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ABSTRACT.

Collective intelligence is defined as the ability of a group to solve more
problems than its individual members. It is argued that the obstacles
created by individual cognitive limits and the difficulty of coordination
can be overcome by using a collective mental map (CMM). A CMM is
defined as an external memory with shared read/write access, that rep-
resents problem states, actions and preferences for actions. It can be
formalized as a weighted, directed graph. The creation of a network of
pheromone trails by ant colonies points us to some basic mechanisms of
CMM development: averaging of individual preferences, amplification
of weak links by positive feedback, and integration of specialised sub-
networks through division of labor. Similar mechanisms can be used to
transform the World-Wide Web into a CMM, by supplementing it with
weighted links. Two types of algorithms are explored: 1) the co-occur-
rence of links in web pages or user selections can be used to compute a
matrix of link strengths, thus generalizing the technique of
“collaborative filtering”; 2) learning web rules extract information from
a user’s sequential path through the web in order to change link
strengths and create new links. The resulting weighted web can be used
to facilitate problem-solving by suggesting related links to the user, or,
more powerfully, by supporting a software agent that discovers relevant
documents through spreading activation.

1. Introduction

With the growing interest in complex adaptive systems, artificial life, swarms and simu-
lated societies, the concept of “collective intelligence” is coming more and more to the
fore. The basic idea is that a group of individuals (e.g. people, insects, robots, or soft-
ware agents) can be smart in a way that none of its members is. Complex, apparently in-
telligent behavior may emerge from the synergy created by simple interactions between
individuals that follow simple rules.
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To be more accurate we can define intelligence as the ability to solve problems. A sys-
tem is more intelligent than another system if in a given time interval it can solve more
problems, or find better solutions to the same problems. A group can then be said to ex-
hibit collective intelligence if it can find more or better solutions than the whole of all so-
lutions that would be found by its members working individually.

1.1. Examples of collective intelligence
All organizations, whether they be firms, institutions or sporting teams, are created on the
assumption that their members can do more together than they could do alone. Yet, most
organizations have a hierarchical structure, with one individual at the top directing the ac-
tivities of the other individuals at the levels below. Although no president, chief executive
or general can oversee or control all the tasks performed by different individuals in a
complex organization, one might still suspect that the intelligence of the organization is
somehow merely a reflection or extension of the intelligence of its hierarchical head.

This is no longer the case in small, closely interacting groups such as soccer or foot-
ball teams, where the “captain” rarely gives orders to the other team members. The
movements and tactics that emerge during a soccer match are not controlled by a single
individual, but result from complex sequences of interactions. Still, they are simple
enough for an individual to comprehend, and since soccer players are intrinsically intelli-
gent individuals, it may appear that the team is not really more intelligent than its mem-
bers.

Things are very different in the world of social insects (Bonabeau et al. 1997;
Bonabeau & Theraulaz 1994). The way that ants map out their environment, that bees
decide which flower fields to exploit, or that termites build complex mounds, may create
the impression that these are quite intelligent creatures. The opposite is true. Individual in-
sects have extremely limited information processing capacities. Yet, the ant nest, bee hive
or termite mound as a collective can cope with very complex situations.

What social insects lack in individual capabilities, they seem to make up by their sheer
numbers. In that respect, an insect collective behaves like the self-organizing systems
studied in physics and chemistry (Bonabeau et al. 1997): very large numbers of simple
components interacting locally produce global organization and adaptation. In human so-
ciety, such self-organization can be found in the “invisible hand” of the market mecha-
nism. The market is very efficient in allocating the factors of production so as to create a
balance between supply and demand (cf. Heylighen 1997). Centralized planning of the
economy to ensure the same balanced distribution would be confronted with a “calculation
problem” so complex that it would surpass the capacity of any information processing
system. Yet, an efficient market requires its participating agents to follow only the most
simple rules. Simulations have shown that even markets with “zero intelligence” traders
manage to reach equilibrium quite quickly (Gode & Sunder 1993).

The examples we discussed show relatively low collective intelligence emerging from
highly intelligent individual behavior (football teams) or high collective intelligence
emerging from “dumb” individual behavior (insect societies and markets). The obvious
question is whether high collective intelligence can also emerge from high individual in-
telligence. Achieving this is everything but obvious, though. The difficulty is perhaps
best illustrated by the frustration most people experience with committees and meetings.
Bring a number of very competent people together in a room in order to devise a plan of
action, tackle a problem or reach a decision. Yet, the result you get is rarely much better
than the result you would have got if the different participants had tackled the problem
individually. Although committees are obviously important and useful, in practice it
appears difficult for them to realize their full potential. Let us therefore consider some of
the main impediments to the emergence of collective intelligence in human groups.
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1.2. Obstacles to collective intelligence
First, however competent the participants, their individual intelligence is still limited, and
this imposes a fundamental restriction on their ability to cooperate. Although an expert in
his own field, Mr. Smith may be incapable to understand the approach proposed by Ms.
Jones, whose expertise is different. Even if we assume that Mr. Smith would be able to
grasp all the ramifications and details of Ms. Jones’s proposal, he probably would still
misunderstand what she is saying, simply because he interprets the words she uses in a
different way than the one she intended. Both verbal and non-verbal communication are
notoriously fuzzy, noisy and dependent on the context or frame of reference. Even if
everyone would perfectly understand everyone else, many important suggestions during a
meeting would never be followed up. In spite of note taking, no group is able to
completely memorize all the issues that have been discussed.

Another recurrent problem is that people tend to play power games. Everybody would
like to be recognized as the smartest or most important person in the group, and is there-
fore inclined to dismiss any opinion different from his or her own. Such power games
often end up with the establishment of a “pecking order”, where the one at the top can
criticize everyone, while the one at the bottom can criticize no one. The result is that the
people at the bottom are rarely ever paid attention to, however smart their suggestions.
This constant competition to make one’s voice heard is exacerbated by the fact that
linguistic communication is sequential: in a meeting, only one person can speak at a time.

It seems that the problem might be tackled by splitting up the committee into small
groups. Instead of a single speaker centrally directing the proceedings, the activities might
now go on in parallel, thus allowing many more aspects to be discussed simultaneously.
However, now a new problem arises: that of coordination. To tackle a problem collec-
tively, the different subgroups must keep close contact. This implies a constant exchange
of information so that the different groups would know what the others are doing, and
can use each other’s results. But this again creates a great information load, taxing both
the communication channels and the individual cognitive systems that must process all
this incoming information. Such load only becomes larger as the number of participants
or groups increases.

For problems of information transmission, storage and processing, computer tech-
nologies may come to the rescue. This has led to the creation of the field of Computer-
Supported Cooperative Work (CSCW) (see e.g. Smith 1994), which aims at the design
of Groupware or “Group Decision Support Systems”. CSCW systems can alleviate many
of the problems we enumerated. By letting participants communicate anonymously via the
system it can even tackle the problem of pecking order, so that all contributions get an
even opportunity to be considered. However, CSCW systems are typically developed for
small groups. They are not designed to support self-organizing collectives that involve
thousands or millions of individuals.

But there is a technology which can connect those millions: the global computer net-
work. Although communities on the Internet appear to self-organize more efficiently than
communities that do not use computers, the network seems merely to have accelerated
existing social processes. As yet, it does not provide any active support for collective in-
telligence. The present paper will investigate how such a support could be achieved, first
by analysing the mechanisms through which collective intelligence emerges in other sys-
tems, then by discussing how available technologies can be extended to implement such
mechanisms on the network.
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2. Collective Problem-Solving

To better understand collective intelligence we must first analyse intelligence in general,
that is, the ability to solve problems. A problem can be defined as a difference between
the present situation, as perceived by some agent, and the situation desired by that agent.
Problem-solving then means finding a sequence of actions that will transform the present
state via a number of intermediate states into a goal state. Of course, there does not need
to be a single, well-defined goal: the agent’s “goal” might be simply to get into any
situation that is more pleasant, interesting or amusing than the present one. The only
requirement is that the agent can distinguish  between subjectively “better” (preferred) and
“worse” situations (Heylighen 1988, 1990).

To generalize this definition of a problem for a collective consisting of several agents it
suffices to aggregate the desires of the different agents into a collective preference and
their perceptions of the present situation into a collective perception. In economic terms,
the aggregate desire becomes the market “demand” and the aggregate perception of the
present situation becomes the “supply” (Heylighen, 1997). It must be noted, though, that
what is preferable for an individual member is not necessarily what is preferable for a
collective (Heylighen & Campbell, 1995): in general, a collective has emergent properties
that cannot be reduced to mere sums of individual properties. (Therefore, the aggregation
mechanism will need to have a non-linear component.) In section 3, we will discuss in
more detail how such an aggregation mechanism might work.

On way to solve a problem is by trial-and-error in the real world: just try out some
action and see whether it brings about the desired effect. Such an approach is obviously
inefficient for all but the most trivial problems. Intelligence is characterised by the fact that
this exploration of possible actions takes place mentally, so that actions can be selected or
rejected “inside one’s head”, before executing them in reality. The more efficient this
mental exploration, that is, the less trial-and-error needed to find the solution, the more
intelligent the problem-solver.

2.1. Mental maps
The efficiency of mental problem-solving depends on the way the problem is represented
inside the cognitive system (Heylighen 1988, 1990). Representations typically consist of
the following components: a set of problem states, a set of possible actions, and a
preference function or “fitness” criterion for selecting the most adequate actions. The
fitness criterion, of course, will vary with the specific goals or preferences of the agent.
Even for a given preference, though, there are many ways to decompose a problem into
states and actions. Changing the way a problem is represented, by considering different
distinctions between the different features of a problem situation, may make an unsolvable
problem trivial, or the other way around (Heylighen 1988, 1990).

Actions can be represented as operators or transitions that map one state onto another
one. A state that can be reached from another state by a single action can be seen as a
neighbor of that state. Thus, the set of actions induces a topological structure on the set of
states, transforming it into a problem space. The simplest model of such a space is a net-
work, where the states correspond to the nodes of the network, and the actions to the
edges or links that connect the nodes. The selection criterion, finally, can be represented
by a preference function that attaches a particular weight to each link. This problem
representation can be seen as the agent’s mental map of its problem environment.

A mental map can be formalized as a weighted, directed graph M = {N ,  L, P},
where N = {n1, n2, ..., nm} is the set of nodes, L ⊂ N × N is the set of links, and
P: L → [0, 1], is the preference function. A problem solution then is a connected path
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C = (c1, ..., ck) ⊂ N such that c1 is the initial state, ck is a goal state, and for all

i ∈ {1,  . . . ,  k}: (ci, ci+1) ∈ L.
To solve a problem, you need a general heuristic or search algorithm, that is, a method

for selecting a sequence of actions that is likely to lead as quickly as possible to the goal.
If we assume that the agent has only a local awareness of the mental map, that is, that the
agent can only evaluate actions and states that are directly connected to the present state,
then the most basic heuristic it can use is some form of “hill-climbing” with backtracking.
This heuristic works as follows: from the present state choose the link with the highest
weight that has not been tried out yet to reach a new state; if all links have already been
tried, backtrack to a state visited earlier which still has an untried link; repeat this
procedure until a goal state has been reached or until all available links have been
exhausted. The efficiency of this method will obviously depend on how well the nodes,
links and preference function reflect the actual possibilities and constraints in the
environment.

The better the map, the more easily problems will be solved. Intelligent agents, then,
are characterized by the quality of their mental maps, that is, by the knowledge and under-
standing they have of their environment, their own capacities for action, and their goals.
Increasing problem-solving ability will generally require two complementary processes:
1) enlarging the map with additional states and actions, so that until now unimagined op-
tions become reachable; 2) improving the preference function, so that the increase in total
options is counterbalanced by a greater selectivity in the options that need to be explored
to solve a given problem.

2.2. Coordinating individual problem-solutions
Let us apply this conceptual framework to collective problem-solving. Imagine a group of
individuals trying to solve a problem together. Each individual can explore his or her own
mental map in order to come up with a sequence of actions that constitutes part of the
solution. It would then seem sufficient to combine these partial solutions into an overall
solution. Assuming that the individuals are similar (e.g. all human beings or all ants), and
that they live in the same environment, we may expect their mental maps to be similar as
well. However, mental maps are not objective reflections of the real world “out there”:
they are individual constructions, based on subjective preferences and experiences (cf.
Heylighen 1999). Therefore, the maps will also be to an important degree different.

This diversity is healthy, since it means that different individuals may complement
each others’ weaknesses. Imagine that each individual would have exactly the same men-
tal map. In that case, they would all find the same solutions in the same way, and little
could be gained by a collective effort. (In the best case, the problem could be factorized
into independent subproblems, which would then be divided among the participating in-
dividuals. This would merely speed up the problem-solving process, though; it would not
produce any novel solutions).

Imagine now that each individual would have a different mental map. In that case, in-
dividuals would need to communicate not only the (partial) solutions they have found, but
the relevant parts of their mental maps as well, since a solution only makes sense within a
given problem representation. This requires a very powerful medium for information ex-
change, capable of transmitting a map of a complex problem domain. Moreover, it re-
quires plenty of excess cognitive resources from the individuals who receive the trans-
missions, since they would need to parse and store dozens of mental maps in addition to
their own. Since an individual’s mental map reflects that individual’s total knowledge,
gathered during a lifetime of experience, it seems very unlikely that such excess process-
ing and storage capacity would be available. If it were, this would mean that the individ-
ual has used only a fraction of his or her capacities for cognition, and this implies an in-
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dividual who is very inexperienced or simply stupid. Finally, even if individuals could
effectively communicate their views, there is no obvious mechanism to resolve the
conflicts that would arise if their proposals contradict each other. It seems that we have
come back to our problem where we have intelligent individuals but a dumb collective.

Let us see whether investigations of existing intelligent collectives can help us to over-
come this problem of coordination between individuals.

2.3. Stigmergy
While studying the way termites build their mounds, the French entomologist Pierre
Grassé (1959) discovered an important mechanism, which he called “stigmergy”. He ob-
served that at first different termites seem to drop mud more or less randomly. However,
the presence of a heap of mud incites other termites to add mud to that heap, rather than
start a heap of their own. The larger the heap, the more attractive it is to further termites.
Thus, the small heaps will be abandoned, while the larger ones will grow into tall
columns. Since the bias to add mud in those places where the concentration of mud is
highest continues, the columns moreover have a tendency to grow towards each other,
until they touch. This produces an arch, which will itself grow until it touches other
arches. The end result is an intricate, cathedral-like structure of interlocking arches.

This is obviously an example of collective intelligence. The individual termites follow
extremely simple rules, and have no memory of either their own or other individual’s ac-
tions. Yet, collectively they manage to coordinate their efforts so as to produce a complex,
seemingly well-designed structure. The trick is that they coordinate their actions without
direct termite-to-termite communication. The only “communication” is indirect: the mud
left by one termite provides a signal for other termites to continue work on that mud.
Thus, the term stigmergy, whose Greek components mean “mark” (stigma) and “work”
(ergon).

The fundamental mechanism here is that the environment is used as a shared medium
for storing information so that it can be interpreted by other individuals. Unlike a message
(e.g. a spoken communication) which is directed at a particular individual at a particular
time, a stigmergic signal can be picked up by any individual at any time. A spoken mes-
sage that does not reach its addressee, or is not understood, is lost forever. A stigmergic
signal, on the other hand, remains, storing information in a stable medium that is acces-
sible by everyone.

The philosopher Pierre Lévy (1997) has proposed a related concept to understand
collective intelligence, that of a shared “object”. For example, a typical object is the ball in
a soccer game. Soccer players rarely need to communicate directly, e.g. by shouting di-
rections at each other. Their activities are coordinated because they are all focused on the
position and movement of the ball. The state of the ball incites them to execute particular
actions, e.g. running toward the ball, passing it to another player, or having a shot at the
goal. Thus, the ball functions as a stigmergic signal, albeit a much more dynamic one than
the mud used by termites. Another typical “object” discussed by Lévy (1997) is money. It
is the price, i.e. the amount of money you get for a particular good, which incites pro-
ducers to supply either more or less of that good. Thus, money is the external signal
which allows the different actors in the market to coordinate their actions (cf. Heylighen
1997).

The difference between Lévy’s “object” and Grassé’s stigmergic signal, perhaps, is
that the former changes its state constantly, while the latter is relatively stable, accumulat-
ing changes over the long term. The stigmergic signal functions like a long-term memory
for the group, while the object functions like a working memory, whose changing state
represents the present situation. In fact, you do not even need an external object to hold
this information. The soccer players are not only influenced by the position and move-
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ment of the ball, but also by the position and movement of the other players. This per-
ceived state of the collective functions as a shared signal that coordinates the actions of the
collective’s members. The coordinated actions exhibited by the individuals in a swarm
(flocks of birds, shoals of fish, herds of sheep, etc.) are similarly based on a “real-time”
reaction to the perceived state of the other individuals.

2.4. Collective Mental Maps
In the examples of stigmergy or shared objects we discussed until now, the problem-
solving actions seem to be purely physical: amassing mud, kicking a ball towards the
goal, producing goods. We might wonder whether stigmergy could also be used to sup-
port problem-solving on the mental plane, where sequences of actions are first planned in
the abstract before they are executed in reality. Again, insect societies can provide us with
a most instructive example. Ants that come back from a food source to their nest leave a
trail of chemical signals, pheromones, along their path. Ants that explore the surround-
ings, looking for food, are more likely to follow a path with a strong pheromone scent. If
this path leads them to a food source, they will come back along that path while adding
more pheromone to the trail. Thus, trails that lead to sources with plenty of food are con-
stantly reinforced, while trails that lead to exhausted sources will quickly evaporate.

Imagine two parallel trails, A and B, leading to the same source. At first, an individual
ant is as likely to choose A as it is to choose B. So, on average there will be as many ants
leaving the nest through A as through B. Let us assume that path B is a little shorter than
A. In that case, the ants that followed B will come back to the nest with food a little more
quickly. Thus, the pheromones on B will be reinforced more quickly than those on A,
and the trail will become relatively stronger. This will entice more ants to set out on B
rather than A, further reinforcing the gains of B relative to A. Eventually, because of this
positive feedback, the longer path A will be abandoned, while the shorter path B will at-
tract all the traffic. Thus, the ants are constantly tracing and updating an intricate network
of trails which indicate the most efficient ways to reach different food sources. Individual
ants do not need to keep the locations of the different sources in memory, since the
collectively developed trail network will always be there to guide them.

This example may seem similar to the mud collecting termites. The difference is that
the ants leaving pheromone are not making any physical contribution to the solution of
their problem (collecting food), unlike the termites whose actions directly contribute to the
mound building. They are merely providing the collective with a map to guide them
through the terrain. In fact, the trail network functions like an external mental map, which
is used and updated by all ants. We will call such an exteriorized, shared, cognitive
system a collective mental map (CMM). Let us investigate this concept in more detail.

A collective mental map functions first of all as a shared memory. Various discoveries
by members of the collective are registered and stored in this memory, so that the infor-
mation will remain available for as long as necessary. The storage capacity of this mem-
ory is in general much larger than the capacities of the memories of the individual partici-
pants. This is because the shared memory can potentially be inscribed over the whole of
the physical surroundings, instead of being limited to a single, spatially localized nervous
system. Thus, a collective mental map differs from cultural knowledge, such as the
knowledge of a language or a religion, which is shared among different individuals in a
cultural group but is limited by the amount of knowledge a single individual can bear in
mind.

In human evolution, the first step towards the development of a CMM was the inven-
tion of writing. This allowed the storage of an unlimited amount of information outside of
individuals brains. Unlike a real CMM, however, the information in books is shared only
to a limited extent. Not all books can be accessed by all individuals. This was particularly
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true before the invention of printing, when only a few copies of any given book existed in
the world. Although libraries now provide a much wider access for people wishing to
read books, there is still a very limited access for writing books. Although everybody
could in principle write a book, very few books actually get published in such a way that
they become accessible to a large number of people.

In a CMM, such as the ants’ trail network, on the other hand, all individuals can
equally contribute to the shared memory. They can in particular build on each others’
achievements by elaborating, reinforcing or providing alternatives for part of the stored
information. Books, on the other hand, are largely stand-alone pieces of knowledge, with
very limited cross-references. It would be very difficult for me to take an existing book
and start commenting, correcting or reinforcing on its content. If I want to add to the state
of the art, I would rather need to write and publish a book from scratch, a very difficult
and time-consuming affair.

The need for a universally and dynamically shared memory has been well understood
by researchers in Computer-Supported Cooperative Work (e.g. Smith 1994). Discussions
over a CSCW system will typically keep a complete trace of everything that has been said,
which can be consulted by all participants, and to which all participants can at any
moment add personal annotations. This collective register of activities is often called a
shared “blackboard”, “white board” or “workspace”. However, a record of all
communications does not yet constitute a mental map. The more people participate in a
discussion and the longer it lasts, the more the record will grow, and the more difficult it
will become to distil any useful guidelines for action out of it. Of course, you can allow
the participants to edit the record and erase notes that are no longer relevant, as you would
do with scribbles on a blackboard. But this again presupposes that the participants would
have a complete grasp of all the information that is explicitly or implicitly contained in the
record. And that means that the size of the “controlled” content of the blackboard cannot
grow beyond the cognitive capacities of an individual. This obviously makes the shared
blackboard a poor model for an eventual Internet-based support for collective intelligence.

A mental map is not merely a registry of events or an edited collection of notes, it is a
highly selective representation of features relevant to problem-solving. The pheromone
network does not record all movements made by all ants: it only registers those collective
movements that are likely to help solve the ants’ main problem, finding food. A mental
map consists of problem states, possible actions that lead from one state to another, and a
preference function for choosing the best action at any moment. These are all implicit in
the pheromone network: a particular patch of trail can be seen simultaneously as a location
or problem state, as an action linking to other locations, and as a preference, measured by
the concentration of pheromone, for that action over other available actions. As it is clear
that a CMM cannot be developed by merely registering and editing individual contribu-
tions, we will need to study different methods to collectively develop a mental map.

3. Mechanisms of CMM Development

3.1. Averaging preferences
Probably the most basic method for reaching collective decisions and avoiding conflicts is
voting. This method assumes that all options are known by all individuals, and that the
remaining question is to determine their aggregate preference. In the simplest case, every
individual has one vote, which is given to the options that this individual prefers above all
others. Adding all the votes together determines the relative preferences of the different
alternatives for actions. (Usually, after a vote only the highest scoring option is kept, but
this is not relevant for our model, where all options remain available). This is to some
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degree similar to the functioning of ant colonies, where the pheromone trail left by a
particular ant can be seen as that ant’s “vote” in the discussion of where best to find food.

In a more sophisticated version of the voting mechanism, individuals can distribute
their voting power over different alternatives, in proportion to their individual preference
functions. For example, alternative A might get a vote of 0.5, B 0.3, C 0.2 and D 0.0. In
that case, the collective preference function Pcol becomes simply an average of the n indi-
vidual preference functions Pi:

(1) Pcol( l j ) = 1
n

Pi

i=1

n

∑ (l j ) = 1
n

p j
i

i=1

n

∑

Johnson’s (1998; see also Johnson et al. 1998) simulation of collective problem-solving
illustrates the power of this intrinsically simple averaging procedure. In the simulation, a
number of agents try to find a route through a “maze”, from a fixed initial position to a
fixed goal position. The maze consists of nodes randomly connected by links. In a first
phase, the agents “learn” the layout of the maze by exploring it in a random order until
they reach the goal. They do this by building up a preference function which attaches a
weight to every link in the network they tried, but such that the last link used (before
exiting the maze) in any given node gets the highest weight. In a second, “application”
phase, they use this knowledge to find a short route, which now avoids all needless loops
and dead-ends encountered during the learning phase. Since different agents have learned
different preference functions, they will not all be successful to the same degree, and their
best routes can greatly differ in length. However, Johnson (1998) showed that if the
preference functions for a large number of agents are averaged, the route selected by that
“collective” preference was significantly shorter than the average route found by a typical
individual agent. In fact, if the collective consisted of a sufficiently large number of
agents, the collective solution was better than the best individual solution.

This phenomenon might be explained by assuming that the different routes learned by
the agents are all variations on the globally shortest route through the maze. Because of
the time spent learning how to avoid poor routes, the preferred option at any node is more
likely to be the optimal choice than any other choice. However, since the agents have no
global understanding of the maze, most of their choices will still be less than optimal.
These deviations from the optimum are caused by random factors, and therefore have no
systematic bias in any particular direction. Because of the law of large numbers, we can
expect these “fluctuations” to cancel each other out when many different preferences are
averaged. This will only leave what the different routes have in common, namely their
bias towards the optimal solution. It seems that a similar mechanism may apply to human
decision-making, under the same condition that there is no systematic bias away from the
optimum. Therefore, we may expect the average of the choices made by a large group to
be effectively better than the choice made by a random individual.

Although Johnson’s simulation exhibits collective intelligence the way we have de-
fined it, the solutions found by a large collective (of the order of 100 individuals or more)
are only somewhat better than the solutions found by a single agent. In real life, it would
seldom seem worth the trouble employing a hundred people to solve a problem if one per-
son could find a solution that is almost as good. As could be expected from the law of
large numbers, the averaging mechanism provides decreasing returns: the improvement
produced by adding a fixed number of individuals to the collective will become smaller as
the size of the collective increases.

- 9 -



3.2. Feedback
One reason that the collective intelligence produced by averaging adds relatively little to
the intelligence of the participating individuals is that the procedure is very redundant:
every individual must build up a mental map of the whole domain before any CMM can
be initiated. Although Johnson’s (1998) simulation may seem similar to the ant example,
trail laying by ants is governed by a more sophisticated mechanism. The discovery of a
large food source by a single ant is in general sufficient to start a trail which is then used
and reinforced by growing numbers of other ants. No individual ant needs to explore the
whole surroundings. Yet, collectively, the ants are likely to have explored the complete
surroundings, and their trails are likely to provide a near complete map of these
surroundings.

The reason is that collective trails are not simply the superposition of trails laid
independently by different individuals. Trails interact in a non-linear way: a trail leading to
a good source will be reinforced through a positive feedback loop, while a trail leading to
an empty source will spontaneously decay (cf. Dorigo et. al 1996). Thus, a variety of
local, individual contributions suffices to let a global map emerge. This is the hallmark of
self-organization (cf. Bonabeau et al. 1997). The net effect is that exploration by the
collective is much more efficient, since small, individual efforts that turn out to be
successful are amplified into large, collective results by the feedback mechanism (in a
sense, we might say that the decreasing returns of averaging are complemented by the
increasing returns produced by positive feedback). Different applications (e.g. Dorigo et
al. 1996, Schoonderwoerd et al. 1996, Bonabeau & Theraulaz 1994) have shown that
such “ant-based” algorithms provide a powerful heuristic to solve a variety of problems.

The danger with positive feedback is that it can become too strong, so that a few rea-
sonably good courses of action immediately attract all the activity, preventing the explo-
ration of avenues that might produce even better solutions. This risk can be controlled by
adjusting the individuals’ sensitivity to the collective preference. If ants would always
choose the path with the strongest pheromone scent, then all ants would immediately con-
centrate on a single food source. It would take a very long time after that food source was
exhausted before they would start exploring other regions. In order to guarantee a more or
less exhaustive covering of the surroundings, ants should deviate from the strongest trail
with a non-zero probability. Increasing this probability will lead to more thorough explo-
ration, but reduced efficiency of food gathering. In ants, this probability has probably
evolved to a nearly optimal value because of natural selection: ant varieties with a too high
or too low value for this parameter would have lost the competition with ant varieties
characterized by a better tuned value.

Some simulation results confirm this intuition. In Dorigo et al.’s (1996) search
algorithm inspired by ants, the best results were achieved when the trail sensitivity
parameter was set to 1, that is, when the “ant’s” probability to choose a link was
proportional to the trail strength (on the assumption that all possible paths start out with
the same non-zero strength). In the simulation by Chialvo and Millonas (1995) of how
ants build “cognitive maps” it was shown that real trails only emerge for a particular range
of values of the “osmotropotaxic sensitivity” parameter.

When we transpose the feedback model from ant colonies to human society, we are
reminded of a more typically human mechanism for collective problem-solving: discus-
sion. When people in a group state their preferences, so that others who have not yet
made up their mind may be enticed to follow them, they usually do more than just make
an evaluation: they give arguments for why they believe a particular option is better.
These arguments may convince others that this is really the best option, or incite them to
produce counter-arguments. In the best case, these arguments and counter-arguments will
illuminate the broader implications of the different options, or even suggest a new option
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that combines the best aspects of the previous options. Thus, not only the preference
function, but also the state space and set of actions can develop interactively.

The general process is elegantly demonstrated by the Policy Delphi method for collab-
orative problem-solving (Linstone & Turoff 1975). This method has been implemented as
a group decision support system (Kenis & Bollaert 1992), which in turn has been ex-
tended for use in a Web environment (Naydenova 1995). In a computer-supported Policy
Delphi session, the participants are first asked to state their preferred action to tackle a
given problem. The participants are then asked to evaluate each of the (anonymous) pro-
posals on a 5 point scale, and to give arguments for their agreement/disagreement. In the
next round, they see the distribution of opinions and the additional arguments for each of
the options. In the light of this new information, they get the chance to change their mind,
by making a new evaluation and giving new arguments. This discussion can go on for
several rounds until the opinions have stabilized. At that moment, the group can decide to
choose the option that has gathered the highest average evaluation.

3.3. Division of labor
Both ant trail laying and voting implicitly assume that all participating individuals
contribute evenly to the different aspects of the problem-solving. This only makes sense if
all individuals are equally competent on all issues. Human society, however, is based on
the division of labor: different individuals have different forms of expertise, and they
typically limit their contributions to the domains they are most competent in. Cognitive
specialization emerges spontaneously through a positive feedback mechanism: as
illustrated by Gaines’ (1994) simulation, individuals who were successful in solving a
particular type of problem are likely to get more problems of that type delegated to them,
and thus will develop a growing expertise in the domain. Specialization helps to overcome
individual limitations: since not everybody can know everything, a group where different
individuals know different things will collectively cover a much larger domain.

Formally, division of labor is characterized by the fact that the mental maps Mi =
{N i,  Li, Pi} are different for the different individuals i. The collective mental map Mcol

can then be reconstructed by taking the union of the respective sets of nodes and links:

  N
col = Ni

iU , Lcol = Li
iU . The collective preference function Pcol can again be ex-

pressed as the average of the individual preferences as in equation (1), with the additional
assumption that Pi(lj) = 0 if lj ∉ Li, or developed by a sequential, feedback-based algo-
rithm, as discussed in section 3.2.

The problem with specialization is that in order to collectively tackle a problem the dif-
ferent specialists need to communicate. If the specialists’ mental maps are too different,
they will have great difficulty understanding each other. This is a classical issue in multi-
disciplinary or interdisciplinary research. One way to bridge the gap is to make sure that
there is always some overlap between different mental maps, so that two specialists from
very different disciplines (say, a chemist and a biologist) will be able to communicate via
one or more “interpreters” who belong to an intermediary discipline (say, molecular biol-
ogy) that overlaps with both. In our formal model this would mean that the overall graph
Mcol is connected. The more paths there exist between two arbitrary locations in the net-
work, the higher the probability of fruitful information exchange between the correspond-
ing domains. If there are sufficient “interdisciplines” to cover all the gaps between special-
izations, diffusion of ideas from one domain of expertise to another will always be
possible. This is Campbell’s (1969) “fish scale model of omniscience”.

The disadvantage of this method is that diffusion between distant domains of expertise
can be very inefficient, since many “interpretation” processes will slow down and degrade
the communication. An alternative approach is the development of a universal language
or, rather, metalanguage (Heylighen 1990) , that would allow different mental maps to be

- 11 -



expressed in the same, more abstract language, so that their similarities and difference be-
come clear. This is the approach proposed by General Systems Theory (Boulding 1956)
to integrate the different scientific disciplines, albeit with limited success until now. One
way to apply this mechanism to the development of a CMM would be a hierarchical se-
mantic network supporting different levels of abstraction. This could be developed by
clustering similar nodes, and representing the resulting clusters by new, “higher order”
nodes (Heylighen 1999).

A similar mechanism underlies decision-making in organizations, where the advice
coming from different specialists is synthesized by a “generalist” manager who puts them
in a broader perspective. This brings us back to the hierarchical model, where supervisors
at the higher levels divide a task or problem into subproblems which are then delegated to
specialists at the levels below. This assumes that at every stage, a single, “generalist”
individual decides how the activities of the other individuals should be coordinated. The
efficiency of the resulting problem-solving will therefore be limited by the information-
processing capacity of the “executive”.

3.4 Conclusion
The three basic mechanisms of averaging, feedback and division of labor give us a first
idea of a how a CMM can be developed in the most efficient way, that is, how a given
number of individuals can achieve a maximum of collective problem-solving competence.
A collective mental map is developed basically by superposing a number of individual
mental maps. There must be sufficient diversity among these individual maps to cover an
as large as possible domain, yet sufficient redundancy so that the overlap between maps is
large enough to make the resulting graph fully connected, and so that each preference in
the map is the superposition of a number of individual preferences that is large enough to
cancel out individual fluctuations. The best way to quickly expand and improve the map
and fill in gaps is to use a positive feedback that encourages individuals to use high
preference paths discovered by others, yet is not so strong that it discourages the
exploration of new paths.

Let us now try to apply these general principles to a concrete medium, the global
information network. This will help us to clarify, formalize and operationalize these
notions.

4. From Web to Collective Mental Map

We noted that the information stored in books can be seen as a rudimentary CMM for
human society, albeit one that is too static and fragmented. The present trend to move all
written information on-line, so that it becomes immediately and universally accessible, is
a first step towards removing these obstacles. The World-Wide Web, with its distributed
hypermedia format, seems particularly well-suited as a medium to create a dynamic
CMM. Let us review the main benefits of the Web.

First, the storage space provided by the millions of computers connected to the net-
work is practically unlimited. Second, the stored information can be accessed virtually
instantaneously, both for reading and for writing. If I have an idea that I would like to
publicize, it suffices to write it down, save the document in HTML format on my server,
and the text becomes immediately accessible to everyone in the world with an Internet
connection. Unlike information in books, moreover, the HTML format allows different
documents to be directly connected. Thus, I can comment on, or contribute to, other
people’s ideas, while having both my comments and the original documents immediately
available to the readers. The hyperlinks which connect web pages turn the web into a
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huge directed graph, consisting of nodes and links. Apart from the preference function,
this is the same structure as the one we postulated for a mental map.

However, as yet the Web provides little support for problem-solving. One difficulty is
that the unlimited memory makes it easy to store everything: relevant as well as irrelevant
information. As we saw when discussing the automatic registry provided by CSCW sys-
tems, memorizing too much information hinders rather than helps problem-solving. In
order to tackle that information explosion, we need guidance in selecting what is relevant.
The best known tools to filter out what is relevant are the search engines: they sieve
through the whole of the web, but return only those documents that contain the keywords
provided by the user. However, this “brute force” approach has serious shortcomings
(Heylighen & Bollen 1996; Kleinberg 1998). First, with the on-going explosion in the
number of documents, even quite specific keywords will result in hundreds or thousands
of “hits”, most of which are of poor quality. Second, in order to select relevant
keywords, the user already needs to have a clear idea of how a potential solution would
be formulated. The best document to solve the user’s problem may actually use different
keywords, and therefore the solution may never be found.

A more intelligent selection mechanism is implicit in the hypertext structure of the
web. The author of a web document will normally only include links to other documents
that are relevant to the general subject of the page, and of sufficient quality. Thus, locating
one document relevant to your goals may be sufficient to guide you to further information
on that issue. High quality documents, that contain clear, accurate and useful information,
are likely to have many links pointing to them, while low quality documents will get few
or no incoming links. Thus, although no explicit preference function is attached to a link,
there is a preference implicit in the total number of links pointing to a document. This
preference is produced collectively, by the group of all web authors. A first step towards
turning the web into a CMM would consist in extracting this implicit information from
existing web links.

Recently, two types of algorithms have been developed for this purpose: PageRank
(Brin & Page 1998) and HITS (Kleinberger 1998). Both use a bootstrapping approach
(cf. Heylighen 1999): they determine the quality or “authority” of a web page on the basis
of the number and quality of the pages that link to it. Since the definition is recursive (a
page has high quality if many high quality pages point to it), the algorithm needs several
iterations to determine the overall quality of a page. Mathematically, this is equivalent to
computing the eigenvectors of the matrix that represents the linking pattern in the selected
part of the web. PageRank uses the linking matrix directly, HITS uses a product of the
matrix and its transposed matrix. The latter method produces two types of pages:
authorities, that are pointed to by many good “hubs” (indexes or lists of web pages), and
hubs, that point to many good authorities. In combination with a keyword search, which
restricts the pages for which the quality is computed to a specific problem
“neighborhood”, these methods seem to produce a much better quality in the answers
returned for a query.

The disadvantage of these methods is that they are static: they merely use the (rather
sparse) linking pattern that already exists; they do not allow the web to adapt to the way it
is used, as a real CMM would do. To achieve this, other sources of implicit information
can be “mined”. People who merely browse the web by navigating from page to page
express their preferences by the links they choose. The frequency of their link selections
provides information about their subconscious preference function. The following
sections will discuss algorithms to extract and use such implicit information.
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4.1. Collaborative filtering
Recently a number of methods have been developed for the “collaborative filtering” or
“social filtering” of information (Resnick et al. 1994; Shardanand & Maes 1995; Breeze et
al. 1998). The main idea is to automate the process of “word-of-mouth” by which people
recommend products or services to one another. If you need to choose between a variety
of options with which you do not have any experience, you will often rely on the opin-
ions of others who do have such experience. However, when there are thousands or mil-
lions of options, like in the Web, it becomes practically impossible for an individual to lo-
cate reliable experts that can give advice about each of the options. By shifting from an
individual to a collective mode of recommendation, the problem becomes more manage-
able. Instead of asking opinions to each individual, you might try to determine an
“average opinion” for the group, like in the voting and collective maze exploration exam-
ples we discussed before. This, however, ignores your particular interests, which may be
different from those of the “average person”. You would rather like to hear the opinions
of those people who have interests similar to your own, that is to say, you would prefer a
“division-of-labor” type of organization, where people only contribute to the domain they
are specialized in.

The basic mechanism behind collaborative filtering systems is the following: 1) a large
group of people’s preferences are registered; 2) using a similarity metric, a subgroup of
people is selected whose preferences are similar to the preferences of the person who
seeks advice; 3) a (possibly weighted) average of the preferences for that subgroup is cal-
culated; 4) the resulting preference function is used to recommend options on which the
advice-seeker has expressed no personal opinion as yet. Typical similarity metrics are
Pearson correlation coefficients between the users’ preference functions and (less fre-
quently) vector distances or dot products. The correlation coefficient between two users a

and b, with pai denoting a’s preference for option i, and p a  denoting the average
preference of a over all options, is defined in the following way:

(2) Rab =
( pi

a − p a )(pi
b − p b )

i∑
( pi

a − p a )2
i∑ . ( pi

b − p b )2
i∑

If the similarity metric has indeed selected people with similar tastes, the chances are great
that the options that are highly evaluated by that group will also be appreciated by the ad-
vice-seeker. The typical application is the recommendation of books, music CDs, or
movies. More generally, the method can be used for the selection of documents, services
or products of any kind.

The main bottleneck with existing collaborative filtering systems is the collection of
preferences (cf. Shardanand & Maes 1995). To be reliable, the system needs a very large
number of people (typically thousands) to express their preferences about a relatively
large number of options (typically dozens). This requires quite a lot of effort from a lot of
people. Since the system only becomes useful after a “critical mass” of opinions has been
collected, people will not be very motivated to express detailed preferences in the begin-
ning stages (e.g. by scoring dozens of music records on a 10 point scale), when the sys-
tem cannot yet help them.

One way to avoid this start-up problem is to collect preferences that are implicit in
people’s actions (Nichols 1998). For example, people who order books from an Internet
bookshop implicitly express their preference for the books they buy over the books they
do not buy. Customers who have bought the same book are likely to have similar
preferences for other books as well. This principle is applied by the Amazon web
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bookshop (www.amazon.com), which for each book offers a list of related books that
were bought by the same people.

There are even more straightforward ways to collect implicit preferences on the web.
One method is to register all the documents on a website that have been consulted by a
given user (cf. Breeze et al. 1998). The list of all available documents, with preference 1
for those that have been consulted and preference 0 for the others, then determines a pref-
erence function for that user (cf. Breeze et al. 1998). Using a similarity metric on these
preference vectors makes it possible to determine neighborhoods of users with similar in-
terests.

4.2. Co-occurrence matrices
Since the documents consulted by users with similar interests are likely to be in a number
of respects similar themselves, collaborative filtering makes it possible to determine clus-
ters of related documents (cf. Breeze et al. 1998). The principle is the same as with the
books that are assumed to be related to a given book, because they have been bought by
the same people. However, we are now shifting our attention from similarities between
users to similarities between options, as expressed implicitly by the users’ preferences.
This allows us to make abstraction of any specific users or groups in order to derive a
collective preference function that describes associations between options, rather than
merely evaluations of options. Thus, we can use this mechanism to develop a CMM.

Making abstraction of the users much simplifies the algorithms needed to calculate
similarity. We can simply assume that two documents are more similar if more users have
consulted both of them. However, the frequency of consultation depends not only on a
document’s similarity to other documents, but on its intrinsic value. Therefore, in order to
determine the intrinsic strength of the relation between a document x and a document y we
can use the conditional probability that a user would consult x given that that user also
consulted y. That probability P(x|y) determines a matrix Mxy which represents the con-
nection strengths between documents:

(3) Mxy = P(x| y) = #( x& y)
#( y)

#(x) stands here for the total number of users that consulted x, and #(x&y) for the total
number of users that consulted both x and y. The formula implies that the strength of the
link from y to x is zero if there are no users that consulted both x and y, and reaches the
maximum value of 1 if all users that consulted y also consulted x.

This formula is so general that we can apply it to other cases where two documents x
and y appear together in a given selection. We will call this “appearing together” co-occur-
rence. An obvious source for co-occurrence data on the web are documents that contain
lists of links to other documents. If two documents x and y appear in the same list, we
can assume that the author of that list considered these documents to be equally relevant to
the subject of that list, and therefore to be similar in some way. (This is similar to what is
called “co-citation” in bibliometric research, see Small 1973, Pitkow & Pirolli 1997). The
more often x and y appear together in another document, the more strongly we can
assume them to be related, and therefore the more strongly the weight for the link that
connects them. Co-occurrence data for web links are readily available. It suffices to use a
search engine, such as AltaVista (altavista.digital.com), and search for all documents that
contain links to either y, or x and y. The number of “hits” can then be entered into the
formula for the conditional probability. (Another method is to collect bookmark lists from
users, and analyse the co-occurrence of web pages in these lists. Rucker and Polanco
(1997) have used this method in their Siteseer system to recommend particular pages to

- 15 -



each user. Unfortunately, they did not specify the underlying algorithm.) The resulting
values can be used to determine a list of weighted links connecting all web documents that
have been examined in this way. This is a first step to turning the web into a CMM.

Note that such a procedure exploits the semantic topology which is implicit in the way
different individuals’ interests and expertises are distributed. For example, a document on
cybernetics is likely to co-occur frequently with a document on complex adaptive sys-
tems, since people interested in cybernetics are usually also interested in complex adaptive
systems. Similarly, a document on complex adaptive systems is likely to co-occur with a
document on non-linear physics. However, non-linear physics will co-occur less fre-
quently with cybernetics. This indicates that the field of complex adaptive systems must
be situated somewhere in between cybernetics and non-linear physics in the semantic
space of disciplines.

It may seem that with the reduction from collaborative filtering to co-occurrence we
have lost the possibility to make recommendations for an individual, rather than for a
single node. However, the more complex personal recommendations P’ can be recovered
by representing an individual preference function P on the set of options as a vector p =
(p1 p2 p3 ... pn) and calculating the product of this vector with the co-occurrence matrix:

(4) p' i = Mij p j
j

∑

This formula remains valid if we replace the binary preference function (either an option
occurs in a given selection, or it does not) by a numerically valued preference function,
where each option can have a range of values. In that case, we can write the following
more general formula for the “co-occurrence” matrix:

(5) Mij =
pi

k p j
k

k=1

n

∑

p j
k

k=1

n

∑

Note that when there is only one preference function (n=1), then according to (4), its
preference vector is an eigenvector of the corresponding matrix defined by (5). If the

preferences are normalized as probabilities ( pii∑ = 1), then the corresponding eigen-

value is 1. This is as it should be: without other preference functions to supplement
missing information, a given preference function should remain invariant under the col-
laborative filtering procedure. Also note that when preferences are restricted to binary val-
ues, pi ∈ {0,1}, then the expression (5) reduces to the conditional probability formula
(3).

Until now, the procedure as we have defined it has been motivated purely theoreti-
cally. It is simpler and seems more universal than the procedures based on correlation co-
efficients or vector distances. However, it still must be tested empirically on existing col-
laborative filtering data (cf. Breeze et al. 1998). A first indication that such a procedure
would work at least as well as existing procedures can be found in the “artist-artist” al-
gorithm tested by Shardanand & Maes (1995), which gave results similar to the more
traditional collaborative filtering algorithms. This algorithm is based on a Pearson correla-
tion coefficient like in (2), but applied to relations between “artists” (options, like in our
proposal) rather than between users. The present formula is similar to the correlation for-

mula, except for the normalization, and the fact that it uses the “raw” score pi
a

 rather than
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its deviation from the average score pi
a

 – p a . The advantage of the present normaliza-
tion is that it is asymmetric: a link from a popular option j to a less popular option i

( p j
k

k=1

n

∑ > pi
k

k=1

n

∑ ) will get a lower connection strength than the inverse link, according to

(5). The effect is similar to the “inverse user frequency” normalization which was found
by Breeze et al. (1998) to increase the accuracy of recommendations.

4.3. Using sequential selection data
The co-occurrence or collaborative filtering procedures to construct a collective preference
function are intrinsically parallel: the link between two nodes is reinforced only because
these nodes are simultaneously present in some selection. However, the basic activity on
the web is sequential: a user will select one node after another. This sequential browsing
pattern too can provide us with information about the users’ collective preferences.
Moreover, since browsing is an on-going, real-time activity, this information can allow us
to continuously update the CMM, thus supporting an interactive, feedback-based mecha-
nism (section 3.2) rather than the non-interactive “averaging” (section 3.1) implied by co-
occurrence.

To extract this sequential information, we may again consider ant trail laying as a
source of inspiration. Each time an ant uses a trail to find food, the trail gets reinforced.
Similarly, we might increase the weight of a link in the web by a small, fixed amount each
time a user selects this link. Frequently used links would thus get a higher weight than
less frequently used links. By renormalizing the link strenghts after each operation, the
links that did not get reinforced will lose strength relative to the others. This is similar to
the evaporation of pheromones along an ant trail. Since a seemingly promising link can
still lead to an uninteresting document (the equivalent of a trail leading to an exhausted
food source), the system should ideally increase the weight of a link only in proportion to
the user’s evaluation of the resulting document. If we want to avoid burdening the user by
requesting an explicit rating, we can use implicit data, such as the time spent reading the
document, which seems to correlate well with explicit evaluations (Nichols 1998).

There is a basic difference between the web and the terrain that ants explore to find
food, though. An ant does not have to choose between existing trails: it can always
deviate and start a wholly new trail. A web user, on the other hand, can only choose
between the links that are available on the given web page. Therefore, the reinforcement
of existing links by usage is intrinsically more constrained than the exploration used by
ants.

There are different ways to add more “creativity” to the procedure. An obvious
method to introduce new links is to provide the user with a list of suggested links that are
not coded in the page’s HTML content. In principle, we could let the user choose to go
from the given page to any other page that exists somewhere in the Web. With hundreds
of millions of Web pages, though, this method would be clearly impractical. We could
also generate a small, random collection of web pages, and let the user choose between
these. The probability that one of theses pages would be relevant to the user who has se-
lected the given page seems very small, though. We can provide the user with a selection
that is more likely to be relevant by using co-occurrence or keyword similarity to find
pages related to the present one. However, this will only change the relative weights of
links within the larger class of co-occurring or similar pages, and not create any really
new links.
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4.4. Learning web algorithms
My collaborator Johan Bollen and I have developed a heuristic algorithm that has both
unlimited “creativity” in proposing new links, and is strongly selective in its suggestions
(Bollen & Heylighen 1996, 1999, Heylighen 1999). When a user follows a path a → b
→ c, the algorithm not only increases the weight of the direct links a → b and b → c (this
is the “frequency” rule), but also of the indirect link a → c (the “transitivity” rule), and of
the inverse links b → a, and c → b (the “symmetry” rule). In that way, a number of
links that were not initially available on the page get the chance to gather a non-zero
weight. All these links are considered potentially relevant to the user. From those, the
links with the highest weights are added to the web page as suggestions, so that the user
can now select these links immediately. When a link thus becomes directly available, we
may say that it has turned from “potential” to “actual”.

The transitivity rule opens up an unlimited realm of new links. Indeed, one or several
increases in weight of a → c may be sufficient to make the potential link actual. The
user can now directly select a → c, and from there perhaps c → d. This increases the
strength of the potential link a → d, which may in turn become actual, providing a start-
ing point for an eventual further link a → e, and so on. Eventually, an indefinitely ex-
tended path may thus be replaced by a single link a → z. Of course, this assumes that a
sufficient number of users effectively follow that path. Otherwise it will not be able to
overcome the competition from paths chosen by other users, which will also increase their
weights. The underlying principle is that the paths that are most popular, i.e. followed
most often, will eventually be replaced by direct links, thus minimizing the average num-
ber of links a user must follow in order to reach his or her preferred destination.

This basic mechanism is extended by the symmetry rule. When a user chooses a link
a → b, implying that there exists some association between the nodes a and b, we may
assume that this also implies some association between b and a. Therefore, the reverse
link b → a gets a weight increase. This symmetry rule on its own is much more limited
than transitivity, since it can only actualize a single new link for each existing link.

However, the joint effect of symmetry and transitivity is much more powerful than
that of any single rule. For example, consider two links a1 → b, a2 → b. The fact that a1
and a2 point to the same node seems to indicate that a1 and a2 have something in common,
i.e. are related in some way. However, none of the rules will directly generate a link be-
tween a1 and a2. Yet, the repeated selection of the link a2 → b may actualize the link
b → a2 by symmetry. The repeated selection of the already existing link a1 → b fol-
lowed by this new link can then actualize the link a1 → a2 through transitivity. Similar
scenarios can be conceived for different orientations or different combinations of the
links.

A remaining issue is the relative importance of these three rules. In other words, how
large should the increase in weight be for each of the rules? If we choose unity (1) to be
the bonus given by the frequency rule, there are two remaining parameters or degrees of
freedom: t is the bonus for transitivity, s for symmetry. Since the direct selection of a link
by a user seems a more reliable indication of its usefulness than an indirect selection, we
assume t < 1 , s < 1. The actual values will determine the efficiency of the learning pro-
cess. They play a role similar to the ants’ trail sensitivity (section 3.2): higher values of t
and s mean a higher probability for the creation of new links, but also a higher probability
for the selection of irrelevant links.

4.5. Learning web applications
In order to test these algorithms in practice, we set up two experiments (Bollen &
Heylighen 1996, 1999), one using all three rules, another using all rules except symme-
try. We built a network consisting of 150 nodes, corresponding to the 150 most frequent
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nouns of the English language. All of the potential 149 × 149 links between nodes were
given a small random weight to initialize the web. Every node would show the 10
strongest links, ordered according to their weights. The link weights would then evolve
according to the above learning rules, with t = 0.5 and s = 0.3. We made the web avail-
able on the Internet, and invited volunteers to browse through it, selecting those links
from a given node which seemed somehow most related to it. For example, if the start
node represented the noun “knowledge”, a user would choose a link to an associated
word, such as “education” or “experience”, but not to a totally unrelated word, such as
“face”. Of course, in the beginning of the experiment, there would be very few good as-
sociations available in the lists of 10 random words, and users might have to be satisfied
with a rather weak association, such as “book”. However, when reaching the node
“book”, they might be able to select there another association, such as “education”.
Through transitivity, a new link to “education” might then appear in the node
“knowledge”, displacing the weakest link in the list, while providing a much better asso-
ciation than the previously best one, “book”.

The development of the associative network was surprisingly quick and efficient.
After only 2500 link selections (out of 22,500 potential links) both experimental networks
had achieved a fairly well-organised structure, in which most nodes had been connected
to large clusters of related words. This may be illustrated by a typical example of how
links are gradually introduced and rewarded until their weight reaches an equilibrium
value. Table 1 shows the self-organization of the list of 10 strongest links from the node
“knowledge”, in four subsequent stages: the initial random linking pattern, after 200 steps
(link selections), after 800 steps, and after 4000 steps. The position of these associated
words shifted upwards in the list until they reached a position that best seemed to reflect
their relative strength. 

Table 1: self-organization of the 10 strongest links from the node
“knowledge”
0 200 800 4000
trade education education education
view experience experience experience
health example development research
theory theory theory development
face training research mind
book development example life
line history life theory
world view training training
side situation order thought

government work effect interest

The effect of these rules for creating new links and changing the weights of existing rules
is a continuous reorganization of the web so that it more clearly reflects the users’ implicit
structure of associations or relative preferences between nodes. We might say that a web
with these reorganization rules “learns” the preferences of its users. The more it is used,
the more it learns, and the better its structure will reflect the users’ collective preferences.

The fact that it learns so quickly can be explained by a positive feedback mechanism
similar to the one that enhances the ants’ trail network (Bollen & Heylighen 1996).
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Indeed, as soon as a link has gathered a sufficient weight because of transitivity or sym-
metry, it becomes “actual” and can now be directly selected by the user. Such a direct se-
lection boosts its weight, and makes it move up in the ordered list of suggested links.
Since users consult lists from top to bottom, the higher the position of the link, the higher
the probability that it will be selected by a following user and thus further increase its
strength. However, the positive feedback is not so strong that if a new, much better link
would appear at the end of the list, it would be ignored by the users. If the new last link is
clearly better than the top link until then, it will be selected and start to move up, until it
finally reaches the top position.

In this small 150 node experiment, there was no division of labor: all users were
equally likely to visit a particular node, and were equally competent to select a particular
link. However, if a similar learning web system would be implemented on the Web as a
whole, we should expect extensive specialization. A user who does not like sport is very
unlikely to consult a website about baseball. Similarly, a user who does not understand
anything about physics will not browse through a quantum mechanics site. The more a
person is interested and expert in a domain, the more frequently he or she will use web
documents about that domain. Thus, link weights in a large learning web will be learned
primarily from the most competent users. Therefore, our learning web algorithms should
not be expected to suppress controversial or eccentric preferences while merely promoting
the “lowest common denominator”, as many people have suggested to us. “Fringe” doc-
uments will be consulted basically by “fringe” users, and the links that the web learns
from them will reflect the preferences of this fringe group, not the ones of the majority.
Thus, the learning web algorithms preserve the diversity of perspectives which is essen-
tial to true collective intelligence, while producing a much more complete and coherent
tissue of links between related documents.

4.6. Problem-solving in the CMM web
Both the co-occurrence algorithms and the learning web algorithms have the potential to
transform the web into a true collective mental map, which continuously self-organizes
and adapts to the changing preference of its users. The two mechanisms are complemen-
tary. Co-occurrence of links in existing web documents, possibly complemented by
similarity between documents computed from the keywords they contain, seems a good
basis to produce an initial list of weighted links for each node in the web. This list can
then develop interactively according to something like the learning web algorithms. The
question now is how we could most efficiently use the wealth of collective knowledge
represented by the resulting distribution of links and weights.

For the individual user, the benefits would be obvious. Instead of being limited to the
few links present (or absent) in the document being consulted, a user would be able to
choose from an extensive, but intelligently selected list of related documents, ordered by
the probability that they would be relevant. Such a list of suggested links has already been
implemented by the Alexa corporation (www.alexa.com) and incorporated in the
Netscape and Internet Explorer browsers. (The algorithms used by Alexa to find
suggestions have unfortunately not been published.) This list would continuously adapt,
reflecting newly created documents as they become available. It would function like the
collectively developed trail network that guides an individual ant in its search for food.
This would make it much easier to find the documents the user is looking for.

However, this assumes that the user already has a good idea of where to start looking.
If one does not have any relevant document to start with, one could use a traditional
search engine to find documents that contain the relevant keywords. These documents,
through their learned links, could lead the user to other relevant documents, which do not
necessarily contain the same keywords. However, users may still have to spend a lot of
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time browsing the web before they would find the documents that really answer their
questions.

One way to speed up the process is to develop a software agent that browses the web
instead of the user. The agent could be provided with a list of keywords that defines the
problem and start with a selection of documents that contain those keywords. It would
then explore further, linked documents in the order of their link strength. The importance
it attaches to a newly found document would be a function of the incoming link strength
and the degree to which the document matches the keywords (by using more advanced
methods such as Latent Semantic Indexing (Deerweester et al. 1990), a document may
semantically match a query without actually containing the keywords). Since documents
that match none of the keywords are most probably irrelevant, they should get overall
preference zero. Documents that match the keywords partially but that are strongly linked
to documents that do score high on the keyword match, on the other hand, are likely to be
relevant.

One way to formalize this intuition is to calculate the overall relevance as a product of
the keyword score K(d j) for document dj and link strength P(lij) for the connection from
document di to document dj.  The overall relevance of a document depends not only on a
single link, but on all incoming links from relevant documents. The larger the number of
high-weight links that point to a document from documents that have already been
evaluated as relevant, the more relevant the new document can be expected to be. Thus,
we could express the degree of relevance R of a document dj as:

(6) R(d j ) = K (d j ). P(
i

∑ lij ). R(di )

This equation can be interpreted as representing a process of spreading activation (cf.
Salton & Buckley 1988; Pirolli et al. 1996). Each node that the agent encounters is
“activated” to a degree proportional to the document’s relevance to the query. This
activation then spreads to linked documents, in proportion to the strength of the link. The
total activation arriving in a document is the sum of the activations carried by all incoming
links. This activation can then continue to spread by following the outgoing links to reach
a new collection of documents. We can thus let activation spread through the network,
while keeping track of the documents that have received the highest activation. After a
certain number of iterations, when no highly activated documents are being added to the
list anymore (that is, when activation has become diffuse), the highest scoring documents
are returned to the user as best candidates for solving the problem.

We have implemented such a spreading activation program on the 150 word network
produced by our learning web experiment (Bollen & Heylighen 1996b). The program of-
ten manages to mimic the “intuitive” reactions of a human subject trying to guess a word
from various clues. For example, the input of the clue words “control” and “society” pro-
duces the word “government” as most highly activated, while the words “building”,
“work” and “paper” produce “office”. This is similar to the way thoughts diffuse in the
brain, moving along intuitive, fuzzy pathways, rather than retrieving exact matches like
traditional search engines.

The problem with such a spreading activation algorithm on the web is that in order to
use the formula for calculating the new activation R(dj), we already need to know all the
activations of the other nodes di. After a few iterations, the number of these nodes be-
comes huge, as activation diffuses and covers an ever growing subset of the web. This
puts a heavy computational load on the agent. One way to tackle this problem is to limit
the collection of nodes subjected to spreading activation to all nodes within a given web
domain, or all nodes returned by a keyword query complemented by their immediate
neighbors in web space (nodes connected by one incoming or outgoing link). Within such
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a restricted set, the solutions R(di) to equation (6) can then be found relatively quickly by
iteration. This is similar to the methods used by Pirolli et al. (1996) and by Kleinberg
(1998).

Another solution may be to replace the parallel search characteristic of spreading
activation by a sequential algorithm that to some degree mimics the spread of activation.
This algorithm could function in the following way. The agent starts with a given list of
nodes, their relevance or activation values, and the weights of their links to further nodes.
It chooses the node with the highest activation and “spreads” that activation via its links to
the connected nodes. Some of these connected nodes will be new, and therefore will be
added to the agent’s list, with their newly calculated activation. However, a connected
node can already be part of the agent’s list. In that case, the newly calculated activation is
added to the already stored activation for that node. Then, the agent simply repeats the
procedure, again choosing the node with the highest activation from the new list,
excluding any node that has been explored before, and updating the list with newly
discovered nodes and additional activation values. This procedure is repeated for as long
as there are significant increases in activation for the highest scoring nodes on the list.
After the agent has decided that no high scorers seem to be coming forward anymore, it
returns the nodes with the highest final activation to the user as suggested solutions.

This algorithm seems like a good heuristic for discovering nodes that receive high
overall activation from their neighbors, without need for exhaustively spreading activation
through all existing links. The algorithm mimics parallel search because the nodes it se-
quentially explores are in general not connected by a sequential path in the network. The
agent’s list of nodes is ordered only by overall activation received until then, not by direct
linking patterns. Thus, the agent gradually expands the activated domain in different di-
rections, while focusing on those directions that seem most promising. This is something
that is very difficult to do for a human user, whose memory for visited nodes and their
apparent relevance is strongly limited. Thus, the software agent could be expected to be
much more efficient in searching through the collective mental map for the best solutions
to the user’s queries, by harnessing the full power of the collective knowledge stored in
the CMM’s linking pattern.

The recommendations made by collaborative filtering systems can be seen as a special
case of this general “spreading activation” procedure. The user’s list of preferences, on
the basis of which recommendations are computed, is formally equivalent to a problem
definition consisting of a vector of activations that lists potentially relevant options.
Instead of one global recommendation for a given user, the system can produce different
“recommendations” for different “problem definitions” entered by the same user. For
example, in the Siteseer system (Rucker & Polanco 1997), one list of recommended
pages is computed for every subsection of the user’s list of bookmarks (preferred pages).

Moreover, the fact that spreading activation can be iterated allows us to overcome one
of the main limitations of traditional collaborative filtering: when there is little overlap be-
tween preference vectors (or when users simply express few preferences), the system can
make very few recommendations. If activation continues to spread from these few sug-
gestions, however, it is likely to find additional relevant suggestions in a second iteration,
and even more in a third and in a fourth one. For example, if both a’s and b’s list of liked
paintings contain impressionist paintings, but these lists do not overlap, then a traditional
system will never recommend a’s choices to b. Yet, it is likely that all impressionist
paintings in the system will be at least indirectly linked by co-occurrence relations. An it-
erated spreading activation algorithm, therefore, is likely to activate the complete cluster of
impressionist paintings starting from one or a few paintings belonging to that cluster. This
is similar to the way neural networks are able to recognize patterns even when most of the
input information is missing.
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5. Summary and Conclusion

We have defined collective intelligence as collective problem-solving ability. Problem-
solving requires a mental map, which represents the different problem states, actions, and
preferences. Collective problem-solving therefore requires a collective mental map. Such
a CMM is an external, shared memory, to which all members of the collective have some
degree of read/write access. However, to efficiently support problem-solving, a CMM
must offer more than an edited collection of public notes. Cognitive limitations make it
impossible for any individual(s) to fully control or oversee the development of a CMM.
Therefore, we need a global, self-organizing mechanism. The development of pheromone
trail networks by ants provided us with a paradigm for the emergence of a CMM from a
variety of local, individual contributions. Generalizing from this example, we suggested
the following mechanisms for the development of a complex CMM: 1) superposition of
several individual contributions, to average out fluctuations away from the optimum; 2)
positive feedback between subsequent contributions, to amplify weak signals and
accelerate overall development; 3) division of labor with overlap in the domains of
expertise, to allow a diversity of specialized mental maps to be integrated into an
encompassing CMM.

We then set out to apply these mechanisms to the World-Wide Web. The web as a
shared memory already has the node and link structure characteristic of a mental map, but
lacks the preference weighting of links. We examined two complementary techniques to
extract a collective preference function from the preferences that implicitly guide the web’s
authors and users.

Collaborative filtering is a technique that assumes a “division-of-labor” differentiation
between users, and that averages the preferences of a subgroup of similar individuals for
the different options. However, by considering the co-occurrence of options in different
user selections, it is possible to transform this collection of preference functions on op-
tions (nodes) into a global preference function (co-occurrence matrix) on links between
options. This transformation simplifies the mathematical expressions, apparently without
loss of information. Its usefulness still needs to be tested out in practice, though.

The complementary technique of learning web algorithms extracts the sequential link
information from the on-going paths followed by users through web space. It thus di-
rectly uses the feedback mechanism to quickly blaze new trails, while indirectly support-
ing the division of labor mechanism. It has been successfully applied in a small scale ex-
periment, but needs to be tested further in more realistic web environments.

Both techniques, on their own or (preferably) together, would enrich the web with an
extensive pattern of weighted links. This could be used either to suggest related links to a
user, or to support a software agent that uses spreading activation to retrieve the pages
that are most relevant to a user’s interests. In either case, it seems likely that such a CMM
would greatly aid individuals or groups to find the solutions to their problems, by relying
on the collective wisdom of all other users.

In conclusion, it seems that such a collective system would indeed be much more in-
telligent than its members, while still making full use of the individual intelligence of its
content-providers and users. It could be further extended with techniques such as typed
links and node clustering (Heylighen 1999), discussion, workflow, and market mecha-
nisms (Heylighen 1997). Perhaps the best metaphor for such a world-wide, intelligent
network would be the “global brain” (Heylighen & Bollen 1996). Although the first
commercial applications of some of these techniques are already appearing, it is clear that
we still need to do a lot of research before we can be certain that the proposed algorithms
are ready for the task. There are many possible variations on the methods we discussed,
and there are many other sources of collective knowledge to be mined. The best combined
method will likely be found by testing out a variety of approaches in a variety of circum-
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stances. I hope that the present paper will inspire other researchers to take up this chal-
lenge and start experimenting with various algorithms to support collective intelligence.
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