more and more
new leaves.

 THE GROWTH OF SCIENCE

SCIENCE IS GROWING. It grows exponentially, which is to say that its quantitative
characteristics increase so many times each so many years. The total number of articles in
scientific journals throughout the world doubles every 12 to 15 years.[1]

The number of workers in science doubles every 15 years in Western Europe, every 10
years in the United States, and every 7 years in the USSR. With such a furious growth
rate the contemporary generation of scientists constitutes 90 percent of all the scientists
who have ever lived on Earth.

Along with science other quantitative characteristics of the human race are growing
exponentially: the total number of people and the total volume of production of material
goods. But science significantly surpasses them in growth rate. The growth rates of
population, production, and science are roughly in the ratio 1:2:4. This is a healthy ratio
which reflects that evolution of an organism where the mass of muscles is growing more
rapidly than the total mass of the body but the mass of the brain is growing more rapidly
than the mass of the muscles. Unfortunately, the territorial distribution of growth is poor.
High population growth falls primarily in countries with low production growth and
virtually no contribution to world science. We hope, however, that humanity will be able
to handle these growing pains. There can hardly be any doubt that growing pains is all
they are. After all, the rapid population growth in the underdeveloped countries is due to
the high level of world science (medical service. social changes). Already today the
human race represents a highly integrated system and its overall takeoff, which is
conveyed by the ratio 1:2:4, is the result of the development of science, a very recent
phenomenon. If we extrapolate the present rate of population growth (on the order of two
percent a year) into the past, it appears that there would have been just two people living
on Earth a mere thousand years ago!
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The proportion of people employed directly in the sphere of science is still small, even in
the highly developed countries. It ranges from 0.5 to one percent. The figure is now
growing rapidly, but it is obvious that sooner or later its growth will slow down; it will
reach a constant level which is difficult to predict today. As far as can be judged by the
literature, it is considered improbable that this level will exceed 25 percent. After all, by
weight the human brain is also a small part of the entire body.

The absolute number of people engaged in scientific work will nonetheless grow steadily,
and together with it the quantity of information produced by them will also grow steadily.
This quantity is already enormous today. The first scientific periodicals began to come
out in the second half of the seventeenth century. By the start of the 1960s the total
number of periodicals was about 50,000 )see figure 14.1) 30,000 of these were still being
published in 1966.

Figure 14.1.  Growth in the total number of scientific journals

A total of 6 million articles had been published in them, and this figure was increasing by
500,000 a year.[2] The total number of patents and author's certificates recorded was
more than 13 million. This stream of information, which must be used, gives rise to
serious difficulties. For a long time scientific work has demanded an extreme degree of
specialization, but recently it has become increasingly common for scientists to be unable
to follow all the new work even in their own narrow areas. They face a dilemma: either
read articles or work. Moreover, as a result of technical difficulties in disseminating and
processing enormous amounts of information (we might also mention the imperfections
in the information system in science and technology) substantial effort must often be
expended to find the necessary information, and this effort is not always successful. As a
result a great deal of work is duplicated or not properly done. According to estimates by
American scientists, between 10 and 20 percent of scientific research and experimental
design work could be dispensed with if information on similar work already done were
available. The resulting losses in the United States have been $1.25 billion. According to
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G. N. Dobrov, in 1946 40 percent of applications for invention certification in the area of
coal-combine construction were rejected as repetitious. In 1961 this figure had risen to 85
percent.

 THE FORMALIZATION OF SCIENTIFIC LANGUAGE

CAN WE CONCLUDE from this that there is an information crisis in science? It is
perhaps too early to speak of a crisis, but we can already see that as a result of the
continuous growth in the stream of information there will be a crisis in the near future if
qualitative changes do not take place in the organization of scientific research. Until now
scientific research has been organized in forms which developed traditionally, by
themselves. Not only are they not the result of scientific investigation, but until recently
they have not even been a subject of investigation. So there must be a scientific approach
to the problem of organizing scientific activity—that is, a new metasystem transition:
scientific control of the system of science. This metasystem transition has two aspects.
The first, which does not go beyond the framework of science as a subsystem in the
system of culture, creates a new level of the hierarchy within the framework of science as
a primarily linguistic activity. This is what we called metascience in the preceding
chapter. The second aspect concerns science as a social phenomenon. This aspect has
come to be called the science of science [in Russian, naukovedenie].

We introduced the concept of the metascience without having connected it to the
information problem. When speaking of mathematics, however, we remarked that the
metascientific, conceptual approach is the organizing principle for the limitless number of
theories and problems axiomatic symbolic mathematics can generate. The connection
with the information problem in the natural and technical sciences is obvious here. There
is a great deal that can be investigated, and many research plans can be boldly outlined.
But one must have first clear planning principles, plans for plans. Otherwise there will be
anarchy among plans, and when anarchy occurs the decisive factors are frequently those
remote from the interests of science: considerations of prestige, personal contacts, and the
like. Furthermore, it is essential for the language of the natural sciences and engineering
to be completely formalized; then the aggregate of human knowledge will appear in the
form of a harmonious system; only then will it become possible to work out the scientific
principles of planning science. One should not think that the process of formalization is
something “formal,” that is to say syntactical and amounting to nothing but new
notations. The problem of formalization of the scientific language is a conceptual,
semantic problem. It is the problem of working out new concepts, a problem which
resembles the formalization and axiomatization which occurred in mathematics.

A completely formalized language is a language accessible to the machine. When the
edifice of science has a formalized frame we can separate the work that can be done by
machines and automata from the jobs that require creative human participation. After the
separation the machine work can be assigned to machines. Today, of course, the very
simplest tasks of this sort are already being done by machines (automation and the use of
computers), but formalization will make it possible to raise considerably the level of
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problems solved by machines. This refers above all to the processing of information
flows. Systematization and storage of information, selection of needed information, and
very simple information conversions— these and other tasks which make up the
information problem today cannot be satisfactorily resolved by machines without
complete formalization of language. It is difficulties in formalizing language which at the
present time limit the application of computers in information science. The advances that
are being made in this area are primarily related to more or less successful formalization
of more or less extensive parts of the scientific-technical language.

 THE HUMAN BEING AND THE MACHINE

HOWEVER, turning over the lower levels of science to machines should involve, and
already is involving, not only linguistic activity but also direct manipulation of the natural
objects under study. Properly speaking, each time modern automation is used in scientific
experiments it is indeed an “entry of the machine into research.” Raising the level of
automation in this or that particular sphere of research implies complete formalization of
a corresponding part of the scientific language. Automatic scanning of photographs with
traces (tracks) of elementary particles and sorting out given configurations of tracks is a
prototype of future achievements in this area. The universal arrival of machines in direct
contact with nature will require universal formalization of the language of science. The
next stage which can be anticipated is independent machine formulation of experiments
in accordance with metascientific recommendations.

As machines are increasingly used in science and production, the human being will
become increasingly free from noncreative activity—which, no matter how paradoxical it
may seem, becomes needed precisely because of the successes of creative activity! For
what is creativity? Above all creativity is constructive action, action that leads to an
increase in the level of organization in the world. But an action is not characterized as
creative only on the basis of its results. These results must be considered within the
relationship to the mechanism of the action or the relations between this action and the
system that gave rise to it. The same action may be a creative act when it is done for the
first time and mechanical repetition of the past when it is done according to established,
known rules, by applying standard procedures. Nothing that is produced within the
framework of an already existing system of control, whether it is work by a computer or
the composition of stereotyped articles, is creativity. Creativity always goes beyond the
framework of the system; it is free action. Creativity is a metasystem transition. The
evolution of the universe is continuous creativity. One of the manifestations of this
process is creative acts in culture which establish new levels of control and in this way
deprive lower-level actions of their creative character. Thousands of slaves had to be
driven to build a pyramid; thousands of arithmetic operations had to be performed to
calculate the exact positions of the planets on paper. Machines will rid the human being
of that sort of work and transfer human activity to that level of the hierarchy which is still
creative at the given moment. With time, this level will also cease to be creative; the
boundary between creative and uncreative work is steadily crawling upward.
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Ideally, immediately after the discovery of the presence of a system in some activity, this
activity (or the part subordinate to the system discovered) could be turned over to a
machine. Unfortunately, there is at present a considerable gap between the time an
uncreative component appears and the time when there is a practical possibility that it can
be turned over to a machine. The development of automation in the realm of
nonlinguistic activity, accompanied by formalization of language in the realm of
linguistic activity, is lessening the gap, but it remains large. The information problem in
science, the necessity of routine, stereotyped research, and the need to overcome
organizational difficulties to conduct experiments are all evidence this gap exists in
scientific activity. In production, we are still a long way from automatic plants capable of
producing motor vehicles and television sets according to plans fed to them. We are even
farther from the time when there will be nothing but automatic plants. But sooner or later
this will occur. The gap will be eliminated or reduced to a minimum. The formalization
of language and automation will rid human beings of uncreative work just as the use of
mechanical energy has for the most part rid us of heavy physical labor.

 SCIENTIFIC CONTROL OF SOCIETY

THE SOCIAL ASPECT of the problem of controlling science is inseparable from the
problem of controlling society as a whole. Science and production are growing into a
single system, and politics and ideology are also inseparably linked to it. Furthermore,
both aspects of the metasystem transition necessary for the development of science (the
metascientific and social aspects) are also inseparably linked, and there is no hope of
fully carrying out the former without carrying out the latter. Thus we have here
essentially a single problem—the problem of scientific control of society. And even from
the point of view of “pure” science this problem is the principal one; progress is
impossible unless it is solved.

In the initial stages of the development of science, scientists had a comparatively proper
justification for nonintervention in the practical affairs of society. It was possible to say
that science itself was one of the highest values of existence and would demonstrate its
amazing capabilities in the future; in its embryonic state, it would have to be given the
peace and warmth needed for development, no matter what. The scientist could say, like
a hen sitting on her eggs “Do what you want, but just leave me in peace! I am hatching a
remarkable chick. That is the main thing.”

In our day this sort of reasoning is pure hypocrisy. The remarkable chick has come out of
its shell and requires food. To isolate it from the environment now would mean to starve
it to death.
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 SCIENCE AND MORALITY

THUS SCIENCE CLAIMS the role of supreme judge and master of the entire society.
But will it be able to handle this role'? After all, people need not only knowledge of the
laws of nature and the ability to use them. They also need certain moral principles,
answers to such questions as what is good and what is bad? What should a person strive
toward and what should a person oppose? What is the meaning and goal of the existence
of each person and of all humanity?

Strictly speaking, science cannot answer these questions. The ideas of the good, the goal,
and the duty which are part of moral principles are beyond the bounds of science. Science
engages in the construction of models of that reality which actually exists, not that which
should be. It answers the questions: What really is? What will be if such-and-such is
done? What must be done so that such-and-such will be? But science cannot in principle
answer the question “What must be done?” without any “if” or “in order that.” As a
certain American philosopher remarked, no matter how much you study the train
schedules you will not be able to choose a train if you do not know where you are going.
All attempts to construct moral principles on a scientific basis inevitably lead in the end
to the question “What is the Supreme Good?” or “What is the Supreme Goal?” which are
essentially the same thing. Scientific knowledge and logical deductions are relevant to
moral problems only to the extent that they help deduce answers to particular questions
from the answer to this general, final question. The problem of the Supreme Goal remains
outside science and its solution necessarily requires an act of will; it is in the last analysis
a result of free choice.

This in no sense means that science has no influence at all on the solution to this problem.
True to its principle of investigating everything in the world, science can look from
outside at the human being and at entire societies which are deciding the problem of the
Supreme Goal for themselves. Science can analyze various aspects of this situation and
predict the results to which adoption of a particular decision will lead. And this analysis
can significantly influence the process of solving the problem, although it does not
change the nature of the solution as a freely made choice.

 THE PROBLEM OF THE SUPREME GOOD

WHEN AND HOW does the problem of the Supreme Good and the Supreme Goal
emerge? It is obvious that the animals did not have it, nor was it found in the early stages
of the development of human society. Until a certain time, good for both human beings
and animals was that which brought satisfaction, and there was a hierarchy of
goals—crowned by the instincts for preservation of life and continuation of the
species—that corresponded to the hierarchy of .satisfactions. The concept of the goal and
the concept of the good are, in general, inseparable; they are two aspects of a single
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concept. The human being strives toward good, by definition, and calls that toward which
he strives good. In the stage when good is equated with satisfaction the human being does
not differ in any way from the animal in a moral sense; for the human being, moral
problems do not exist. The point here is not the nature of the satisfaction, but the fact that
it is given, that the criterion of satisfaction is the highest controlling system—one that
changes goals but that does not undergo changes itself. Even from a purely biological
point of view human satisfactions differ from animal satisfactions. As an example we
may recall the sense of the beautiful. And as the social structure becomes more complex
the human being acquires new satisfactions which are unknown to animals. Nonetheless,
this does not create the problem of the Supreme Good. That arises when culture begins to
have a decisive effect on the system of satisfactions, when it turns out that what people
think, say, and do is capable of changing their attitude toward the world to such an extent
that events which formerly caused satisfaction now cause dissatisfaction, and vice versa.
True, satisfactions at the lowest level (those deriving from direct satisfaction of physical
needs) hardly change at all as culture develops, but satisfactions of the highest level
(elation at one's skill in hunting, physical endurance, and the like) are sometimes capable
of outweighing low-level dissatisfaction. In this way the criterion of satisfaction itself
proves subject to control. A metasystem transition occurs; the social scale of values and
system of norms of behavior emerge.

But this is only the prologue to the problem of the Supreme Good. In primitive society
the norms of behavior can be compared to animal instincts; in the social super-brain they
are in fact a precise analogue of the instincts embedded in the brain of the individual
animal. Control of association (thinking) destroys instincts or, to put it better, it demotes
them and puts social norms of behavior in the topmost place. In primitive society these
norms are just as absolute as instincts are for the animal. And although they do change in
the process of society's development, just as instincts change in the process of evolution
of the species, this is unconscious change. They are perceived by each individual as
something given and beyond doubt. But then one more metasystem transition occurs, the
transition to critical thinking, and then the problem of the Supreme Good emerges in full.

Now people not only influence their own criteria of satisfaction through their linguistic
activity, but they are conscious of this influence. The simple “I want it that way!” loses
its primary, given quality. When a person becomes aware that what he wants is not only a
result of his upbringing but also depends on himself and may be changed by reflection
and self-education, he cannot help asking himself what he should want. In his
consciousness he finds an empty place that must be filled with something. “Is there an
absolute Supreme Good toward which one should strive?” he asks himself. “How should
one live? What is the meaning of life?”

But he cannot get unequivocal answers to these questions. A goal can only be deduced
from a goal, and if a person is free in his desires, then he is also free in his desires for
desires. The circle of doubts and questions closes and there is nothing more to rely upon.
The system of behavior is suspended in the air. Naive primitive beliefs and traditional
norms of behavior collapse. The age of religious and ethical teachings arrives.

There are many of these teachings and they differ in many ways, but at the same time it
appears that they also have a great deal in common, at least if we speak of the teachings
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which have become widespread. Our job now is to determine whether the scientific
worldview leads us to some type of ethical teaching, and if it does, which one. At the
same time we shall discuss the question of the nature of the common denominator of the
different ethical teachings.

 SPIRITUAL VALUES

BEFORE DISCUSSING the problems of the Supreme Good and the meaning of life we
must gain assurance that the problem is worth discussing. There are many people whose
point of view may be called the theory of natural values. According to this theory the
creation of ethical teachings is an idle occupation if not a harmful one. This theory asserts
that human nature contains, along with needs and instincts of animal origin, a yearning
for specifically human spiritual values such as knowledge, beauty, justice, and love of
one's neighbor. Achieving these values brings the highest satisfaction. The task of a
human being is to develop these yearnings in himself and in others and thus obtain the
highest satisfaction from life. This is the one natural goal of the human being, the one
natural purpose. Philosophical religious and ethical teachings which begin from a priori
principles or principles taken from who knows where can only muffle and distort these
natural, truly human yearnings and force people to act basely in the name of a Supreme
Good which they have invented.

What can we say about this theory? It is convenient as a pretext for avoiding the solution
of a difficult question. It also has the merit of shunning extreme positions. But,
unfortunately, it is untrue. It is contrived to a much higher degree than the other teachings
which openly admit their dogmatic nature. The assertion that striving toward the highest
spiritual values is part of human nature in its literal, exact sense contradicts the facts.
Children carried off by animals who grow up away from human society do not show an
understanding of the highest values of modern civilized people; they generally do not
become full-fledged people. Therefore, there is nothing in the actual structure of the
developing brain that would unequivocally generate those specific higher aspirations of
which the theory of natural values speaks.

“Oh no!” a supporter of this theory will say, becoming terribly indignant at such a
vulgarization of his views. “We are certainly not speaking of the concrete ways these
yearnings are manifested; what we refer to is their general foundation, which requires the
conditions created by society if it is to manifest itself.”

But then the theory of natural values commits the sin of switching concepts. To say
“general foundation” is to say nothing if we do not give the concrete substance of this
foundation and its connection with observed manifestations. From the point of view
being developed in this book, the general foundation of the highest values recognized at
the present time by a majority of the human race really does exist; it is inborn, encoded in
the structure of the genes of each human being. This foundation is the ability to control
the process of associating. It may be tentatively called the “knowledge instinct” (see
chapter 4), but this is just a figurative expression. The profound difference between this
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ability and instinct is that instinct dictates forms of behavior while control of associating
mainly permits them and removes old prohibitions. Control of associating is an extremely
undifferentiated, multivalued capability which admits diverse applications. Even what we
call thinking is not an inevitable result. And what can we say about the more concrete
forms of mental activity?

Control of associating is more a destructive than a constructive principle; it needs
constructive supplementation. This supplementation is the social integration of
individuals, the formation of human society. It is in the process of development of society
that spiritual values originate. Of course, they are far from accidental, but it is a long way
from their general foundation implanted by nature in all human beings to spiritual values,
and on this road it is the logic of society, not the logic of the individual, that governs.
This road is not unambiguous and it is not complete.

The theory of natural values, in speaking dimly of the “general foundation” of spiritual
values, thus actually equates certain particular ideals recognized at the present time by
some (possibly many) people with this “general foundation” which is absolute,
invariable, and implanted in human nature. Two consequences follow from this error. For
one, the theory of natural values does a disservice to the spiritual values it promotes when
it promotes them on a false basis. It is like the well-wisher who started defending the
right of a peasant lad to human dignity not on the basis of the general principles of
humanism but rather by attempting to prove his noble origin; the deception can easily be
revealed and the unfortunate young man will be flogged. In the second place, this theory
does not contain any stimuli to the development of spiritual values; it is antievolutionary,
conservative to an extreme.

What do we have in mind when we say that some particular values are natural for the
human being? Obviously we mean that they are dictated, established for human beings by
nature itself. For the animal, instincts are the goals which nature gives him, and what fits
the instincts is natural for him. But nature does not give the human being goals: the
human being is the highest level of the hierarchy. This is a medical fact, as Ostap
Bender[3] would say, a fact of the organization of the human brain. The human being has
nowhere from which to receive goals; he creates them for himself and for the rest of
nature. For the human being there is nothing absolute except the absence of absolutes and
there is nothing natural except endless development. Everything that seems natural to us
at a given moment is relative and temporary. And our current spiritual values are only
mileposts on the road of human history.

It is worth thinking about the meaning of life. To think about the meaning of life means
to create higher goals and this is the highest form of creativity accessible to the human
being. This type of creativity is always needed because the highest goals must change in
the process of development and will always change. And each person must somehow
decide this question for himself since nature has given him such an opportunity.
Assurances that this problem has been solved or assurances that it is insoluble are lies
which some use deliberately: others fall back on them from mental laziness and lack of
fortitude. The question is, of course, insoluble at the level of pure knowledge; it must
include an element of free choice. But conscious choice accompanied by study of the
object and reflection is one thing and blind imitation of an example imposed upon us is
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something else. In one way or another someone creates the highest goals, because outside
of society, “in nature,” there are none. Every person is given this capability to some
extent; to voluntarily reject the use of it is the same thing as for a healthy animal to
voluntarily reject physical movement and use of the muscles.

 THE HUMAN BEING IN THE UNIVERSE

THE CRITICISM of the theory of natural values shows clearly that element of the
scientific picture of the world we can use as a starting point to arrive at definite moral
principles, or at least definite criteria for evaluating them. This element is the doctrine of
the evolution of the universe and the human role in it. And so, let us set off.

The assertion of the continuous development and evolution of the universe is the most
important general truth established by science. Everywhere we turn we observe
irreversible changes subordinate to a majestic general plan or to the basic law of
evolution, which manifests itself in the growing complexity of the organization of matter.
Reason emerges on Earth as a part of this plan. And although we know that the sphere of
human influence is a tiny speck in the cosmos still we consider the human being the
crown of nature's creation. Experience in investigating the most diverse developing
systems shows that a new characteristic appears first in a small space but, thanks to the
potential enclosed in it, engulfs a maximum of living, space over time and creates the
springboard for a new, higher level of organization. Therefore we believe that a great
future awaits the human race, surpassing everything that the boldest imagination can
conceive.

But no one person is the human race. What can a person say about himself, about the
place of his own mortal self in the universe? What can the human being attain? How do
one's will and consciousness enter the scientific picture of the world?

One hundred years ago the portrait of the world that science depicted was completely
deterministic. If one took it seriously, one could become an absolute fatalist. But we
know now that this picture was wrong. According to contemporary notions the laws of
nature are exclusively probabilistic. Events may be more or less probable (or completely
impossible), but there is no law that can force events to flow in a strictly determined
manner. The laws of nature more often demonstrate the impossibility of something, than
the reverse; it is not accidental that the most general laws are prohibitive (the law of
conservation of energy, the law of increasing entropy, and the uncertainty relation). Cases
where the course of events can be predicted quite accurately far into the future are more
the exception than the rule—an example here is astronomical predictions. But they are
possible only because we encounter here an enormous difference in time scales between
astronomical and human time. If we were to approach the motions of the celestial bodies
with the time scales inherent in them it would turn out that the only predictions we could
make would be as limited as our predictions regarding the molecules of air we breathe.
So the successes of celestial mechanics which inspired Laplace in his formulation of
determinism are a very special case.
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Indeterminacy is deeply implanted in the nature of things. The evolution of the universe
is a continuous and universal elimination of this indeterminacy, a continuous and
universal choice of one possibility from a certain set of possibilities. We can compare
two situations involving choice—extreme cases that have been well-studied.

The first situation is the collision of two elementary particles. Knowing the initial
conditions of the collision, we can give the probability of particular results, but nothing
more. For example, if the probabilities that a colliding particle will be deflected upward
and downward are identical, we cannot now—and never shall be able to—predict in
which direction the particle will go. Nonetheless, nature makes its choice. This act of
choice, which is among the most elementary, is according to modern notions a blind one.
Changes in the evolution of the universe occur only because of the interweaving and play
of an infinite number of such acts.

The second situation is the act of will of the human personality. We can study this act
from outside, just as we study the collision of particles. This is the basis of behavioral
psychology. If we know the conditions in which a person is placed and some of his
psychological characteristics, we can make some predictions, also purely probabilistic.
But when we view this situation from within—as our own free choice (as an act of
manifesting our personality)—what had appeared unpredictable in principle when
considered from outside is now seen as free will.

The nature of the unpredictability in these acts is the same, as is the impossibility of
watching the system without affecting it; but how greatly they differ in their significance!
The act of will encompasses an enormous space-time area as compared to the act of the
scattering of particles. In addition, the act of will may be a creative act, not the blind,
inert material of cosmic evolution but its direct expression, its moving force.

 THE DIVERGENCE OF TRAJECTORIES

ALL THE SAME, the human being is extraordinarily small in comparison not only with
the universe, but with the human race as a whole, and this again inclines us to think of the
insignificance of the act of individual will and the law of large numbers would seem to
reinforce us in this thought. We must note that superficially understood and incorrectly
applied scientific truths very often promote the acceptance of false conceptions. That is
how things are at present. Relying on the law of large numbers people reason as follows.
There are 3 billion people on Earth. The destiny of the human race is the result of their
combined actions. Because the contribution of each person to this sum is equal to one
three-billionth no one person can hope to significantly affect the course of history, not
even accidentally. Only general factors which influence the behavior of many people
simultaneously count.

In reality this reasoning contains a flagrant error, because the law of large numbers is
only applicable to an aggregate of independent subsystems. It could be applied to the
human race if all 3 billion people acted with absolute independence and knew absolutely
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nothing about one another. However, as the human race is a large and strongly
interconnected system, the acts of some people have very great effects on the acts of
others. In general such systems possess the characteristic of divergence of trajectories,
which is to say that small variations in the initial state of the system become increasingly
larger over time. We call the situations in which the law of divergence of trajectories
manifests itself in an unquestionable, obvious way crises. In a crisis situation enormous
chances in the state of the system depend on minute (on a system scale) factors. In such a
situation the actions of one person, possibly even a single word spoken by the person,
may be decisive. We are inclined to consider crisis situations rare, but we know many
constantly operating factors that multiply the influence of a single person many times
over. These are the so-called trigger mechanisms. Only a very slight effort is required to
press the trigger or control button, but the consequences resulting from this action may be
enormous. It is hardly necessary to say how many such mechanisms there are in human
society.

Nonetheless, the idea of the little person, this fig leaf with which we conceal in front of
others the shame of our cowardice, does not give up without a struggle. Most people, the
“little person” says, do not participate in crisis situations and do not have access to
triggers.

Many people will perhaps recall the rhyme which ends with the words:

For want of a battle the kingdom was lost—

And all for want of a horseshoe nail.

The rhyme describes a trigger mechanism which goes from a slipshod blacksmith who
did not have a nail to the defeat of an army. We take this story as humorous, not wishing
to see it as completely serious. However, our entire lives consist of such multi-stepped
dependencies. Mathematical investigation of large interconnected systems shows the
same thing: trajectories diverge. An initially insignificant deviation (the lack of a nail in
the blacksmith shop) enlarges step by step (the shoe falls off, the horse goes lame, the
commander is killed, the cavalry are crushed, and the army flees). But we take a skeptical
attitude toward such long chains because in our everyday life we are almost never able to
trace them reliably from start to finish. In the first place, each connection between links
of the chain is probabilistic: a lame horse certainly does not necessarily doom the
commander. In the second place, following the relationship of events constantly raises
questions of the type “What would have happened if . . .?” It is hard to find two people
who give the same answers to a series of such questions, but it is impossible to turn the
clock back and look. Finally, we practically never have the necessary information.

But that we cannot trace these chains in the opposite direction should not eclipse our
awareness of their existence when we think about the consequences of our actions. Crisis
situations are rare not because small factors rarely have major consequences (they do),
but rather because we are seldom fully aware of the chain of events. We can never
foresee the results of our actions exactly. The only thing available to us is to establish
general principles through whose guidance we increase the probability of Good, that is,
the probability of those consequences which we consider desirable. We should act in
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accordance with these principles, viewing each situation as a crisis situation because the
importance of each act of our will may be enormous. By always acting in such a way we
unquestionably make a positive contribution to the cause of Good. Here the law of large
numbers operates at full strength.

 ETHICS AND EVOLUTION

BUT WHAT IS GOOD? What are the Supreme Good and the Supreme Goal? As we
have already said, the answer to these questions goes beyond the framework of pure
knowledge and requires an act of will. But perhaps knowledge will lead us to some
certain act of will, make it practically inevitable?

Let us think about the results of following different ethical teachings in the evolving
universe. It is evident that these results depend mainly on how the goals advanced by the
teaching correlate with the basic law of evolution. The basic law or plan of evolution, like
all laws of nature, is probabilistic. It does not prescribe anything unequivocally, but it
does prohibit some things. No one can act against the laws of nature. Thus, ethical
teachings which contradict the plan of evolution, that is to say which pose goals that are
incompatible or even simply alien to it, cannot lead their followers to a positive
contribution to evolution, which means that they obstruct it and will be erased from the
memory of the world. Such is the immanent characteristic of development: what
corresponds to its plan is eternalized in the structures which follow in time while what
contradicts the plan is overcome and perishes.

Thus, only those teachings which promote realization of the plan of evolution have a
chance of success. If we consider the cultural values and principles of social life which
are generally recognized at the present time from this point of view, we shall see that they
are all very closely connected with our understanding of the plan of evolution and in fact
can be deduced from it. This is the common denominator of the ethical teachings which
have made a constructive contribution to human history.

But there is still a great distance between this objective and unbiased view of ethical
principles and the decision to follow them. Really, why should I care about the plan of
evolution? What does it have to do with me?

 THE WILL TO IMMORTALITY

A VERY IMPORTANT FACT—that human beings are mortal—now must be
considered. Awareness of it is the starting point in becoming human. The thought of the
inevitability of death creates a torturous situation for a rational being and he seeks a way
out. The protest against death, against the disintegration of one's own personality, is
common to all people. In the last analysis, this is the source from which all ethical
teachings draw the volitional component essential to them.
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Traditional religious teachings begin from an unconditional belief in the immortality of
the soul. In this case the protest against death is used as a force which causes a person to
accept this teaching; after all, from the very beginning it promises immortality. If
immortality of the soul is accepted then the stimulus to carry out the moral norms
imposes itself: eternal bliss for good and eternal torment for bad. Under the powerful
influence of science the notions of immortality of the soul and life beyond the grave,
which were once very concrete and clear, are becoming increasingly abstract and pale,
and old religious systems are slowly but surely losing their influence. A person raised on
the ideas of modern science cannot believe in the immortality of the soul in the traditional
religious formulation no matter how much he may want to; a very simple linguistic
analysis shows the complete meaninglessness of this concept.

The will to immortality combined with the picture of the world drawn above can lead him
to just one goal: to make his own personal contribution to cosmic evolution, to eternalize
his personality in all subsequent acts of the world drama. In order to be eternal this
contribution must be constructive. Thus we come to the principle that the Highest Good
is a constructive contribution to the evolution of the universe. The traditional cultural and
social values may be largely deduced from this principle. To the extent that they conflict
with it they should be cast aside as ruthlessly as we suppress animal instincts in the name
of higher values.

The human being continues somehow to live in his creations:

No! All of me will not die! In the cherished lyre my soul
Will survive my ashes, it will not decay.
            (PUSHKIN, “I Have Raised a Monument to Myself,” 1836)

What is the soul? In the scientific aspect of this concept it is a form or the organization of
movement of matter. Is it so important whether this organization is embodied in the
nerves and muscles, in rock, in letters, or in the way of life of one's descendants? When
we try to dig down to the very core of our personality, don't we come to the conviction
that its essence is not a repeating stream of sensations or the regular digestion of food, but
certain unrepeatable, deeply individual creative acts? However, the physical result of
these acts may go far beyond the space-time boundaries of our biological body. Thus we
begin to feel a profound unity with the Cosmos and responsibility for its destiny. This
feeling is probably the same in all people, but it is expressed differently in various
religious and philosophical systems. It is this feeling that art teaches which elevates the
human being to the level of a cosmic phenomenon.

Thus, the scientific worldview brings us to ethics, which points out the Supreme Values
and demands that we be responsible for and actively pursue them. Like any ethics it
includes the act of will, which we have called the will to immortality. If a person cannot
or does not want to perform this act, then no knowledge, no logic will force him to accept
the Supreme Values, to become responsible and active. And God save him! The
Philistine who has firmly resolved to be content with his wretched ideal, who has
resolved to live as a humble slave of circumstances, will not be elevated by anything and
will pass from the stage without a trace. The person who does not want immortality will
not get it. Just as the animal deprived of its instinct for reproduction will not perform its
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animal function, so the human being deprived of the will to immortality will not fulfill his
or her human function. Fortunately, this case is the exception, not the rule. The will to
immortality is not the privilege of certain “great” people, it is a mass characteristic of the
human being, a norm of the human personality which serves as the source of moral
strength and courage.

How convincing and acceptable will the ethical ideals we have deduced from the
scientific worldview be for a broad range of people, our contemporaries and descendants?
Doesn't all this reasoning sound a little too abstract and unfeeling? Is it capable of
involving, of affecting the emotions'? It is, and this is shown by many examples. The
ideas of evolution and personal participation in the cosmic process conquer the
imagination; they give life depth and meaning. But in return they demand bold
conclusions and a readiness to sacrifice the conventional and adopt the unexpected and
uncanny if that is where logic inexorably leads.

It is natural to expect that those who are engaged in science will have a positive attitude
toward construction of an ethical system on the basis of the scientific worldview. This
expectation is for the most part borne out. The scientists have many “fellow travellers”
too. But there are also many enemies or, at least, persons who do not wish us well. In
some circles (especially among the intelligentsia in the humanities) it is fashionable to
curse scientists for their “scientism,” their endeavors to construct all life on a scientific
basis, surreptitiously substituting science for all other forms of spiritual life. These
attitudes (which can hardly be called justified) are engendered primarily by fear in the
face of that unknown future toward which the development of science is inexorably (and
rapidly!) drawing us. The fear is intensified by misunderstanding, for neither the broad
public nor the representatives of the intelligentsia in the humanities and arts ordinarily
understand the essence of modern scientific thinking and the role of science in spiritual
culture. This problem was set forth brilliantly by C. P. Snow in his 1956 lecture entitled
“The Two Cultures.”[4] Science to the modern person is what fire was to the primitive.
And just as fire aroused a whole range of feelings in our ancestors (terror, amazement,
and gratitude), so science today arouses a similar range of feelings. Fire has an attractive
and enchanting force. The primitive looked at fire and delights and dim premonitions
earlier unknown rose in his soul. It is the same with science. Science fiction, for example,
is just like the visions of primitives sitting around a fire. And constructing supreme goals
and principles on the basis of the scientific picture of the world can be called fire
worship. These metaphors do not degrade; they honor modern fire worshipers. After all,
we are very deeply indebted to the imagination of our ancestors who were enchanted by
the dancing flames of the fire.

 INTEGRATION AND FREEDOM

THE PROCESS of social integration has never gone on so furiously and openly as it does
today. Modern science and engineering have put every person in the sphere of influence
of every other. Modem culture is global. Modern nations are enormous mechanisms
which have a tendency to regulate the behavior of each citizen with increasing
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rigidity—to define needs, tastes, and opinions and to impose them on people from
without. Modern people are hounded by the feeling that they are being turned into
standardized parts of this mechanism. and are ceasing to exist as individuals.

The basic contradiction of social integration—that between the necessity of including the
human being in the system, in the continuously consolidating whole, and the necessity of
preserving the individual as a free, creative personality—can be seen today better than
ever before. Can this contradiction be resolved? Is a society possible which will continue
to move along the path of integration but at the same time ensure complete freedom for
development of the personality? Different conceptions of society give different answers.

The optimistic answer to the question sounds positive. Each successive stage in the
integration of society will probably involve some external limitations not fundamental
from the point of view of creative activity. On the other hand, each stage will foster a
liberation of the nucleus of the personality, which is the source of creativity. Belief in the
possibility of such a society is equivalent to belief that the impulse implanted by nature in
the human being has not been exhausted, that the human being is capable of continuing
the stage of cosmic evolution he has begun. After all, the personal, creative principle is
the essence of the human being, the fundamental engine of evolution in the age of
intellect. If it is suppressed by social integration, movement will stop. On the other hand,
social integration is also essential. Without it the further development of culture and
increasing human power over nature are impossible; the essence of the new level of
organization of matter lies in social integration. But why should we suppose that social
integration and personal freedom are incompatible? After all, integration has been
successfully carried out at other levels of organization! When cells join into a
multicellular organism they continue to perform their biological functions— exchange of
matter and reproduction by division. The new characteristic, the life of the organism,
does not appear despite the biological functions of the individual cells but rather thanks to
them. The creative act of free will is the “biological” function of the human individual. In
the integrated society, therefore, it should be preserved as an inviolable foundation and
new characteristics must appear only through it and thanks to it.

If we refuse to believe in the possibility of an organic combination of social integration
and personal freedom then we must give one of them preference over the other. The
preference for personal freedom leads to the individualistic conception of society, while
preference for social integration leads to totalitarian regimes.

Individualism views society as nothing more than a method of “peaceful coexistence” of
individuals and increasing the personal benefits for each of them. But by itself this idea is
inadequate to build a healthy society. Pure individualism deprives the life of a person of
any higher meaning and leads to cynicism and spiritual impoverishment. In fact,
individualism exists only thanks to an alliance with traditional religious systems—or, to
put it better, by living as a parasite on them—because they are in principle hostile to
individualism and permit it only as a weakness. With the collapse of the religious systems
this parasite reaches enormous size. Individualism becomes a fearsome ulcer eating up
society and inevitably, as a protest against itself, it gives rise to its negation,
totalitarianism.
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For totalitarianism, integration is everything and the individual is nothing. Totalitarianism
constructs a hierarchical state system which is usually headed by one person or a small
group of people. An ideological system is also constructed which each citizen is obliged
to accept as his or her personal worldview. Anyone refusing to do this is subject to
punishment, which may go as far as physical extermination. The person trapped in
between the two systems becomes a thoughtless, soulless part in the social machine. The
person is given only what freedom is necessary to carry out instructions from above.
Every manifestation of individual activity is viewed as potentially dangerous to the state.
Personal rights are abolished.

Striving to preserve and strengthen itself, the totalitarian state uses all means of physical
and moral influence on people to make them suitable to the state—”totalitarian” people.
The fundamental characteristic of the totalitarian person is the presence of certain
prohibitions he is unable to violate. He may be a scientist, an investigator filled with
curiosity, but upon approaching certain aspects of life his curiosity suddenly begins to
evaporate. He may be a brave man, capable of giving his life for his country without a
thought, but he trembles in fear before his leader. He may consider himself an honest
man but speak what he knows to be a lie, and not connect this lie with his supposed
honesty. He may steal, commit treason, and kill in the confidence that “it is necessary”;
he will never permit himself to ask if it really is necessary. And he will walk a mile to
avoid anything that might force him to think about this.

The totalitarian person is compensated for these tabus, which are imposed on precisely
what constitutes the highest value of human existence, by the feeling of unity—the
feeling that he belongs to an enormous aggregate of people who are organized into a
single whole. The human being has an inherent, internal need for social integration, and
totalitarianism's strength is that it plays on this need and satisfies it to some extent. The
strength and danger of totalitarianism are that it stands for social integration, and social
integration is an objective necessity.

But the totalitarian state is not the solution to the problem of social integration. It
achieves wholeness by smoothing out differences among its constituent human units to
the point where they lose their human essence. It cuts off people's heads and forces the
stumps to be elated at the unity achieved at such a price. Totalitarianism is a tragically
clumsy and unsuccessful pseudosolution: it is the abortion of social integration. By
destroying the individual person it deprives itself of the source of creativity. It is doomed
to rot and decay.

While individualism generates totalitarianism, totalitarianism, inversely, generates
individualism. “Down with the collective!” cries the person raised in totalitarianism who
has become aware of his slavery. “Leave me alone! I don't want unity! I don't want
military might! I don't want a feeling of comradeship! I want to live the way I like! I! I!
I!” Fearing punishment, however, he only imagines he is shouting this; at most he
whispers it. His ego, which has grown up under totalitarian conditions, is a wretched,
half-strangled one. And he becomes a purposeless Philistine with the perspective of a
chicken. He is not interested in anything except his own self. He does not believe in
anything and therefore he subordinates himself to everything. This is no longer a
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totalitarian personality, it is a miserable and cowardly individualist living in a totalitarian
state.

Individualism and totalitarianism are two opposites linked in a common chain. There is
only one way to break this circle: to set as our task conscious social integration with
preservation and development of creative personal freedom.

 QUESTIONS, QUESTIONS . . .

ATTEMPTS TO LOOK even farther, as far as imagination permits, produce more
questions than answers.

How far will integration of individuals go? There is no doubt that in the future (and
perhaps not too far in the future) direct exchange of information among the nervous
systems of individual people (leading to their physical integration) will become possible.
Obviously the integration of nervous systems must be accompanied by the creation of
some higher system of control over the unified nerve network. How will it be perceived
subjectively? Will the modern individual consciousness, for which the supreme system of
control will be something outside and above the personal, something alien and not
directly accessible, be preserved unchanged? Or will physical integration give rise to
qualitatively new, higher forms of consciousness that will form a process that can be
described as merging the souls of individual people into a single Supreme Soul? The
second prospect is both more probable and more attractive. It also resolves the problem
of the contradiction between reason and death. It is difficult to tolerate the thought that
the human race will always remain an aggregate of individual, short-lived beings who die
before they are able to see the realization of their plans. The integration of individuals
will make a new synthetic consciousness which is, in principle. immortal just as the
human race is, in principle, immortal.

But will our descendants want physical integration? What will they want in general? And
what will they want to want? Already today the manipulation of human desires has
become a phenomenon that cannot be discounted, and what will come in the future when
the structure and functioning of the brain have been investigated in detail? Will the
human race tall into the trap of the absolutely stable and, subjectively, absolutely happy
society which has been described in the works of science fiction writers such as Zamyatin
and Huxley?

To avoid falling into such a trap there must be guarantees that no control structure is the
highest one finally and irreversibly. In other words, there must be guarantees that
metasystem transitions will always be possible in relation to any system no matter how
large it may be. Are such guarantees possible? Does consciousness of the necessity of the
metasystem transition for development give people such guarantees? And is the very
need for development, the yearning to continue development, ineradicable? We have
reason to hope that it is. Having conquered the human consciousness, the idea of
evolution seemingly does not want to go away. If we imagine that the human race will
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exist forever like a gigantic clock, unchanging and identical, with people (its machinery)
being replaced as a result of the natural processes of birth and death, we become
nauseous; this seems equivalent to the immediate annihilation of the human race. But will
it always seem that way to our descendants? Perhaps now, when we feel that necessity of
development, we should try to perpetuate this feeling? Perhaps this is our duty to the
living matter which gave us birth? Suppose we have made such a decision. How can it be
carried out?

Now let us pose the question of the pitfalls along the path of development in more
general form. Ant society is absolutely stable. But that is not because it is poorly
organized; the individuals which make it up are such that unifying them does not give
rise to a new characteristic—it does not bring brains into contact (the poor things have
virtually nothing with which to make contact). Is it possible for the remote descendants of
the ants or other arthropods to become rational beings? Most likely it is not. It appears
that the arthropods have entered an evolutionary blind alley, but perhaps we are in one
too. Perhaps the human being, is unsuitable material for integration and no new forms of
organization and consciousness based on it will develop. Perhaps life on Earth has
followed a false course from the very beginning and the animation and spiritualization of
the Cosmos are destined to be realized by some other forms of life.

Let us assume that this is not true, that nature has not committed a fatal injustice in
relation to the Earth. Now, when conscious beings have appeared, what should they do to
avoid wandering unknowingly into a blind alley? For such a general question a general
answer may be offered: preserve, even in some miniature, compressed form, the
maximum number of variations; do not irreversibly cut off any possibilities. If evolution
is wandering in a labyrinth, then when we come to a point where the corridors intersect
and we choose the path going to the right we must not forgot that there is also a corridor
going to the left and that it will be possible to return to this place. We must mark our path
with ineradicable, phosphorescent dye. This is precisely the function of the science of
history. But are the linguistic traces which it leaves adequate? Perhaps a conscious
parallelism is essential in solving all social problems.

We shall hope that we have not yet made an uncorrectable mistake and that people will
be able to create new, fantastic (from our present point of view) forms of organization of
matter, and forms of consciousness. And then the last, but also the most disturbing,
question arises: can't there exist a connection between the present individual
consciousness of each human personality and this future superconsciousness, a bridge
built across time? In other words, isn't a resurrection of the individual personality in some
form possible all the same?

Unfortunately, all we know at the present time compels us to answer in the negative. We
do not see any possibility of this. Neither is there a necessity for it in the process of
cosmic evolution. Like the apes from which they originated, people are not worth
resurrection. All that remains after us is what we have created during the time allotted to
us.

But no one can force a person to give up hope. In this case there is some reason to hope,
because our last question concerns things about which we know very little. We
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understand some things about the chemical and physical processes related to life and we
also can make our way in questions related to feelings, representations, and knowledge of
reality. But the consciousness and the will are a riddle to us. We do not know the
connection here between two aspects: the subjective, inner aspect and the objective,
external aspect with which science deals. We do not even know how to ask the questions
whose answers must be sought. Everything here is unclear and mysterious: great
surprises are possible.

We have constructed a beautiful and majestic edifice of science. Its fine-laced linguistic
constructions soar high into the sky. But direct your gaze to the space between the pillars,
arches, and floors, beyond them, off into the void. Look more carefully, and there in the
distance, in the black depth, you will see someone's green eyes staring. It is the Secret,
looking at you.

[1] The figures are taken from G. N. Dobrov's book Nauka o nauke (The Science of
Science), Kiev, 1966.

[2] The figures are taken from D. Price's “Little Science, Big Science,” in the collection
of artlcles Nauka o nauke (The Science of Science), Moscow. Progress Publishing House,
1966; original: Columbia University Press, 1963.

[3] Hero of the novel Twelve Chairs by Ilf and Petrov — trans.

[4] C.P. Snow, The Two Cultures and the Scientific Revolution (London: Macmillan,
1959).


