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Professor W. ROSS ASHBY. was inter-
nationally recognized as a pioneer and authority
of cybernetics. Trained in medicine and psychiatry,
he served as a research pathologist. as Director of
Research at Barnwood House Hospital, Gloucester, |
as Director of the Burden Neurological Institute in ;
Bristol. as a Professor in the Biological Computer
Laboratory at the University of lllinois, and upon’
retirement as an Honorary Professorial Fellow at
the University of Wales. During the twelve years
at Barnwood House (a mental hospital) he produced
his famous Homeostat (put together of old RAF
parts on Mrs. Ashby’s kitchen table) and two books.
Design for a Brain (1952) and Introduction to
Cybernetics (1956), composed in Dr. Ashby's
private padded cell and since translated into many
languages. The decade spent in the United States
resulted in a host of publications and was in his own
estimation the most fruitful period of his career.

Dr. Ashby’s central interest was in mechanistic
explanations of brain-like activity, Consistent with
his conviction that the brain operates on mechan-
istic principles. he greatly enjoyed debunking
various myths about the magical powers of the
brain (“For 2000 years psychology was a simple
discussion of Man’s highest faculties—most of
which he does not possess™") and devising mechanical
models of behavior, the most famous of which was
the Homeostat, deliberately constructed of un-
reliable components to emphasize that intelligence
resides not in clever, high-quality components but
in the structure of the whole. Although he con-
stantly searched for simple explanations for
behavior, he embraced complexity wholeheartedly
and was chiefly interested in nonlinear. richly inter-
connected systems in which the complex relations
constitute the chief object of interest. As a symbol
of his interest in relations he carried a chain con-
structed of three simpler chains interlocked in
parallel; he enjoyed watching microscopic eco- |
systems (captured with fishpole and bottle from ,
Boneyard Creek in Urbana) for the richness of ;
interaction they displayed. and he built a semi-
random electronic contraption with/ 100 double




triodes and watched it for two years before admit-
ting defeat in the face of its incomprehensxbly’
complex behavior. Perhaps it was the triode network
which aroused his interest in information theory
as a tool for dealing with complexity and for
measuring the strength of interactions between
variables: his consequent Law of Requisite Variety
and development of multivariable information
theory are major contributions to the understand-
ing of complex systems. ‘

Professor Ashby had a great gift for making
apparently complex ideas seem simple and for
illustrating abstract concepts with homely examp_les
(*"a certain centipede . . .”") He had a gift fto.r seeing
significances where others see only trivialities, and
principles where others see only.facts. He was
incessantly enthusiastic and creative; even after
retirement he mastered the clarinet, then set about
redesigning its man/machine interface for beter
information transfer. His grave and somewhat
forbidding demeanor gave way, when he was
engaged in a conversation or lecture, to an animated
stvle in which his unique keen wit and knack for
viewing the commonplace from unusual perspec-
tives would soon turn the discourse into a startling
stream of surprises. His enthusiasm would then
quite overcome his normal reserve, as when he
once fired an imaginary six-shooter and the “kick™.
to everyone's surprise including his own. sent him
reeling across the room and to the floor.

Besides being an honest and meticulous scholar.
he was a warm-hearted, thoughtful, and generous
person, eager to pass to his students the credi‘t for
ideas he had germinated himself: he was in addition
a modest man who when asked what he wished
done with his voluminous unpublished research
notes responded characteristically with **Destroy it
all” (to give the next generation a chance for
rediscovery.)

Those who knew Ross Ashby personally will
remember him as a good and unforgettable person.
and those who knew him by his works will re-
member him as a genius and giant of systems
science.

ROGER CONANT

PREFACE

The American Society for Cybernetics, at a meeting in the spring of 1980,
decided to promote the publication of a series of books containing seminal
works of key workers in the area of cybernetics and systems theory. This book,
and another centered on Heinz Von Foerster, are the first two such works to
emerge.

It was my good fortune to have been at Von Foerster’s Biological Com-
puter Laboratory at the University of lilinois during its remarkable golden age
in the 1960’s when W. Ross Ashby was in residence. As a doctoral student
under Ashby | was endlessly amazed at his creativity and energy and inspired
by his broad views and by the freedom he exhibited from the mindsets of
more ordinary folk. This freedom often showed up as an ability to see things
in shockingly novel ways — to give just one example, in his offhand remark
that it would be just as difficult to lose in the stock market as to gain. | am

grateful to the ASC and to the publisher for the impetus and opportunity to
repay, in part, my debt to Ross Ashby by putting together this book.

Ashby’s two books, Design for a Brain and An Introduction to Cyber-
netics, are classics in the literature of cybernetics and systems theory, have
been reprinted in many languages, and are presumably well known to the
reader. However, much of Ashby’s work is scattered here and there in journals,
conference proceedings, and books not commonly available, and some pieces
have appeared only as handouts given to his students at Urbana. [t is the pur-
pose of this book to collect many of these into one volume and so to make the
work of this remarkable man more readily accessible.

The principles which guided selection of the papers to be included here
were:

1. If a work was substantially incorporated into Ashby’s two earlier
books, it was not included here.

One exception was made in the case of “Requisite Variety and Its Impli-
cations . . .”, included here because it is such a clear portrayal of the Law of
Requisite Variety, one of Ashby’s most famous results.

2. Select the minimum number of papers to maximally cover the ideas
contained in all works.

There is considerable overiap between Ashby’s papers in that some of his
favorite themes are mentioned in many separate works, and | have attempted
to simultaneously minimize the overiap, the size of this book, and the “losses”
- ideas in papers not included here. This task cannot be done to anyone's
complete satisfaction, not even mine, and, some. excellent papers have been left
out as a result of this criterion of parsimony. However | believe thaf-the




collection here reflects nearly all of Ashby’s intellectual contributions to cyber-
netics, beyond those included in his two books.

I could not discover any authoritative listing of Ashby’s publications.
Therefore the listing of his writings which is given at the end of the book has
been put together from documents of the Biological Computer Laboratory,
from references within Ashby's publications, and from correspondence with his
students and friends. Neverthqless, it may be incomplete in some respects and
cannot be taken as final.

| should like to thank Stuart Umpleby, president of the American Society
for Cybernetics, who provided motivation and a big head start on this project,
Heinz Von Foerster who provided material assistance in the effort, the staff of
the Library of the University of llinois at Chicago Circle who tracked down
many obscure Ashby articles for me, Henrietta Cokes who did the typing,
George Klir who contributed an overview of Ashby’s work and suggestions for
papers to be included, my good wife, Shirley, who cheerfully tolerated and even
supported my preoccupation with the project, and finally Rosebud Ashby, Ross’s
wife, who sent the photograph and the quote below which she found among his
writings.

Roger Conant

“l am something of an artist, not with pencil or paint, for
I have no skills there, but with a deep appreciation of the
perfect. My taste is wide, for | can appreciate anything
superbly done, whether a chapter by Churchill, a statue
by Epstein, or even a suggestion by Max Miller. | have an
ambition someday to produce something faultless.”

“Work on the brain, of the type recorded in my notebooks,
was to me merely a delightful amusement, a hobby | could
retreat to, a world where | could weave complex and de-
lightful patterns of pure thought, untroubled by social,
financial and other distractions . . .”

W. Ross Ashby
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FOREWORD
By GEORGE J. KLIR

I would like to take this opportunity to express my personal feelings about
the richness and significance of the intellectual treasury left to us by
the late W. Ross Ashby in his writings. Above all, I would like to show
that many of the systems principles or ideas he described in his books and
papers wers well ahead of the intellectual climate at the time of their
publication to be properly understood, appreciated and developed. Some of
these principles and ideas have only recently become subject of consider=-
able attention dnd are currently being analyzed and further developed; oth-
ers are still left undeveloped and represent a rich intellectual resource
for future developments in systems research.

For most people, Ross Ashby is known only through his second book, "An
Introduction to Cybernetics," republished after its original publication in
1956 [b2] in numerous editions and fourteen different languages. Little
less known is his first book, "Design for a Brain,” published in 1952 {b1],
and the least known seem to be the many papsrs he wrote in the period 1930
- 1972; they are scattered in a tremendous variety of publications, nany of
them being hidden in conference proceedings or edited collections of pa~
pers.

I have always been amazed by Ashby's remarkable book "An Introduct:om to
Cybernetics."” The book, written with superb mastery, is as good an intro-
ductory text to basic systems concepts and principles now as it was 25
years ago. It is still a great source of inspiration as well as under-
developed ideas. During my first meeting with Ross in Namur in 1970, 1
complimented him for writing such an excellent and lasting book. I eold
hin that it seemed that writing was easy for him. "No," he replied, "I had
to learn it the hard way.” He then told me that he had suddenly rcealized
at some point during his work on the book that his knowledge of English was
not adequate. He put the partially completed manuscript aside and started
to study English. After more than two years of rather intensive study of
the language, he finally returned to his work on the book. He did not use
any part of the previously written manuscript but started completely from
scratch; the whole book was completed in a few months. Thus, this is the
way in which this remarkable book was made; no wonder it is such a master-
piece.

Ashby's interests in various aspects of systems research can be traced back
to the 1940's. This decade is characterized by the emergence and initial
development of a number of novel and promising ideas relevant to systems
research. These ideas led to the development of new areas such as cpera-
tions research, control theory, information and communication theory, auto-
mata theory, cybernetics, general systems theory, and computer technoiogy.
Ashby's development of the concepts of adaptive and self-organizing sysceas
were his main contributions during this decade. Since the 1940's, ze had
increasingly become involved in and greatly contributed to the area of sys-
tems research until his death in 1972.




Since the first time I became familiar with some of Ashby's writings (the
late 1950's), I have always felt his great influence upon my own work in
systems research [107,109,110]. It seems that many other people involved
in systems research feel the same way. For example, a recent survey con-
ducted by Roger Cavallo [109] clearly demonstrates that Ashby was by far
the most influential person in the area of systems research. According to
this survey, he influenced almost twice as many systems researchers as the
second most influential person, Ludwig Von Bertalanffy, who is usually con-
sidered the "father of general systems theory."

One of Ashby's great insights was his clear distinction between an object,
loosely understood as a part of the world in which someone is interested,
and a system defined on the object. He says [b2,p.39]:

"At this point we must be clear about how & 'system' is to be defined.
Our first impulse is to point at the pendulum and to say 'the system is
that thing there.' This method, however, has a fundamental disadvan-
tage: every material object contains no less than an infinity of vari-
ables and therefore of possible systems. The real pendulum, for in-
stance, has not only length and position; it has also mass, temperature,
electric conductivity, crystalline structure, chemical impurities, some
radio-activity, velocity, reflecting power, tensile strength, a surface
film of moisture, bacterial contamination, an optical absorption, elas-
ticity, shape, specific gravity, and so on and on. Any suggestion that
we should study 'all' the facts is unrealistic, and actually the attempt
is never made. What is necessary is that we should pick out and study
the facts that are relevant to some main interest that is already given.
...The system now means, not a thing, but a list of variables."

It is rather surprising and, in my opinion, unfortunate that the fundamen-
tal difference between these two concepts, those of the object and system,
is still foreign to many systems researchers on the current scene. Yat, it
is a difference which is at the very heart of systems research. Confusions
arise when it is not recognized and, as some critics suggested, systems
research becomes then the study of everything (every object) and is thus
logically empty.

Ashby's clear distinction between objects and systems defined on objects
allowed him to recognize that the same object can be viewed (modelled) in
many different ways; each is based on such attributes and associated reso-
lution levels which are pragmatically most relevant to the purpose for
which rhe object is investigated. It also allowed him to restrict the
notion of complexity to systems and reject it for objects. Let me quote
from ¢n2 of his late papers [99,p.1]:

".. although all would agree that the brain is complex and a bicycle
simple, one has also to remember that to a butcher the brain of a sheep
is simple while a bicycle, if studied exhaustively (as the only clue to
a crime) may present & very quantity of significant detail. is, in my
opinion, the only workable way of measuring complexity."

One of the unique characteristics of Ashby's work is that the various sys-
tems concepts and principles he developed are highly general in the sense

that they are not limited to systems which are based on variables with some
particular mathematical structure. He expressed his views on this issue as
follows [95,p.103}:

"The worker who has some training in mathematics can only too easily
fall into the habit (or trap) of thinking that a 'variable' must mean a
numerical scale with an additive metric. This is quite unnecessarily
restrictive, sometimes fatally so. The meteorologist has long worked
with his five ‘types of cloud,' the veterinarian with the various
'parasites of the pig,' the hemotologist with the four basic types of
'blood-groups.’' Modern mathematics, using the method of set theory, is
quite able to handle such variables, which are often unavoidable in the
behavioral sciences."

The independence of many Ashby's ideas on the scale of the variables in-
volved make these ideas perfectly suited for the so-called soft sciences.
Ironically the myth that variables must be '“quantitative," which still
heavily dominates the soft sciences, seems to be the main inhibitor in this
respect.

It is fair to say that the hierarchy of epistemological levels of systems
(107,109,115,116), which 1is increasingly recognized as the necessary
"skeleton" of any meaningful framework for systems problem solving, is
implicit in Ashby's writings. Although he does not explicitly formulate
such a hierarchy, his writings cover at least four of the epistemological
levels incorpoiated in my formulation of the hierarchy [109].

The lowest epistemological level (source system or level 0), defined in my
formulation of the hierarchy as a set of variables (partitioned into basic
and supporting variables) and a resolution level defined for each variab}e
(109], is clearly just a more precise and complete elaboration of Ashby's
definition of a system as a set of variables. His concept of a protocol
(or an activity) regarding the chosen variables corresponds then directly
to the concept of a data system (level 1) in wmy epistemological hierarchy.

As far as level 2 in my epistemological hierarchy is concerned (generative
or behavioral systems), it is represented in Ashby's early writing by the
concept of the state-determined system (machine) [bl}, but also by his more
general concept of transformation [b2). In the early fifties, these were
quite novel ideas from which some systems theories were developed such as
the theory of finite-state machines (automata) and, later, the theory of
dynamical systems.

Structure systems (defined as sets of coupled subsystems), which repfesent
level 3 in my hierarchy, are covered in Ashby's writings quite extensively.
His primary interest seems to be in investigating the relationship betwgen
various properties of parts {subsystems) and the corresponding properties
of wholes (structure systems). For instance, for one such property - t§e
state of equilibrium - he derives a simple but important relationship

between wholes and parts: '"The whole is at a state of equilibrium if and
only if each part is at state of equilibrium in the conditions provzdgd by
the other parts.” ([b2,p.83}. The famous homeostat, which he himself

designed and built was alsc motivated by his strong interests in the study




of whole-part relationships.

While most systems researchers focus on problems involving only one or, at
most, two epistemological levels, Ashby was probably the first contributor
to the emerging area of systems research who managed to integrate in one
conceptual framework a considerably larger spectrum of epistemological lev-
els. It is clear from his writings that, contrary to many current systems
researchers, he considered the experimental end of the epistemological
spectrum as important as the cognitive end. Moreover, his work is an ex-
cellent demonstration of a balanced use of the discovery (inductive) and
postulational (deductive) approaches to the investigation of systems.

One of Ashby's greatest contributions, the law of requisite variety, is
also one of his earliest ideas [b2,43]. Its simplest but most general for-
mulation - 'only wvariety can destroy variety" - opens a number of direc-
tions in which it may be developed with potentjally profound implicationms.
Although the interest in the law of requisite variety has lately been in-
creasing, it is surprising that some relevant areas, most notably control
theory, are still totally ignorant of the whole idea. This unfortunate
situation is well characterized by Brian Porter, one of a few control
theorists with broader views, in a paper published several years ago
[113,p.227]:

"...it seems ironical that whilst for example, the theory of optimal
control has been developed almost ad nauseam in a detailed but rather
uncritical way, control scientists seem to have been largely unaware of
the existence and importance of Ashby's work. This situation is partic-
ularly singular in regard to Ashby's law of requisite variety which has
the same crucial significance for regulation and control as has the
second law of thermodynamics for physics. Thus, the law of requisite
variety - which, incidentally, can be proved very simply by elementary
reasoning - imposes strict bounds on the achievable behaviour of regula-
tors regardless of their structure or design: for Ashby's law states
quite soundly that the capacity of any physical device as a regulator
cannot exceed its capacity as a channel of communication. The intimate
interconnection between control and communication expressed by this law
surely indicates that this domain could well be a most exciting, reward-
ing, and important area for future research by systems and control

scientists. It is certainly the case that Ashby himself felt that he
had only just begun his work in this field at the end of a long and pro-
ductive scientific life. ...Ashby's law of requisite variety...shows

that there are many non-trivial problems waiting to be solved in the
systems and control sciences and that - applying the law anthropomorphi-
ca'ly - the best methods of tackling these problems are likely to be
foind by maximising the capacities of systems and control scientists as
channels for variety."

Regulation is one concept to which Ashby paid a lot of attention in his
writings. He studied both feedback and feedforward regulations and
developed general principles for analyzing and designing regulators. Most
of his results are described in set-theoretic terms and are applicable to
variables of any scale. This might be one reason why his work on regula-
tion has not been utilized in control theory as yet. Control theory has

been largely developed for continuous variables or discrete representations
of continuous variables. It might be difficult to integrate differential
or difference equations, which have been the basic mathematical tools ip
control theory, with the general set-theoretic formulation offered by
Ashby. Yet, such integration will tremendously enhance the capabilities of
control theory and, particularly, its relevance to the "soft sciences."

The phrase "The whole is more than the sum of its parts,” which character-
izes the central issue of systems research, is frequently considered mys -
terious by some and trivial by others; it is rarely understood in all jits
implications. For Ross Ashby, the phrase was neither mysterious nor trivi-
al; he understood it well ad tried to develop methodological tools by which
the whole-part relationship could be rigorously analyzed.

In the early 1960's, Ashby published an algorithm by which it can be deter-
mined whether or rnot an n-dimensional relation can be reconstructed from
all its (n-k)-dimensional projections (k = 1,2,...,n-1) [67]. He showed
that & relation can be reconstructed from the appropriate projections if
and only if the set intersection of cylindrical extensions of the respec-
tive projections is the same as the given relation. Although the algorithm
deals only with a small portion of the whole-part relationship problem, it
is significant as the first attempt to clarify this issue. Yet, it was
almost unnoticed by the professional community. Even now, more than fif-
teen years after its. publication, the situation is not much detter.
Indeed, systems models which have recently been developed in many different
areas are almos- invariably constructed from subsystems. While the subsys-
tems, each associated with a subset of the set of variables of the overall
system, are often well validated models of the phenomena involved, the
question of the ability to reconstruct the overall system from the given
subsystems is dlmost never raised. It seems that there has been a tendency
among many systems modellers to take the reconstructability for granted.
It is clear that without an analysis by which the reconstruction ability of
a systems model is determined, the model is likely to be fundamentaily
incorrect and might be vastly misleading.

I was quite impressed by Ashby's insight into the reconstruction problem
when I read his paper [67] in 1964, but it took me more than ten years to
properly comprehend its significance and become sufficiently motivated to
pursue further research in the direction initiated by Ashby. My first
paper dealing with the reconstruction problem was published in 1976 {106].
After its publication, a number of researchers joined in the effort to
further investigate various aspects of the problem and develop a new metho-
dological area referred to as reconstructability analysis [103,117].

Some contributors to the reconstructability analysis, most notably GSerrit
Broekstra, Roger Conant and Klaus Krippendorff, have investigated various
aspects of the reconstructability problem in terms of information-theoretic
concepts [117]. This is a direction which was also initiated by ishby in
the mid 1960's [71}, and it was apparently one of his main interests short-
ly before he died in 1972 [92,96]. It is fair to say that his demoastra-
tion of the relevance of information theory to systems research is one of
Ashby's main contributions.




Ashby's strong interest in the reconstruction properties of systems was
just one aspect of his larger interest - a permanent search for methods of
simplification. The following quote from his remarks at a panel discussion
in 1964 [69,pp.166,168,169] describes his views in this respect rather
well:

" . .system theory (is) the attempt to develop scientific principles to
aid us in our struggles with dynamic systems with highly interacting
parts, possibly exceeding 10 '®® who faces problems and processes that
go vastly beyond this size. What is he to do? At this point, it seems
to me, he must make up his mind whether to accept this limit or not. If
he does not, let him attack it and attempt to find a way of defeating
it. If he does accept it, let him accept it wholeheartedly and con-
sistently. My own opinion is that this limit is much less likely to
yield than, say, the law of conservation of energy. The energy law is
essentially empirical, and may vanish overnight, as the law of conserva-
tion of mass did, but the restriction that prevents a man with resources
of 10'0 from carrying out a process that genuinely calls for more than
this quantity rests on our basic ways of thinking about cause and ef-
fect, and is entirely independent of the particular material on which it

shows itself. If this view is right, systems theory must become based
on methods of simplification, and will be founded, essentially, on the
science of simplification. ...The systems theorist of the future, [

suggest, must be an expert in how to simplify.”

Although Ashby was not a computer scientist, he had unusual talents for
using the cowmputer. He demonstrated that it is perfectly meaningful to
view the computer as a laboratory of the systems scientist and computer-
simulation as one of his most important laboratory tools. He conducted one
of the most exemplary computer-based experimental studies in systems sci-
ence; its objactive was to determine the effect of the size of a system
(the number of variables involved) and its connectance (the percentage of
dependencies among the variables) on the probability of stability in a
particular class of systems {90]. The study was restricted to linear
dynamical systems. Among other results, it led to the discovery of a crit-
ical value of connectance (13%); it is critical in the sense that for a
sufficiently large number of variables (10 or more) almost all systems
whose connectance is smaller than the critical value are stable, while
almost all systems whose connectance is greater than the critical value are
unstable. In another study, the class of systems built up from functional-
ly identical finite state machines was experimentally investigated on the
computer. The sim of the study was the determination of the dependence of
the cycle length and other behavioral characteristics on the size of the
syst:r. for various types of finite state machines [75]. These, as well as
some cowputer-bssed experimental studies of systems in which Ashby was
involved, made a clear demonstration of the role of the computer as the
systems science laboratory.

One of Ashby's unique contributions is his idea of extending the well un-
derstood principle of power amplification from the domain of energy systems
into the domain of information systems. This idea of information amplifi-
cation is discussed in both of his books and many of his papers in a
number of different contexts such as regulation amplification, adaptation

vii

amplification or design amplification. Its most general form is embedded
in the concept of an intelligence amplifier [41]. In this context, Ashby
takes the position that intelligence implies the ability of solving prob-
lems which, in turn, implies the ability of making proper selections from
the totality of possibilities. Hence, he views the intelligence amplifier
basically as a selection amplifier. When the problem is regulation, the
selection amplifier would take a special form of a regulation amplifier,
when the problem is to design systems with given properties, it would take
a form of a design amplifier, etc.

The idea of the various forms of informatiorni-based amplifiers has profound
philosophical as well as practical implications. If such amplifiers are
possible, then it is also possible, at least in principle, to build man-
made systems capable of solving problems which are beyond the intellectual
powers of their designers. Notwithstanding this great theoretical and
practical potential, the idea of information-based amplifiers has not been
elaborated beyond the conceptual level developed by Ashby himself. It is
apparently one of his great ideas which are still underestimated and, con-
sequently, underdeveloped.

Various aspects of systems design and, particularly questions of meta-
design, are often discussed in Ashby's writings, especially in his late
papers [96,98]. He looked at systems design as a process of regulation and
employed some concepts from information theory to develop a number of meta-
design principles which are particularly significant for the design of
extremely complex systems. The inclusion of these principles in every
textbook of systems design is long overdue.

I was able to discuss only some of Ashby's ideas, particularly those which
have had some influence upon my own research work. There are many more
ideas in his writings regarding topics such as adaptive, self-organizing
and self-reproducing systems, systems dodelling, induction, prediction,
ultrastability, biological computers and others. Some of his ideas have
influenced current scientific views and have been further developed (e.g.,
the concept of state-determined machine or the role of information theory
in systems research), some have only recently become subjects of consider-
able intérest (e.g., the reconstructability analysis), but there are still
many rich ideas in his writings which have been largely unnoticed or, at
least, have not been developed beyond Ashby's own presentation (e.g., the
information-based amplification or his metadesignh ideas). It is reasonable
to expect that the publication of Ashby's main papers in this volume will
renew interest in this intellectual treasury and will lead to further
development of the many ideas it contains.




THE LAWS OF MECHANISM
INTRODUCTION

How can adaptiveness and intelligence arise from the operation of
mechanical laws? What can be discovered about organizationm, reproduction,
information, and the like by looking into the laws of mechanism? How oust

- brains work? Questions such as these led Ashby to probe the laws of mechan-

ism in an attempt to make precise many formerly vague concepts, such as
organization.

Ashby's first book, Design for a Brain, is largely concerned with
questions of mechanism, and in it are collected the result of many earlier
papers on the topic. On the assumption that the reader is familiar with
that marvellous book only one such early publication is included in this
chapter: "Effect of Controls on Stability," a brief letter to Nature in
which Ashby points out that artificially fixing one variable in a complax
system (e.g. prices in an economic system) may render the entire system
unstable. Such an observation is typical of his work; it is profound while
being easy, even trivial, to demonstrate. It is also somewhat typical in
being unknown to or forgotten by those concerned with real-world complex
systems.

"The Place of the Brain in the Natural World" is an essay on the ap-
plication of the laws of mechanism to the explanation of neurological and
psychological processes: reflexes, instinct, adaptation, learning, me®moOry,
and the like. It ends with his deduction, from these laws, that evolution
can only take place successfully in an environment which is in some sense
weakly connected, a point made famous by Simon [114]) in his classic essay,
"The Architecture of Complexity."

In "The Set Theory of Mechanism and Homeostasis" Ashby collected the
primary definitions of set theory, going deep enough to allow rigorous dis-
cussion of relations and of relations between relations. His objective in
casting system concepts into set-theoretic terms was not to inject formal-
ism but to promote clarity; indeed, his papers avoid formalism wherever
possible, as can be seen in his very informal "proofs." Set theory was for
Ashby a device for describing phenomena unambiguously, and in his papers it
is used often as a descriptive tool but almost never as a device for
mathematical deduction or proofs. (The only major exception is the paper
coauthored with Richard Madden, and that is largely Madden's work.) In
"Set Theory..." Ashby describes many of the basic concepts of systems
theory and cybernetics in the language of set theory; directive <correla-
tion, wachine-like behavior, feedback, the effect of one variable on anoth-
er, simplification, equilibrium, and the like. The use of set theory ia
this way not only promotes clarity and has an aesthetic appeal but also
casts cybernetic investigations into a framework to which information
theory may be applied.

"Principles of the Self-Organizing System" is a gem, showing Ashby at
his best, vanquishing imprecision and vagueness with the sharp language of
set theory. The paper was delivered at a Symposium on Self-Organizing Sys-
tems, and we can imagine the glee with which he must have delivered its
message, which is basically that (1) if taken at face value, self-
organization is an illogical concept, and (2) if interpreted reasonably,




self-organization is commofiplaée and nearly ttiviall

In the paper Ashby first makes the point thdt "organization" is close-
1y associatéd with the concept of "constraifit.” Others tend to think of
organization as Sometling added to a system; Ashby's point of view is that
orgafiization represents a loss, restriction, or comstraint on what might
have hdppened. This novel arid complementdry point of view is highly compa-
tible with the informatiofi-theoretic measurement of organization; it also
implies that ‘“organization” répresents not an objective property of the
system under study but a relation between system and observer. The rela-
tivity of organization is further brought out ih the paper by showing that
the same objective system may be viewed as either organized or disorganized
according to the observer's perspective. Moreover, organization cannot be
adjudged to be good or bad absolutely, but otily relative to 4 giveén en-
vironment. "Self-organization," thefi; orily makes séfnisé in the context of
an "organism" interacting its "environment"; and here it is nearly trivial,
since the laws of mechanisd decree that the evolition of 4 complex system
is bound to produce organisms which will "organize” themseives so 4as to
attain adaptation to their énvironment. This obsarvation is sometimés
called the "Steady State Theoiy of Lifé ard Intelligence’. True, the adap-
tation of an organism mdy not beé one that we like; but to itself; the
resulting organization will be good.

"The Self-Reproducing System" is another gew of wit dnd clarity. How
does an organisad reproduce itself? Ashby's answér is: it doasn't. 'No
organism reproducas itsalf. The ohly thing that ever hds had such a cldim
made for it was the phoenix, of which wé ate told that thetre was only one,
that it laid just ona égg in its life, and that out of this egg came it-
self." Disposing of the ofiginal illogical concept of self-organization,
Ashby formulates an diternativé which riékes it cledr that reproduction
requires an environiént or matrix dnd 4 "form" within the matrix; if more
forms liké thé original éventually appear, réproducticn is occurring. With
this clear but abstrdct formilatior it is dpparent tliat reprodiuction is not
rare and unusual but is cofimonplace and riot restricted to biclogical enti-
ties; even the régular ripples off a gravel "washboard" road qualify.
Indeed, through reading the paper the reader will undergo a conceptual
shift: self-reproduction will not seem at all surprising, though its ab-
sense would be! Ashby points out that all sufficiently large dynamic sys-
tems will eventudlly become filled with self-reproducing forms. Indeed, in
his view, self-reprodiction represents d4n inevitable adaptation to an en-
virora:mt having the property that most disasters strike locally so that
ther.: is survival value in dispersing replicate forms, and therefore self-
reprocuction is simply a corollary of the Steady State Theory of Life and
Inteiligence.

Being trained in psychiatry, Ashby always displayed a deep interest in
how the brain worked. The last thireé papers in this section represent his
attempts to work out properties of the brain and other large systems of
simple deterministic elements connected together in complex ways. His
dream that the laws of mechanism would lead to deep insights into global
behavior of the brain has rnot yet been fully realized, but these three
works are interesting beginnings along that line. In "Instability of Pulse
Activity in a Net with Threshold” he showed, with Heinz Von Foerster and

:

Crayton Walker, that in a large collection of "neurons" each having N in-
puts, the result of having neurons fire on threshold (i.e. when the denmsity
of incoming pulses from other neurons exceeds a preset minimum) is that the
network is in stable equilibrium only when no neuron is firing or when all
neurons are firing - nothing in between. Since the brain is known to be
stable at an intermediate condition the paper is a proof that there must be

some stabilizing mechanism at work there, in addition to the inherently
unstable threshold mechanism.
The question in "Connectance of Large Systems...," with Mark Gardner,

was this: If one takes a large collection of individually stable parts and
connects them, by a set of linear equations dx/dt = Ax, in such a way that
on the average each part is affected by a percentage C of other parts, how
is the stability of the whole affected by the value of the connectance C?
This Monte Carlo study indicated that there is a threshold phenomenon: for
large systems there is a critical value of C. Below the critical value the
system is almost certainly stable, and above it, almost certainly unstable.
The work has implications not only for brain behavior but for society at
large. As the "connectance” in our culture has risen dramatically over the
past centuries, might we be approaching a catastrophic threshold of which

this paper is a warning?

The last and most ambitious study in this category is reportﬁd ig ."?n
Temporal Characteristics of Behavior in Certain Complex Systems, which is
largely a report on doctoral thesis work done by Crayton Walker under
Ashby's direction. It was a Monte Carlo study of behavior in networks.of
100 identical automata, connected randomly. There are 256 distinct 2-in-
put, 2-state automata and each type was explored in the study, with partic-
ular interest being given to the length of the terminal cycle and the tran-
sient time needed to reach it from a random initial network state. Walker
has since continued this work along similar lines.

Ashby performed his own experiment with random networks by connect%ng
200 triodes to one another, using a table of random numbers to deterzine
the connections. He reported that he never could figure out wha? the net-
work was doing, being utterly defeated by the sheer quantity of x9f0fmatxon
the network displayed in its behavior. This was one of the 1nf;uencgs
which led to his deep interest in information theory as a tool for investi-
gating behavior in complex systems, the topic of the following chapter.




EFFECT OF CONTROLS ON STABILITY

During the War the introduction of governmental controls has ied to many
matters being dealt with by an order fixing some quantity, price or other variable
where a Jaissez-faire system would have allowed them to find their own levels. As
examples we have rates of foreign exchange, wages, and prices. Not only has this
fixing occurred in many instances during the War, but a further extension of con-
trol or planning in peace will probably lead to even more variables being fixed in
this way.

Itis the purpose of this communication to point out the danger that in any
dynamic system the fixing of one variable may render the rest unstable; and it
will be shown that there is one type of variable particularly likely to lead to this
result. (In a social or economic system the change to an unstable state would be
shown by the subsequent growth of various peculiar and undesirable “vicious
circles”.)

The theory may be shown in the following way: a dynamic system in gen-
eral, of n variables, has equations of form

ax; .
cTtJ = fl-(x,,...,xn) (i-1,...,n)

Near a point of equilibrium (at which the fluxions are zero) the equations may
without serious loss of generality, be considered linear:

dx; -
it} . + +... *+a. i=1,... .
= =a; X, tai, x, ax, fi=1, ,n)

For asystem to be stable at the equilibrial point, it is necessary and sufficient that
the real parts of the roots of the equation

a,—N  a, %n
2y, 4\ .. a,n

=0
m %n2 3nn — A

are all negative. (Since we are discussing an actual system, the quantities a, will
all bereal.) Further, since we are discussing an equilibrial point which has existed
for some time under free conditions, we may suppose it stable.

Now suppose we fix x n The stability of the remainder will depend on the
real parts of the roots of the equation
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The stability of the first system by no means implies the stability of the second
system. Itis clear, then, that fixing a variable may render the rest of a system
unstable,

As a numerical illustration, the system

x, = 6):1 + 5x2 - 10x

x, = —4):1 - 3x2 - X3

leads to the equation
A3+ 32 + 26\ + 60=0;

and this has roots — 2.44, — 0.28 £4-95/, where j=\/ —1.  The real parts
being all negative, the system is stable. But if we fix x5, We have a system with
determinant

6 5

- 4 -3,

and as the roots are now + 1 and + 2, the system is unstable.

We can, however, go further than this. Since the sum of the roots is equal to
the sum of the elements in the main diagonal, z"ii’ any change making this less
negative will tend to make the system less stable — other things being equal (the
argurmrent here is admittedly imprecise). So the fixing of x, would be particularly
likely to lead to instability if a,, was large and negative. We can identify such
variables without difficulty; for, as they behave in accordance with the equation

& . E+ax,
dt
where £ is independent of x, but changes with time, while a is large and negative,
such a variable (x) will always have the properties that (1) it always moves towards
—£/4, (2) it moves towards— & /a quickly, (a) as— & /a has a as denominator it
will be small, and therefore the fluctuations of x will be small.

Itis concluded, therefore, that: (1) To fix a sociological or economic vari-
able by order carries some danger of rendering the system, or parts of it, unstable

(the latter being shown by the subsequent development of various “vicious circles”).
(2) The type of variable more particularly dangerous from this point of vie.w is one
which, under free conditions, changes value at high speed, and, by these quick
changes affecting the other variables, fluctuates only through a narrow range.

Not being an economist, | cannot give detailed instances, but | have little

doubt that some could be provided.
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A great deal 1s known slready about the brain. but most of our knowledge of it is still in the (orm of
experimentat and obnmuoml facts. With the growing tnterest in the brain's more general properties
however, such as in "artificiai mlelllgenu in its various forms. the time has come for an abstract
formulation of the nature of "brain”, a formulation suitable for a divect translation to the computer or
hardware. The psper gives such a {omulanon on the buu of set theory and the concept of the state-

determined system.

1. THE NEW MECHANIST

We can, of couise, at once characterize the
brain by saying that it is a collection of physico~
chemical parts, each part acting on many other
parts, and each part determined by the physico-
chemical laws (to the extent demonstrated by the
neurophysjologists). But the brain has so many
parts that our usual methods for dealing with
parts acting together become practically inap-
plicable, and we must stop to reconsider the sit-
uation.

After the properties of the nerve cell have
been ascertained, there remains the task of re-
lating these properties to those shown by organi-
zations of such nerve cells in large numbers.
The properties that emerge are those of the be-
having organism, and it is important to appre-
ciate at once that the properties of the behaving
organism are by no means to be deduced directly
from the properties of the singlé nerve cell, for
most of the organism's behavioral properties
are due to imferactions between nerve cells -
they are what the physicist calls "cooperative”
phenomena. For this reason, any study of the
relation between nerve cell and behavior must
pay great attention to questions of interaction.
The subject tends to be complex, and used to be
thought forbiddingly so; but during the past twen-
ty years such great advances have been made in
our understanding of complex mechanisms that
the subject can now be treated with some clarity.

Attempts to treat the relation of nerve cell to
behavior were much hampered, before about
1940 by the fact that the would-be scientific

d, as ples, only such
simple mncmnes as the clock, the lathe and)the

typewriter. So he saw that, obviously, no "ma-
chine® could correct its own errors, could pre-
dict, could have initiative, and so on. These
generalizations were correct enough over the
machines of pre-1940 type, but as machines have
since then developed altogether new powers,
many of the ald generalizations are today quite
wrong.

The nature of the new machines (and of the
ideas of the New Mechanist, as we might call
him) may be most simply made clear by a brief
mention of the events in history. Prior to about
1940, mechanisms (and the "classical® physics
that thought about them) were of a "cause-effect”
type in which typically one cause led to one ei-
fect, then the process was complete: the wound
watch ran for 24 hr, then stopped: the lathe,
switched on, ran round a cycle endlessly: the
typewriter, when a key was pressed, printed the
letter and stopped. With these machines before
him, the psychologist theorized similarly: stim-
ulus elicits response, stop; a dog is subjected to
a cycle of flashes and reinforcements and :t de-
velops a conditioned reflex, stop. More complex
theories of behavior could not be formed because
no one knew how to think about complex behavior.

Then Howard H. Aiken built Mark I. Charles
Babbage had understood the principies of se-
quential machinery a century earlier bui had
been unable to solve the purely mechanical prodb-
lems. But Mark I worked. Here was 2 proof by
construction that "mechanism® could include the
type that strung causes and effects into chains of
unlimited length, each cause evoking :ts effect,
and each _effect being itself the cause of the next
step. Go-stop became go-g0-g0-:.%., and az en-
tirely \new. weaith of computational behavior had
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been shown to be possibie.

A second essential contribution occurred (a
little earlier, in fact) when the radio engineers
tamed "feedback®. It was very early discovered
that adding "reaction" to a radio receiver was a
most powerful method of improving its perfor-
mance, but at the price of making the receiver
almost crazily uncontrollable. For 30 years the
battle raged, but by 1940 the engineers had won -
they understood feedback and could use it as a
useful tool. This understanding was a second es-
sential contribution to the new science of behav-
ior, for most biological systems are rich in cir-
cular actions. Before 1940 the lack of under-
standing made any realistic treatment impos-
sible; even to mention the existence of the cir-
cular actions was apt to bring the discussion to a
shocked silence, as each person reflected on his
inability to think clearly about such things. To-
day, however, we are no longer afraid of the
topic for we know that it can be understood and
that it has its own logic, theorems and methods.
We can see, too, that the advance has consisted
in understanding the properties of long chains of
cause and effect, in this case acting round and
round the same physical circuit (instead of lin-
early onwards as in Mark I's processes).

With the radio receiver and Mark I before
them, it has been possible for the mathemati-
cians and engineers to extend their methods over
the same realm. Here they were much helped by
meeting the current of mathematical thought de-
veloping from Whitehead and Russell's work
(1925) that had been attempting to free mathe-
matical thought from its excessive pre-occupa-
tion with the continuous, the linear, and the ana-
lytic. Their work was fully deveioped by the
French school that writes collectively under the
pseudonym of N.Bourbaki, who showed in detail
how all mathematical processes could be seen as
specializations from certain basic operations on
*sets of elements”. All that is required of the
»elemeats® is that they are unambiguously iden-
tifiatie., They may be the numbers 1,2,3,... or
the 1 nts on a line, but they may just as well be
the fit e types of cloud distinguished by the mete-
orologist, or the three types of cry emitted by a
speeies of bird, or the four modes of progres-
sion of a horse. Thus, if the biologist or psy-
chologist has ideas definite enough to serve as a
basis, he has the necessary material to which
modern mathematical logic can be applied. Thus
arises the possibility of a fully rigorous science
of behavior. It starts with the data of the ob-
server, uses these as elements in modern set
theory, and so enters the rigorous world of

mathematics and logic (e.g., Ashby, 1952, 1966).

The new mathematics, or logic, of behavior
should not be confused with the "mathematical
biology” of the beginning of this century. At that
time the sole mathematical methods available
were the analytic, continuous and linear forms
developed originally for the solution of Newtonian
problems; after the biological data or concepts
had been modified to fit the unyielding mathe-
matical frame they were often only a caricature
of the biological reality. The new mathematics,
however, is quite {ree from any need to distort.
Its first steps have been guided rather by the
needs and outward forms of mechanical compu-
tation, but the biologist should not allow the pre-
sentation to mislead him. The theories, now
well developed, of the "finite-state machine®
(Gill, 1962), of the "noiseless transducer” (Shan-
non and Weaver, 1949), of the "state-determined
system® (Ashby, 1952), and of the "sequential
circuit®, are essentially homologous. All treat,
basically, the case of the system whose next
state is determined by the immediately preced-
ing state, a case so common in natural systems
as to be regarded by many as absolutely univer-
sal. All the theories show that this (apparently)
simple restriction carries, in fact, deep and
wide implications.

The statement of this fundamental property of
the state-determined system may take several
forms, and the student of the theory of behavior
must be prepared to recognize them in whatever
form they occur. The simplest form states ex-
plicitly what the next state (') is as a function of
the earlier (x):

X =f(x) (1)

Thus if ¥' = x+ 0.7, the state x = 0.2 would be
followed by x becoming 0.9, and then 1.8, 2.3,
etc. If x is thought of as having a sequence of
values (xy,xg,¥3,..., 8ay) at steps 1,2,3,...,
then the same equations would appear as

Zpet = flXn) (2)

Sometimes x is thought of as a function of the
time ¢ and written x(f); if time advances by steps
of duration At the equation would then appear as

x(t+a0) = flx (D). 3)

An equivalent method is to specify not x's new
value, but by how much, Ax, it has changed from
its previous value. Then ax=x' - X = Xpy] - ¥ =
Wt+Aat) - x(t), and the equations would take the

form
ax = g(xp) or gix(®)], 4
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where g is the function: f(x) - x.

Should the steps become infinitesimal, over
time interval df, Ax becomes dx, and the equa-
tion becomes that of an ordinary first-order dif-
ferential equation:

dx/de = glx), (5)

The symbal v, assumed above to represent
one value of a set of values, may be a vector,
with n components say. [f these component vari-
ables are xi, x3,..., t, (where the subscripts
distinguish variables, and not steps as in eq. (2))
the equations may take the extended form:

xp(t+a8) = fo[x(9,. .., .r"(l)],
xo(t+al) = Fofxy(8),..., xp(D)], @

Snlt+ 38) = fu[x1(8), ..., x4(D].

If the steps are infinitesimal, the equations be-
come a set of simuitaneous ordinary first-order
differential equations:

dxy/dt = g1(x1,..., vp),
........ [}
dr,/d = gulxy,. .., ok

Sometimes the subscript is itself continuous and
the g's may show some special relation. Such is
the case with diffusion (of heat or solute) when
the temperature or concentration (x) changes
with time in a way that depends on the neigh-
boring temperatures, along a linear distance
measure v: then the equations become (e.g.)

a . a2
¥ ®)
a e

What is important here is that ail systems
that behave in ways specifiable by anv of the
tvpes above are subject to the new logic of
mechanism. 1n this way many branches of know-
ledge that started independently can be brought
together and given a unified theory of behavior.

Itis important that the reader appreciates that
though this theory includes many of the results
of mathematical physics (such as eq. 8 above) it
is not restricted by them. Its basic concept is
the “mapping”. It is always from one set (its
"domain”) to a set (its "range") and is a rule (or
process or transition or change or any other
correspondence) that gives, for each element in
the domain, one and only one element in the
range. It is the "one and only one" that charac-
terizes the "mapping”, not some physical action;

thus if the two sets are mothers and daughters
the mapping 1s from daughters /o mothers: lo;
while each daughter has one and only one mother
each mother may have more than one daughter.,
Below, if mapping u« turns el t x (in the do-
main) to v (in the range), we shall write

4(x) =y, 9)

The domain and range may sometimes be the
same set; thus "square it" maps the set of in-
tegers into the set of integers. When this is so,
the mapping can be repeated, generating from
the elements

u(®), ud(x), ud(x), etc.
In general
u*lx) = pux), (10)

and by comparing this equation with eq. (2) before
we see that the mathematical concept of a map-
ping gives us what 1s needed to represent a
state-determined system.

The subject can hardly be taken further with-
out technicalities, out of place here. But 1 hope
enough has been said to make clear that the fol-
lowing propasitions are defensible: 1) the modern
theory of mechanism, being founded on the con-
cept of 2 mapping, includes the scientific know-
ledge gained in the past: 2) the modern theory of
mechanism, by considering cause-effect rela-
tions in great numbers (both in long sequences
and with feedback), provides a technique and
logic adequate for the complex facts of bialogy
and psychology; 3) the modern logic of mecha-
atsm is fundamentally a logic of behavior (not of
matter or of energy).

The New Mechanist, then, feels equipped to
attempt the bridging of the gap between neuron
and behavior, but he is also aware, perhaps ex-
ceptionally so, of the vastness of the gap to be
bridged! Fifty years ago it seemed so simple:
stimulus goes in, response comes out - what
more is required? It was assumed that all that
was necessary was pienty of reflexes, with a lit-
tle integration to weld things together. Unfortu-
nately, with the growing understanding of mecha-
msm has come a growing appreciation of the
conceptual distance that separates the activity of
the neuron from the behavior of the whole orga-
nism. The situation today 1s not unlike that in
physics, when the designer of a steel bridge re-
flects that his art rests on quantum physics. No
bridge-designer today appeals directly to the
laws of quantum physics: the connection has to
be in several stages, through atomic motions,
crystal structure, the strength of metals, prac-
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tical metallurgy, the strengths of girders, to the
whole structure. It seems likely that the gap
from neuron to behavior will similarly have to
be bridged in stages. Such an attempt will be
sketched in the sections that follow.

2. EVOLUTION AND EQUILIBRIUM

"The behaving org " i disc ble {rom
three very different points of view. One can dis-
cuss its inner conscic , 1ts awar 1
shall say nothing from this point of view for I
have nothing to say; the problem is one of extra-
ordinary difficulty, involving the subtlest ques-
tions of philosophy and scientific method.

The second point of view considers its crea-
tive aspect, as when a man invents a new system
of musical harmony or produces Joyce-like
prose. I shall say nothing of this matter, for |
have no objective criterion by which 1 can dis-
tinguish such productions from the squeakings of
2 gate, or from a sequence of words generated
by a dictionary and a table of random numbers.
When "anything goes®, science has little to say.

The third point of view regards the behaving
organism as one fashioned for survival: as a
system highly adapted to its environment, molded
by evolution and natural selection, and able, es-
pecially in the species Homo, to produce ex-
tremely complex patterns of behavior that show
(to the Mechanist) astonishingly complex adapta-
tions to the environment. Here the brain 1s seen
simply as an organ that furthers survival. This
third point of view has today achieved some
completeness, in that there remain no large gaps
that are wholly mysterious. What we see today
will be sketched below.

Our starting point is the well established fact
that this earth solifidied about five billion vears
ago and :hat ever since the conditions affecting
its surf..c» have ecither been quite constant - the
laws of er.ergy, the law of gravity, the properties
of carbon, of water, for instance, - or have
changed only slowly - its temperature, the qual-
ity of sunlight reaching it, the composition of the
ocean.

The logic of mechanism now becomes appli-
cable. The earth's surface will have, at each
moment of time, a well defined state - the posi-
tion of each sand grain, the temperature at each
point, the distribution of each species, and so
on. The laws of nature, acting at each point, de-
termine how that state will change. Since every
state goes to some state, and never goes to two,
the laws of nature specify a mapping of the set of

possible states into the same set. (Whether this
formulation is wholly true is not yet known; it is
certainly true to a major degree, and it is also
the universally held hypothesis that guides the
scientist in his daily work. We shall, in this ar-
ticle, write on the assumption that it is wholly
true; the complications caused by atomic inde-
terminacy would cause us repeatedly to say "sta-
tistically determinate™ or "on the average®, but
the modification would cause no major aiteration
from the outline given below, so we shall ignore
the complication.)

Let us call the mapping (induced by the laws
of nature and its basic forces) L, so that, if it
acts on state s, it changes s to L(s). Now, saying
that the taws and conditions on the earth's sur-
face have been largely unchanging means that the
mapping (or operator) L has been unchanging in
tume, so that the sequence of operators at work
has been the repetitive sequence

LoL, L, L LLL,...,
and not, say
L, P K, M L J M...,

as would be the case if the laws or conditions
had varied appreciably. This (trivial-looking)
cbservation will in fact give us a secure origin
for a rigorous treatment of the origin of life and
intelligence.

We start {from the fact that the first sequence
shows high redundancy (in the sense defined by
Shannon and Weaver, 1949) and thereby shows
constraint; for the larger set (all sequences
composed of J, K, L, M, P, ... in some order),
1s restricted to a subset {those composed only of
element L). Bourbaki has shown, especially in
the section "Echelles d’ensembles et structures®,
that restriction to a subset is aiways the essen-
tial operation that generates properties, rela-
tions, patterns, structures (as the words are
used in ordinary language or with special preci-
ston in mathematics). Thus, from the theory of
mappings we would expect the sequence of states
generated by repetition of one operator to show
special features. One way in which such special
features appear is at the states of equilibrium -
those that satis{y the relation

L(s) = s. (11}

Such states are of the hjghest importance in the
study of the brain as an organ for survival.

1t shouid be noticed that most of the "classic”
examples of equilibrium - the pendulum hanging
motionless, the run-down watch, the mixture of
chemicals when all reaction is exhausted - are

p—
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far from typical today, for they occur in systems
of extreme simplicity and complete dependence
on a finite quantity of energy. The "open” sys-
tem, on the other hand, can still be a "machine”
(as a computer is by being state-determined) but
may show equilibria (sometimes distinguished as
~steady states") of vastly greater richness and
interest. The richness comes from the fact that
what is regarded as a "state” from one level of
study (and therefore unanalyzed) may, on closer
inspection, be found to have a rich internal
structure. Thus the Roman Empire remained re-
cognizably the same entity over hundreds of
years, in spite of many disturbances, while a
closer examination shows that in fact a vast
number of personal activities and changes were
contributing to the stability of the Empire as a
whole. In such cases a rigorous treatment is
still possible: the set S of states s is "stable"
under L if (by definition)

LiS) - S, (12)

ne., if L, acting on 3, produces no new states.
Thus, though L may change state s, to s;, its ac-
tion 1s only to cause changes within the set §:
and 1if ¥ has some characteristic property, this
property is not lost when L acts. (*Stability after
displacement” 1s a special case in which L 1s the
composite mapping \78, where 3 is the vperator
that effects some displacement, so that 8(s) = s,
and \ is the mapping whose repeated operation
eventually brings the state {rom 6(s) back tos.)

The statement "all systems tend to equilibri-
um” embodies much experience but is too vague
for a rigorous theory of behavior. The cases
where 1t is not true, however, all seem to be
highly specialized and to demand exact construc-
tion. Even if a system has no states of equulibri-
um (or cycles) it will tend towards certain "pre-
ferred” regions or sets of states, there being no
preference (no convergence or divergence of the
trajectories 1a the phase space), only when, if
the system 15 specified by

d-","d/=_(,‘(tl,.....\'") F=1,...,n, (13
the ¢'s have the spectal property that everywhere

ey g T

—_—.—— o+, .,

2xp  axg 3ty

=0, (14)

Similariy, if the system is stochastic and Mar-
kovian 1t will also tend to some "preferred”
states unless the matrix of transition probabili-
ties has not merely its rows but also its columns
adding to 1. Thus, there is certainly some justi-

fication for the statement "systems tend to equi-
librium®. In any particular case, the mathemati-
cally acceptable form would have to be developed
to suit the details of the case.

We can thus say that most systems with un-
changing laws (i.e., systems in unchanging con-
ditions) change towards states (or sets of states)
in which they linger: by showing a convergence
towards such states they generate relations be-
tween the law and the system's state (and be-
tween its component parts). The relation gener-
ated is that of "adapted for survival™. At the pri-
mary level the relation is truistic; in its conse-
quences in complex systems it develops unlim-
ited complexity.

At equilibrium, the relation between the parts
is necessarily holistic and one of coordination.
One example will be given to show what is meant.
Let the matrix

f1 0 4
'3 1 2|
72 3

be the operator, or law, or drive, that changes
{by multiplication modulo 12) such a state as the
vector

Ry f

!51 tothe state or vector 2.

13 8

P

In this case the state has been changed. The vec-
tor

2
R
(3!
however, is unchanged by the operator:
IX2 + 0x8 =+ 43 = 14
Ix2 .+ 1x$§ . 2x3 = 17
T2 + 2x8§ .+ S5%x3 = 39

and these exceed 12's multiples by 2, 5. and 3,
respectively: thus the state is regenerated, and
is equilibrial. What is important here 1s that the
three component values - 2, §, and 3 - act coop-
cratively to preserve each other. The 5, for in-
stance, depends on the 2, since the § was ob-
tained from

Ix 2 1x5 + 23

Had the 2 been a 1, the outcome would have
been
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3x1 o+ 1x8 + 2%,

i.e., 14 or 2 (as in the first example).

The cooperative action 1s quite general. At
any state of equilibrum (whether simple or hav-
ing complex internal structure), the parts always
interact so that the action of all is to regenerate
the state of each. Thus, if we were simply to
watch one act of regeneration we might well say:
this set of parts is acting (within these laws of
nature) so as to preserve its condition unchanged.

Given, then, that a dynamic system is iso-
lated, there exists today a completely rigorous
theory showing why it should pass to states or
forms characterized by being self-preservative
in their behavior. But the "state or form" must
be equated to the system "organism plus envi-
ronment®. At an oasis, for instance, the well
keeps alive the villagers, and the villagers re-
pair the well; the permanence of both 1s due to
their appropriate interaction. The "adaptation”
shown by the living organism is always to some
property of its environment; let the environment
change, and what was an adaptive way of behav-
Ing may become grossly inappropriate.

The relation (that ensures survival) becomes
conceptually simpler in those cases in which the
stable set of states 1s "cylindrical®, that is, in
which some of the Variables stay within clearly
marked limits. These variables are then recog-
nized as the "essential” variables of the adapted
system - those that must be kept within "physio-
logical” limits u the whole 15 to survive: the
supply of food, the volume of circulating blood,
the pressures that threaten the continuity of bone
and skin, the body temperature in the warm-
blooded animals.

The rigorous theory of behavior thus joins the
physiologist by regarding liomeosiasis as the
core of all adaptive behavior. In a2 study of be-
havior te essential variables are easily over-
looked cChey stay almost constant, while the
non-ecs ntia' variables range widely, change
rapidly and generally catch the observer's eye.
Neveriheless, the dramatic activities of the non-
essential variables are secondary: they have
meaning and relevance only because their vigor-
ous changes act to keep the essential variables
within limits. Should they have other effects,
these effects are, to the student of fundamentals,
mere by-products.

The word "homeostasis™ was originally coined
by Walter B. Cannon (1932) to describe these
processes in so far as they occurred in the auto-
nomic, vegetative and internal processes of the
living organism. The rigorous theorv of behav-

ior, however, stresses that any boundary here,
between internal and external, is ultimately ar-
bitrary, that many of the processes use both in-
ternal and external factors, and that common
principles govern both. For these reasons it 1s
of the highest importance, if the basic unity of
behavior theory is not to be lost, that the ab-
server should be able to relate the free-ranging
activities of the non-essential variables (the or-
ganismic behaviors) to the homeostases that they
ultimately achieve, and that gives them their ul-
timate significance. Only in this way can the
purposeful free-ranging activities be distin-
guished from those activities that are merely the
expression of force in action. Intrinsically, of
course, there is no difference: they differ only in
their relevance to some understood homeostasis.

From this point of view, Homo is simply a
species that has specialized in the development
of extremely complex free-ranging movements
and that has managed to obtain some of their ad-
vantages while avoiding most of their dangers.
He can melt steel without burning himself, he
can build and run motors without being torn to
pieces, and he can send electricity over a con-
tinent without being electrocuted. By viewing
Man's activities in this way, we can trace an un-
broken line of deduction from the primary fact
that the earth has long been isolated, to the
emergence of extremely complicated systems
that always tend to behave homeostatically.

Let us now examine these free-ranging activ-
ities, these behaviors, in more detail, so as to
see how the well known behaviors of Man can be
related to their underlying mechanisms. We wul
examine first the very simple pieces of behavior
called "reflexes", then the more complex types
called "instinctive", and finally those that depend
largely on "learning”. All will be regarded as
manifestations of the primary mappings that un-
derly (and drive) all physico-chemical events,
shaped to homeostatic form by natural selection.

3. THE REFLEX ORGANISM

The reflex, in its many forms, presents little
difficulty in general theory since it is now known,
and has been proved in many ways, that if the
parts have certain minimal properties. a suffi-
ciently large and complex wet of them can pro-
duce any well defined behavior. Thus the oid
question: can a machine do it? is always to be
answered yes; provided that the required activity
is capable of unambiguous description in opera-
tionally meaningful terms. All the reflexes of
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physiology are so capable, and the "problems of
the reflex* are essentially those of discovering
the particular details of each particular reflex.

That many of them are regulatory, i.e., ho-
meostatic, offers no unusual difficulty today, for
it 1s now well known that such regulation de-
mands only the provision (by the gene pattern) of
a feedback (any chain of cause and effect from
the main effect back to the original cause) so ar-
ranged as to be "negative®, i.e., so that the re-
turning effect subtracts from, and thus tends to
annul, the original disturbance. In complex
cases the “subtractive® operation may have to be
understood in a technically sophisticated way,
but the basic idea remains. The theory of such
feedbacks is now extensively developed, partly in
the theory of servo-mechanisms. The physiolo-
gist who wishes to use the essentially homeostat-
ic aspect of such feedbacks should not deprive
himself of the great)v increased knowledge and
technical assistance that he can get from the
theory of feedback inechanisms.

The worker in biological subjects, however,
will notice that such theories tend to be unduly
specialized to those cases in which the feedback
is linear and continuous. Biological regulators
often tend to be grossly non-linear (the response
not proportional to the stimulus) and non-contin-
uous. The study of such regulations at the reflex
level calls for no new principles, only new tech-
niques. Such non-linear and non-continuous reg-
ulations appear in their most complex forms in
the learned reaction (referred to later).

4. THE INSTINCTIVE ORGANISM

While the reflex organism offers little diffi-
culty in a mechanistic representation, the diffi-
culty is small only so long as the reflex remains
simple. The modern theory of mechanism, how-
ever, envisages hanism unbounded in com-
plexity, both in respect of their numbers of
working parts and in respect of the complex con-
ditionalities governing their internal activities.

The "instincts”, as they are recognized and
listed today, have each of them a goal, but this
fact does not remove them from the class of
mechanisms, for any describable piece of be-
havior that has some permanence and some end-
ing must have a bound and therefore stability in
some sense - the purely transient and easily di-
verted is neither noticed nor named. Thus any
system with many states of equilibrium offers
the possibility of being described as having as
many goals and "instincts". The machines of

everyday life seem to lack them only because
these machines are too poor in ways of behaving
and in complex steady states. Let a machine be
made with modern activity and richness of pos-
sibilities and the observer can soon name many
trends n its behavior that, in a living organism,
would claim recognition as "instincts”®.

There was a time when the instincts were
thought to be fundamentally different from the re-
flexes because the instinct was often evoked by
some situation or event that could not be identi-
fied with any specific physical or chemical event.
Thus dogs tend to bark whenever "something
strange® occurs, and “something strange" can-
not be identified with any particular sound or any
particular stimulation of the retina. It is now
known, however, that this property of reacting to
combinations and relations between stimuli, is
readily obtained from the mechanism, 1if the
mechanism works in stages or leveis so that the
first level "computes® various functions of the
primary stimuli, then the later levels compute
functions of these functions, and the final stage
acts only 1if these “computational™ processes
have resulted in some actual physical event at
the penultimate stage. In this way any defined
function over the primary stimuli, however com-
plex or subtle it may be, can be transformed, ia
a purely mechanistic way, to a physical event
suitable to act as physical cause for the instinc-
tive action. The apparent distinction between re-
flex and instinct arose partly because the older
theories were based, mostly unconsciously, on a
one-level model: stimulus-to-response, without
intermediate processing.

The organism, developing through evol\.xtion,
thus develops ever more complex mechanisms,
improving its ability to react homeostatically in
ever more complex ways to the disturbances a:?d
threats of the environment. How orderly i.s this
progression? Here the logic of mechanism is ad-
amant: in general, every new addition, every ex-
tension, leads to an essentially new total system
whose properties are also new. Only when there
are special simplicities will the new extensioq
give new behaviors that merely add to the set of
behaviors already available. In general, no mat-
ter how large the machine and how small the al-
teration made to it, if the machine is not re-
stricted we can put no limit to the size of the
change that may occur in its behavior. The
mathematician knows the corresponding fact that
if the f;’s are unrestricted in

de/dt = fi(x1 ... Spa) (i=1, ..., n),
(15)
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then the behavior of this system, when the pa-
rameter @ has a particular value ay, does not
restrict in any way the behavior of the system in
which a has been changed to ay + M.

This fact, unpleasant though it be to those
looking for simplicities, is fundamental in the
theory of mechamism and the analysis of behav-
ior. Just as a few chemical elements(C, H, N, O)
can be put together in many combinations to form
the many compounds of organic chemistry, so
any other units (transistors, neurons, male-
cules) can be put into combinations whose vari-
ety of behavior is not limited by the uniformity
of the units but can be as rarious as the number
of thewr combinations. This richness s precisely
the richness that comes from the presence of
active interactions between the units, simplicity
occurring (with many units) only when the inter-
actions are small.

It should be noticed that the behavior of the
whole system cannot be predicted by our regard-
ing the whole system as made up of various
feedbac k loops, finding the behavior inherent in
each separate loop, and then adding (or combin-
ing 1n any way whatever) the separate behaviors.
Systems have beén constructed, for instance, in
which every possible loop has the feedback nega-
tive (so that each, by itself, would be stable),
vet the whole shows the ever increasing diver-
gence of instability (e.g., Ashby, 1952). In a
similar way the logic of mechanism shows that
we have no right to expect that the instincts (as
complex trends observed in the behavior) will be
simple, tidy, or neatly classifiable. Here the
fifeld worker or clinician has the last word, for
only he can say what instincts are worth distin-
guishing, defining and naming.

5. THE LEARNING ORGANISM

The rature of learning and memory, once so
myster) us, has been completely clarified in the
last twenty years, and it is now possible to see
them as processes entirely homologous with the
other processes occurring in matter. On the ba-
sic hypothesis (strongly supported by two centu-
ries of scientific work) that all processes in
matter (above the atomic level) are state-deter-
mined, the concept of "memory® becomes ap-
propriate when an cbserver, unable to observe
every variable of the system (and thus finding it
unpredictable), restores predictability by taking
into account eariier events in what he can ob-
serve. Thus, if the system of three variables -
x, v, and z - can only be observed at x, the ob-

server may well find that the value of xat time
t + 1 is predictable provided he knows the values
of xat times ¢, / - 1 and ¢ - 2. From the point of
view of information theory the change is quite
simple: vartables y(¢), and z(#) are replaced by
variables x(¢-1) and x(f-2), exactly as they might
be replaced by any two functions of x, y and 2.

The parallel is exact. If the test (in Shannon's
notation)

H(x) + H(y) - H(x, ) #0

shows that *transmission® (in his sense) is oc-
curring between x and y we have the ordinary
case of transmission between two spatially sepa-
rated variables, between two points in the ner-
vous system, say. If the test

H(x(1)] + H{x(t-R)] - H{x(¢), x(t-k)] = O

holds, then "transmission® (defined in just the
same way) is occurring between the events at x
at time / and those that occurred at x, % units of
time earlier. When this is so we have the essen-
tial property that allows us to think of "memory
of duration &* at v. (The fact that the value at
t - & must necessarily become the value of x(¢)
at % units of time later does not necessarily en-

ter into the coinputations and is, from this point.

of view, irrelevant.) Thus the modéern logic of
mechanism is able to treat the basic epistemo-
logical properties of "memory” as a transmis-
sion over time exactly homologous with the well
understood transmission over space.

That transmission should be physically pos-
sible between two times demands some special
physical mechanism exactly as does transmis-
sion between two places. The mechanism used,
though varying widely in some ways, will always
use some form of equilibrium, for the attempt to
carry some state from one time to another,
without corruption and without loss of informa-
tion, demands that something be invariant over
the interval, and "invariance" is the core of
"equilibrium".

What physical or chemical "state" is used to
be invariant, to carry the "memory", is of little
importance in the larger questions of behavior:
all that is necessary is that the state should have
certain properties; how these properties are
achieved may be decided by matters of purely
local significance. Clearly, as no one expects
one method to be used for all the many trans-
missions from place to place in brain and body,
there is as little reason to expect that only one
method will be used as "memory basis" for
transmission from earlier to later. Much more
likely is that the organism will use a variety of

19

PLACE OF THE BRAIN

methods, each adapted to the needs of its partic-
ular purpose.

The details of the memory trace are thus of
little significance in the larger questions of be-
havior. What is of more significance is the meth-
od used for making the record in the first place
and for using it advantagecusly later. At the mo-
ment, our scientific thinking tends to be grossly
misled by the example of the big digital comput-
er. It has a big memory store, kept far from the
working parts, which send recordable facts to
special places, and then later go back to exactly
the same places to regain the information. Such
a method, demanding vast numbers of exactly
connected lines, can hardly be achieved in bio-~
logical machinery, especially as such machinery
must use parts subject to wnjury, starvation, in-
tection and similar disturbances. More likely is
it that most of the brain's memory traces occur,
and are retained, at the site of their action. it
seems likely, therefore, that the traces that
contribute to a particu/ar reaction (e.g., to an-
swering "What is your name?”) will be widely
scattered, each having only a very small effect,

. yet amounting in their total effect to a decisive

determination of the behavior. The concept of
*memory" will have to become that of “the
memories”, rather like the "animal heat® of the
Middle Ages, as a unity, became all that is
known today of metabalism and oxidation. At one
end of the types of memory are those simple
events that leave a permanent mark on behavior,
those often called "painful® or “terrifying".
These learnings often use innate mechanisms
developed by natural selection, ready to learn
and record what is pawnful but requiring the de-
tails to be provided by the child's particular en-
vironment. The trained mechanism (giving the
behavior of the *burned child") is clearly homeo-
static. It is a homeostatic mechanism whose fi-
nal details of design have been postponed until
the information necessary has been supplied by
the environment. Such a method of developing a
h tatic mech shows in essence all the
necessary features of the learning process; the
"higher® forms are essentially similar, carried
to a far higher degree of complexity.

6. COMPLEXITY

The logic of mechanism, used quantitatively,
shows that any mechanism as complex as the hu-
man brain could never have been brought to an

y self-preserving form, either by evo-
lution or by personal learning, if it and its en-

vironment had been richly connected (both inter-
nally and between the two) - the possibilities
would be so vast that all geological time would
not be adequate for the working-up of the unor-
ganized nerve net to an adapted form (Ashby,
1952). The arrival of most children at a reason-
ably well adapted adult state is possible only be-
cause the adaptation can be developed piece-meal.
Thus our terrestrial environment allows the
child to learn how to pour water -into a cup inde-
pendently of what he has just learned about the
English language, and these again are independ -
ent of his learning what a dog does U you pinch
it. Sometimes what has to be learnmed 1is not
wholly separable, but allows the learning to oc-
cur in stages, each of which can be established
with reference only to what was established ear-
lier. Thus arithmetics can be learned n the or-
der: addition, subtraction, muitiplication, divi-
sion, but not in the reverse order. And pde
jumping must be preceded by learning to stand,
to walk, to run and to manipulate long objects.
Because our terrestrial environment alliows the
full adaptation of the adult to be developed large-
ly in small stages, the process is much simpler
than would be the case in the full generalization.

Nevertheless, as soon as a quantitative esti-
mate is made of how much information must
come to the observer if he is to understand fuily
what is before him in 2 human organism, so soon
do we find that the quantity of information s
likely to exceed all bounds of what is possible
(e.g., Bremermann, 1965), even with the most
generous allowances. It seems clear that when
we leave the old methods of thinking about the
brain, with their gross oversimplificat:ons, and
hange to the dern methods, we shail have to
take the question of the quantity of information
seriously, lest we waste time attempting the 1m-
possible.

The question of "complexity” must play a
dominating role in our attempts to understand
the brain (whether naturat or artificial), for oece
we leave the mechanisms that we knew before
1940, we arrive at forms whose compiexity -
creases with overwhelming rapidity. Most prop-
erties in them increase, not as the volume or
mass but with combinatorial speed, so that the
order of their increase is either with e®orx.,
or much faster still (e.g. Ashby, 19§6). s,
the possibility of adaptation occurring iz any
reasonable time is fundamentally dependent >0
the presence of simplicities. The case in which
interaction is incompiete or weak does, n fact,
occur very commonly in our terrestrial eaviron-
ment, and what is known suggests that the brain
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has been profoundly shaped by evolution to take
advantage of this fact. Thus, the extremely com-
mon method of working to a2 major goal by the
achievement of a sequence of sub-goals is one
expression of this adaptation. .

More can hardly be said at the moment, for
the general study of complex dynamic systems
reacting with a complex environment has only
just begun. Today, however, enough is known of
the logic of mechanism to show that the general
principles by which the properties of neuronic
units can be related to the larger behaviors of
the whole orgamism can be traced with a rigor
limited only by our resources of time and pa-
tience.
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1. INTRODUCTION

The last twenty years has seen science invading regions hitherto avoided—
the world of dynamic systems that are intrinsically complicated. For a hundred
years such dynamic systems as the cerebral, the social, the economic, the proto-
plasmic, the colloidal, were treated mostly by the methods of classical science;
by the attempt to reduce the whole system to one of many simple units, with
only infinitesimal interactions. The advent of statistical and matrix methods,
however, began to enable the scientist to deal more successfully with the
moderately complex. Then came the large general-purpose computer; while
it confronted him with yet another extremely complex system, its clear logic
of behavior so educated him that today the whole logic and strategy for dealing
with the highly complex system has become immeasurably clearer; helped too
by the disciptine of information theory, he has been able to achieve a new
clarity and a new rigor.

To the biologist, the need for a new rigor may not be at once apparent. Yet

1 Part of this work was supported by the National Science Foundation, Grant 25148.

3 W. Ross Ashby 1967. saa the Air Porce office of Scientific Ressarch,Grant APOSR 70-1865.
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if biology is to study and understand the really complex system the methods it
uses must be appropriate. Foremost among these is that of “simplification”:
not by the intuitive rules-of-thumb commonly used so far but by the more
developed methods that use homomorphisms. The method promises much, but
its use demands rigor and technique; where are they to be found?

The method described in this paper is offered because the author during the
last twenty years ' 2 has found it invaluable as a guide. As its concepts are
initially quite free from any implication of either continuity, or of order, or of
metric, or of linearity (though in no way excluding them), the method can be
applied to the facts of biology without the facts having to be distorted for
merely mathematical reasons.

The method described here is based on the work of the French school that
writes under the pseudonym of N. Bourbaki. As their great work 456 has
shown that a/l mathematics, and therefore all products of accurate thinking,
can be based on set theory, so there is considerable advantage in keeping the
method in this paper wholly aligned with theirs; we can thus ensure ready and
safe interchangeability between this method and all mathematics. Their *Fasci-
cule de résultats™ 3 has therefore been taken as basis for this method. (Their
full, three-volume “Théorie des ensembles™ * seems to me to add little of
value 10 the biologically oriented worker.) I have also drawn substantially on
the work of J. Riguet™%%10 who has extended Bourbaki’s work in the
direction of making it algebraic and of providing it with a calculus. Theorems
due particularly to him are acknowledged in the text. '

One final advantage of the method is that it is ready at every stage to admit
the various measures of the “‘quantity of information”, such as those of
Shannon !! and of, McGill and Garner 1213, The study of the really large and
complex system is dominated everywhere by the extent of the quantity of
information and whether it exceeds the information-processing resources of
the investigator. That the method makes aimost intuitively obvious how the
quantity of information would be measured is not the least of its advantages.

2. THE ALGEBRAIC SET THEORY OF MAPPINGS
AND RELATIONS

2.1 SET THEORY
A. Set and element

We start with the ideas of “set” and “element” taken as understood. What
1> essential is that we must be able to say with certainty of any element x and
of any set A whether element x is or is not contained in set 4. The fact will be
arittenas.x € A orasx ¢ A. If the setis described by the naming of its individual
constituent elements, it will be written within braces, for example as {a,b,c}.
Repetitons of an element within a set (should they occur for any reason) will be
-2nored; we shall assume that the clements are all distinct. The empty set,
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that with no elements, will be represented by { }, as a single symbol. (In general,
capitals will be used for sets and lower case letters for elements.) .

If two sets are such that every element of A4 is also an element of B, we write
A< B.If A and B are composed of the same set of elements we write 4 = B,
The relation 4 < B does not exclude that of 4 = B.

B. Complement

Given two sets A and B, the set 4 — B is defined as consisting of those
elements that are in A but not in B. If 4 is some basic set that can be taken
for granted, B will signify the set of elements not in B (**but ir) A’ understood).
B is the complement of B; it has no meaning in the Bourbaki set theory unless
some total set is defined or understood.

C. Implication

If statement P implies statement Q, i.e. if P's being true implies that Q
must be true, or if the condition P holding implies that condition Q must hold,
we shall write P => Q. When both P = Q and Q = P, we shall write P= Q.

D. Quantifiers
“3Ix: P ... is to be read as meaning: “*There exists (within an already defined
or understood set) at least one element, let’s call it x, that has the property P,

or that makes the statement P true’. N
“¥x:P...” is to be read as meaning: “Every element (within an already

defined or understood set) has the property P. or makes the statement P true'".

“Jx: x e 4 and ..."” may be abbreviated to “Ix e A:..."
“¥x:x e Aand...” may be abbreviated to *Vx e 4:..."

The following formulae are easily verified. More formal proofs are discussed
in Section 2B. 4 and B are any sets. (Parentheses and brackets are used freely

in the formulae below to help make the meaning clearer.)

1D.1 (4=B)<[(4<B)and (B< A4))].
ID.2 (A< B)«>Vx:[(xed) = (xeB))]
(The expression on the right reads: For every element. if it is in A4 then it
must also be in B.)
ID.3 (A=B)< Vx:[(x € d)<=(xeB)] (read correspondingly).
ID.4 aedA<>ad¢ A (some total set being understood).

1D.5 A< B< Bc A (some total set being understood).
1D.6 4=B< A=FB (some total set being understood).

E.. Union and intersection , .
Given two sets .4 and B, their union, written 4 U B, is the set of elements

that belong either to A or to B or to both.

i
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lEl ae(AUB)a(aeA)or(aeB)
iE.2 (A< B)<> (AU B="B).
lES (ACB):{(AUC)C(BUC)]

The intersection ot‘ 4 and B wrrtten AN B ;s the set ot‘ elements that belong
to both Aand B.

15.4 ae(AnB)o(aezg)and(aeB)
IES (A<B)= (4N B=4)

IE6 (4<B)=> [(A A C)C(B n oy
IE7 4UB= Ang

IE8 ANB= /IUB

IE9 AU@BNC)= (AU B)N(4UC).
lElOAﬂ(BUC)-(AﬂB)U(AnC)

F. Mappings

Given two sets E and F, a mapping (from Eto F) is any correspondence
rule, method dlagram md|catron, construct;on process, algorrthm compu-
tation, machme, evrce, force, drrve, reﬂex, mstmct command or any other
causé whose eﬁ'ect is that grven any element m E one and only one element
in F results (In pourbalér une a plrcatron )

E is the mappmg s domam, f rs 'its range, in whrch the mappmg taltes its
values. Fis hot necessartly dr erent from f’ At thrs pomt it shou d’ Pe notrced

; ; i4

that whether the sets E ancg are ﬁmte or mﬁn;te or Qere<l or not drscrete
or contrnuous, wrth a metnc or not ‘are all rrrelevant o

If the mappmg s perzltgng one ‘of E, grves  fin F we write p(e) f (Greek
lower case letters wnll be reserved ‘i in thrs paper for mapprngs )

lf Aisa subset of lE’, and p acts on each element ‘of A4, the set generated is
some subset of F. Thus, grven each subset of E the action of it on thé elements
generates one and only one subset of F. There is thus deﬁned a mapping of the
set of all subsets of E into the set of all subsets ol' F Though essentrally distinct
from ., experience has shown that the Use of the same symbol uto represent
itis « on/ement and rarely a source of confusron Thus, if’ A —{a,,az, a,...},
we have o

IF.1 P‘(A)={P~(0|), (@), p(ay), ...}

wnth the ongmal w on the nght hand and the new p on the left.
(The one-one’ mapprng, S0 popular in much of mathematrcs, need not be
deﬁned here, smce rt rs nowhere used in thrs paper )

IF.2 x E;L(A)<> 3y y€dand x=u(y)
IF.3 4 < B= p(d) < p(B).

IF4 p(A U B) = [w(A4)] U [uB)].

IF.5 p(4 N B) < (w(4)] N [u(B)].
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The particular mapping that maps a set into itself by the rule: Vx: A(x) = x,
is the identity mapping. It can conveniently be represented by symbol 1, as
there is little in set theory to be confused with it. (It is, of course, quite different
from the Boolean 1.) Its domain is an essential characteristic (there are many
1’s differing in their domains), and the domain must always be borne in mind
or indicated. The identity mapping on the domain 4 will be written as 1 ,.

IF.6 Vxed:l (x)=x
IF7 1 (B)=ANB
IF.8 IfB<A4,1,B)=8.

G. Representations of a mapping

Several are possible. Skill in their selection may convert a difficult and
obscure argument to one that is almost immediately obvious.

The explicit representation simply names, for each element in the domain,
its transform in the range; for example if the domain is {a, b, c,d} and the range
{b,c,e,h, j}, u might be represented by

p@ =e, pd)=>5, plc)=e, p(d)=c
More compactly, it may be written
|la b ¢ d
p l e b ec
The sagittal representation shows, by a set of arrows, how eaeh element of
the domain goes to one in the range; for example.
. a b c d
If the mapping is of a set into itself, for example of E into E by

Is ¢ 5

the sagittal representation would be
a—-b=zc d)

The tabular representation is given by a rectangle with columns correspond-
ing to the elements of the domain, with rows corresponding to those of the
range, and a mark at those intersections (one to each column) that correspond
to the mapping.

The matrix representation is a tabular representation with a | at each
intersection and a 0 elsewhere, The operations of set theory then correspond
to those of matrix algebra, provided that the orientation of the representation
is that described above and the multiplication is of rows into columns.
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While it is essential, especially when the systems are biological, that we
should be able ta yse mappings and sets that are wholly arbitrary or structure-
less, many of the applications in chemistry and physics use mappings of
restricted or specialized types. As these are, in 8 sense, classical, their relations
to the wholly arbitrary will be indicated. They all represent some way of taking
adyantage of some redundancy in the details of the mapping. Thus the mapping

|01 23 45
“'1123950

can obviously be condensed to
p(x)=x+1 (modulo6)

Ip general, the mapping can be sperified as (%) = £(x), where £(x) |

genera’, bie MAPRINg can be SperIfied as px) =/1{x), Where /(¥) Is some

well known function that can be written briefly. If u(x) is written as ¥, the

equation becomes of the form ) S
X =f();

and if x is 3 function of 1 oF , the mapping may be written as
Xy 2 (5 oras x(r+1)=f(x().

If the emphasis is on the change of ¥, and if x is numerical (so the subtraction
is possible), x4) = %, ¢a8 be Written 33 4. and the mapping can be represented
as the difference eayation dx = g(x). If the steps become infnitesimal,
dependent on an infinitesimal change in time, the mapping is naturally
represented by an ordinasy differential equation of the first grder:

dx _
P h(x).

(The functional symbols haye been changed from f1to g to h to make clear that
the forn f does not remain unchanged.) B
All 1hat has been said is in no way restricted to a single variable, for x may
be aa n-tuple of components (which may also be finite in number or infinite,
discrete of continuous in values, with or withoyt a metric.) When x is an
n-tuple, further constraints between the variables composing x may be ex-
pressed by partial differential operators; such is the elementary equation of
heat conduction - S
ox_, 2x
5 =k

Thus many of the‘ well known equations of physics and chemistry that describe
a system’s behavior are in fact specifications of mappings.
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H. Inverse of a mapping

Given a mapping p of E into F, the inverse operation, written wl, turns
any element in F into all those elements in E that correspond to it under p.
Thus, from the example of Section 2.1G above,

W) =b, pN)=d, pE={ac),

while p~!(h) and p~!(j) have no elements. Thus the inverse of a mapping is
commonly not a mapping.

IH.1 xeu ') y=ux).

1H2 xep ' (A)«3Iy:yedandy=p(x).

1H.3 The inverse of mapping 1 is the same mapping | (avoiding writing It
as the two 1’s have different meanings).

1. Composition of two mappings

If p is a mapping of E into F, and Ais a mapping of F into G, there neces-
sarily exists a mapping of E into G defined thus: cach element in E gives, by
u, one and only one element in F; this element gives, by A, one and only one
clement in G. The element in F is u(e), and that in G is A(z(e)). The rule thus
gives, for each element in E, one and only one element in G; it therefore
defines a mapping. It will be written A o u, which may usually be conveniently
abbreviated to Au. Notice that p operates first. u o u will be written p?, etc.
Only when the two mappings have a common dimension for elimination can
the composition be performed.

(The sets E, F, and G being defined or understood):

IL1 (Ao p)e) = Mu(e)) = Aule)

112 geMu(e)< 3f: fe Fand f=p(e) and g = A(f).

113 g€ Mu(A)<>3a: a € A and g = Au(a).

1.4 geAu(d)<>3a:acAdand3f: (etc.as in 2).

ILS lop=pol=p (providedthat E=F=G,and 1’s domain contains

©'s.).

J. Kinematic graph

When a set is mapped into itself, the sagittal representation drawn on the
one set used both as domain and range shows, by the chains of arrows, the
sequence of values that will occur if any element e is operated on repeatedly
by p, giving the values u(e), p*(e), p'(e), .... The successive values can be
thought of as represented by one point that moves along the chain of arrows,
generating a trajectory.

If the number of elements in the set is finite, the trajectory always ends in
some final set, a basin ,which it occupies infinitely often. The set of elements that
are led by the kinematic graph to one basin is a confluent. The confluents are
a partition of the elements in the domain.
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2.2 LOGIC FOR SET THEORY

It is convenient here to tabulate and to make precise the logical methods
that will be used later for proving theorems. The formulae below are readily
established by examining their applications to clementary cases in which the
correct answer is already known with certainty. They are listed here chiefly
for convenience of reférence. ‘

A. Formulae i
Let Petc. be a property that an element may or may not have, or a statement

that may or may not be true.

2A.1 *“P and Q" means “propetties P afid Q both hold”, or “statemerits P
Q are both true”.
2A.2 *“Por Q0 means “at least one of P or Q hiolds, perhaps both”, etc.
2A.3 Pand (Qand R)<s (Pand Q) and R.
2A.4 Por(Qor R)<(Por Q)or R
2A.5 Pand(Qor R)< (Pand Q) or (P and R).
2A.6 Por(Q and R)<= (P or Q) and (P.of R).
2A.7 3y:(Por Q)< (3y: P)or 3y: 0).
2A.8 3y:(Pand Q) = (3y: P) and (3y: 0).
2A.9 (If Pis a property of x and »)
Kx,y>: P<> 3x: Ay: P)< y: (3x: P).
2A.10 Vy: (P and Q)< (Vy: P) and (Vy: Q).
2A.11 (Vy: P)or (Vy: Q) = Vy: (Por Q).
2A.12 V(x,y): P<> ¥x: (Vy: P) < Vy: (Vx: P).
2A.13 3x: (Vy: P) = Vy: (3x: P).
(P is the negation of property or statement P)
2A.14 Pand Q< Por Q.
2A.15 Por Q<> Pand 0.
2A.16 (P > Q)< (0 = P).
2A.17 (P <= Q)<= (P < ().
2A.18 3y P Vy: B,
2A.19 Vy: P<3y: P.
2A.20 (P = Q)<= (Vy: (Por Q)).
2A21 Vy:(Por Q)= (P = Q)< (J = P).

B. Illustrative proofs
1. To show (IE.9)that A U (BN C)=(4 U B) N (4U Q).
x€eAU (BN C)

(by IE.1)«> (x € A) or (x € (B N C)).
(by IE4)<>(x e d)or (xe Band x € C).
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(by 2A.6)<«>(xe AorxeB)and (x e A or x € C).
(by IE.1)«>(x€ AU B)and (xe A U C).
(by IE4)s>xe(AUB)N(4AUC).

.. (by 1D.3)
AUBNC)=(AUB)N(4UC).

2. To show (IF.5) that u(A4 N B) < [u(4)] N [u(B))].
xeu(4 N B)

(by 1F.2)<>3y: y € (4 N B) and x = pu(y).

(by IE4)<>3y:yedand y € Band x = u(y).
<3Jy:yedand x=p(y)and y € Band x = pu(y).

(by 2A.3)«=> 3y: [{y € A and x = u(y)} and {y € Band x = u(y)}].

(by 2A.8) = 3y: [y € A and x = p(y)] and Jy: [y € Band x = u(y)).

(by 1F.2) < x € u(A4) and x € u(B).

(by 1E.4) <= x € (u(4) N u(B)).

(by 1D.2) u(£ N B) < [u(A)] N [u( B)).

2.3 COMPONENTS

All that has been said so far has treated the elements as atoms, unanalyzed,
and it is most important that we should recognize that the properties and
relations so far established hold rigorously without further analysis of the
elements into parts or components. Nevertheless, such analysis is often
advantageous, so it will now be treated.

A. Product set

Given two sets, E and F, the product set E x F is the set formed by taking
all possible pairs of elements, the first from £ and the second from F. Fach
pair isan element of the set E x F: it will be written e, f>. The elements have
no particular order in E x F, but within the couple the order is essential:
<e, f) is not equal to (f,e) unless e = f,

A product set may be given the tabular representation for example

............

............

............

............

in which the direction should be clearly shown, i.e. which is the first factor
and which the second.
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3A.1 (e, f>eExF<ecFandfeF.
3A2 (e,f>eEx F<e{f,e) FxE.
JA3 (AUB)xC=(4AxC)U(BxC)
3A4 (ANB)xC=(AxC)N(BxC).
3A.5 fA<Cand B< F:

(A4 x B)=(4 x F)U (E x B).
3A6 IfAx B#{)}, then
AxB<CxD< A<Cand B< D.
Products of more than two sets are formed similarly, thus

3A.7 (e, f,8>€ExFxG<«ecEandfeFandgeG.
3A8 (e {f,8)>€eEx(FxG)swecEand{f,g> €FxG.

When there are many sets they may more conveniently be indexed (as
Ey, Ej, E, ... if the indices are numerical), or, more generally, when the

a typical element. The product of such a set may be written I1, ., £,.

B. Partial mappings

When a mapping has a product set as its domain, it defines a set of partial
mappings based on the elements of the factor sets, in the following way.
Suppose p maps E x F x @G into H. If the domain is restricted to {e;} x F x G,
each couple ¢ f,¢> is mapped, like (e1,£,£), into a unique element of H; so is
defined a unique mapping of F x G into H. This mapping depends one; had
some other element, e,, been ysed another mapping of F x G into H would
have pccn obtained. Thus, from g there can be obtained a set of partiél
mappings, which can be represented individually as p.,, ., 15 pp etc., of
various factor-sets of E x F x G into H. Sagittally, the new mapping uses
arrows only from certain “‘planes” or “lines” in the original spé,cé. o

. Qorwersely, any set M of mappings (of P into Q say) can be regarded as
(is in one-one correspondence with) a single mapping of M x P into Q.

C. Frojection

' Pro;ectipn means “picking out one (or more) components”. If {x,y>, for
instance, is the point (2,4) in the x, y-plane, then the projection of it on to
the y-axis is the value 4. In set theory, given a product set E x F, pr, is the
opera?or that converts each couple e, /) to the element e of E. pr, is thus a
mapping of E x F into E. Similarly, pr, is the mapping of £ x Finto F that
c9nyens {e,f> to f. If the basic set is £ x Fx G, pr;((é, /,8>) =e; and so on.
Similarly, one can write prys(<e, f,2>) = {f, g>; and so on.

E and F being given, pri'(e) consists of all those couples that have e as first
component; clearly, it is the set {e} x F.
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An operator required later (I12g) is that which, operating on any n-tuple,
generates the set of n-tuples that differs in all possible ways from the initial
n-tuple in certain components while leaving the other components unchanged.
If the factors of the product set are (E;); ¢y, so that [ is the set of all factors,
and if J < I, and if it is the components of the set J that are to be varied, then
the operator we require is easily found to be pri!; o pri_,. It is not, of course,
a mapping but a binary relation (2.5 below). As it induces variation in the
components of set J it will be represented as V.

(IfS<ExF):

3C.1 eepr(S)<«3f:feFand{e,f)€S.
3C.2 fepryS)<>3e:ecEand (e, f) ES.
3C.3 pri(lg)=E;pri(1) = 4.

As pr; is a mapping, the formulae of 1fapply; in particular

3C4 pr(SUT)=[pr(SNV [pr{T)).
3C.5 pr(SNT)<[priS)] N [prdT)).
3C.6 S<T = [pr(S)<[prdD)].

2.4 PROPERTIES AND RELATIONS
A. Properties
It is fundamental in Bourbaki’s method that a property is identified with
the subset of elements that possess the property (some total set or “universe”
always being defined, or at least clearly understood). Thus, if the “universe’
is the set of positive integers, the property of “being even’’ would be identified
with the subset {2,4,6,.), and the property “x<5" with the subset

. {1,2,3,4,5}. (Again, whether the sets are finite or infinite, discrete or con-

tinuous, etc., is irrelevant.) In this way properties can undergo the same
operations as sets, without the least ambiguity. Thus the union of the two pro-
perties just mentioned is the property corresponding to the set

{1,2,3,4,5,6,8,10,12,...};

although there happens to be no ready-made English adjective for it, it is
perfectly well defined. Similarly, within the same total set, the negation or
complement of the property “x < 5 is the property {6,7,8,9, ...}, which can
be expressed as “x > 5" (with the defined universe understood). In general,
Pfx] will be used to represent some particular property that x may (or may not)

possess.

B. Relations .

In the same manner, a relation is identified with a subset of a product set,
a suggestion originally due to Wiener '“. Thus. the relation *‘x further north
than y™* is satistied by the couple (Edinburgh, London®, but not by Landon,

-

-



W. ROSS ASHBY

Edinburgh) ror by (Rome, London). The set of couples (or more generally
n-tuples) that satisfy the relation is now, as a set, subject to all the ordinary set
operations. Thus, in the universe of men, the intersection of the two relations
“x has the same father as »” and “x has the same mother as »” is the relation
“x is full brother of y”. In general Rlx,y,...] will be used to represent some
particular relation that iiay (or may not) hold between x ahd yand..., each
fromi its own set.

C. Reduction of order

In Rix,y], the fixing of x at 4 sinigie elemerit (for whatever reason) makes
R{x,y] a property of y. Thus if R[x, Ylis “x is twice as big as y” and x is then
fixed, at 10 say, the phrase “10 is twice as big ds y” specifies a property of a
single number, not of a couple <X, >, stich that 5 lids it but 6 has riot. So R has
decreased in order from binary to uriary (equivalent to a property). ”

The exptession Vx: R[x,y] classifies the possiblé values of y according to
whether edch particult valie iakes the expressioti true or false. Tiius jt
defiies a propeity of y, riot a telatiofi between x dfid y. The quantifier v,
operatiiig on oné of the variabies ifi Rix,y,...] thifs iowers ilie ofder by ofie.

Sirnilarly, so does 3. ,

With these facts iii mitid, the following forfiiulae are readily estdbliishied
some obvious dbbrevidtions are ised to save spdce.
4C.1 fA<E:3xed:R[x,..] > Ixek: Rix,..]

4C.2 IfACE:Ver:RHx,...II:VxeA:Rﬂx,...ﬁ

4C.3 3x: Rx,...J< Vx: Rix,.. J

4C.4 Vx: Rlx,.. ]« 3x: Rix,...] ,

4C.5 3x:(Rand S[x,...J)< R and Ix: S{x,...] provided x does not occur
in R,

4C.6 (Similarly for ¥ and “or”).

4C.7 3Ix:(Ror S)< (3x: R) or (3x: §).

4C.8 Vx:(Rand S)< (Vx: R) and (Vx: S).

4C9 3x:(Rand §) = (3x: R) and (3x: ).

4C.10 (Vx: R) or (Vx: S) = Vx: (RorS).

4C.I1 3(x,p>: R 3x: (3y: R)<>3y: (3x: R).

4C.12 Y{x,p>: R<> Vx: (Vy: R)<> Vy: (Vx: R).

4C.13 3x: (Vy: R) = Vy: (3x: R).

4C.14 3x: Vy: Vz: R > Vy: Ix: Vz: R = Vy:Vz:3x: R
4C.15 Ix: 3y: Vz: R = 3x: V2 dy: R = Vz:3x:3y: R,

2.5 BINARY RELATIONS

As the binary relations are of special importance to us they will be given a
nore extended description.
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i ion i ts. Conversely, any
A binary relation is any subset of the producf of two se ‘
subset of a product set defines a binary relation. It. can be both an active
operator and a passive operand; so arises the possibility of operations on
operations, with rich possibilities of dynamic structure.

A. Section N
is is Bourbaki’s coupe; his section is not this.) .

(Gr;l\lrlen a product set and subset of it, S< E x F say, and an element x in E,

the section of S corresponding to x, written S(x), is the set of those elements

in F that, with x, make a couple in S.

5A.1 yeS(x)«<{x,y)€S.

(Notice that on the left S is an operator, converting X to a set of F—elgments;

on the right S is simply a subset of E x F.) The section corresponding to a

subset A of E is defined as with a mapping (1F.1): if A ={a,,a,,a;,...} then

SA2 S(A)=S(a)VU S@)US@)u...
5A.3 yeS(A)<«>3Ix:xeAdandye S(x).
(IfS<ExF,T<ExF,A<E B<E):

5A4 S(AU B)=S(4) U S(B). (Riguet)
SA.S S(A N B)<S(4) N S(B). (Riguer)
SA6 (S UT)A)=S(4) U T(A). (Riguet)
5A.7 (SN TXA) < S(4) N T(4). (Riguet) .
5A8 AcB = S(A)=S(B). (Riguet)
5A9 ScT= S(A)<T(4). (Riguet)

B. Inverse of a relation
If S < E x F, the subset of F x E defined by
5B.1 (,x)eSte (x> €S ‘
defines the binary relation S~! between F and E. It has the usual properties
of a binary relation (5A). In addition
5B2 xeSTI(p)<yeS(x).
5B3 (SH)!=s.
SB4 ScTeSlcT !
5B.5 S 1=(8)L.
5B6 (AxB)y'=BxA.

C. Composition -
IfScEx Fand T < F x G, so that S and T share the set F, .thc composmor;

of S and T, written T o S (in that order) is a new binary relation, a subset 0

E x G, defined by

SC.1 (x,z2)eToS«3Iy:yeS(x)and z e T(y).
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Thus the new relation, or set, consists of those elements in E and G that can
find, through S and T, a common clement jn F.
T o S may often conveniently be contracted to TS; and, if R< E x E, RR
may be written R2. (If E # F, 52 does pot exist.) |
(IfSCExFandTCFxGandchxE):

5C2 (x,2>eTS< ze(TS)x). (by Sa: )]

5C3 (x,z2)eTS<eze T(S(x)).

5C4 S<S8S57'S (trye for every S).

5C5 To(S;US)=TSUTS, (Riguet)

5C.6 To(S;NSY<TS NTS,. (Riguet) (The two sides become equal if
T~ is single-valued; see below.) ' '
(iUT)oS§=T,SUT,S. (Riguet)

(Ti NT5) 0 SSTISNT;S. (Riguet) (Thetwosides become equalif s
is single-valued.) |

5C9 S51<85;, > TS <TS,

5CI10 8§18 = §iT< S, T.

SC.11 13080 1,=8N(4x B) (4<E, B<F). (Riguet)

5C.12 (TS)t =(§Y o (FY). ‘
SC13(BxC)oS= [$7'(B)] x C} A<E (Riguet)

5C.7
5C.8

BeF

5C.14 To(4x§)=4x[[(§)] €<G

D. Transitive closure

A binary relation important in generalized dynamics is that obtained from
a mapping by applying it repeatedly. More generally, if R< E x E, so that
R%, R, etc. exist, the transitive closure of R, written AT, is the binary relation,
also a subset of E x E, defined by " E 4

SD.1 xeRT(e)+=x € (R(e) U Re) U R¥(e) U .. ).
If N'is the set of integers, zero excluded,
5D2 xeRNe)= IneN: x e Re).

R may be a mapping (6C); its transitive closure, however, is not usually a
mapping.

2.6 SPECIAL FORMS OF BINARY RELATIONS

A. Single-valued

S is single-valued if, for all ¢, S(e) has never more than one element. Tabu-
lar{y, no column may have more than one mark; sagittally, no element may
emit more than one arrow. The algebraic condition may be found by this
method, duge to Riguet:

S
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S is single-valued
<> If S(e) has apparently two elements, x and y, they must be really the same
element
<> If [Je: x € S(e) and y € S(e)] then [x = y]
<> If [3e: x € S(e) and e € S~!(y)] then [x = y]
< If [x € SS~1(y)] then [x = 1 (y)]
< If [{y,x) € SS™!] then [(y, x> € 1£]
thus:
6A.1 Sissingle-valued< SS™! < 1.

B. Everywhere defined

S is everywhere defined if, for all e, S(e) has at least one element. Tabularly,
no column may have no mark; sagittally, every element must emit at least one
arrow. The algebraic condition may be found thus (Riguet):

S is everywhere defined
<> Ve: S(e) contains at least one element
< Ve: [3y: ye S(e)]
< Ve: [dy: y e S(e) and e € S™\(y))
< Ve:[3y:ee S} (y)and y € S(e)]
<>Ve:eeS'S(e)
< Ve:{e,ed eSS
thus:
6B.1 Sis everywhere defined <> 1, < S!S,

C. Mappings

A mapping can now be defined simply as a binary relation that is both
single-valued and everywhere defined. It is essentially identical with the well
known “function”. It is an operator (of course), but now, as a mere set it can
be operated on; we thus now have a calculus in which operators can be operated
on, properties can have properties (by being joined into sets), relations can be
related, and so on.

D. Reflexive
A binary relation is reflexive if every element e has this relation to itself:
i.e. Ve: (e,e) € R, or (Riguet)
6D.1 Risreflexive<> 1< R.
The property is, of course, not possible if S< E x Fand E # F.

E. Transitive
A binary relation is transitive if, whenever two couples share a common
element, in the appropriate order: (x,y> € R and {y;z)> € R, then(x,z)> € R.
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In this case, for all x, z:

" By:<xy> e Rand {y,z> € R] = [(x,2z) € R];
[3y: y € R(x) and z € R(y)] = [(x,z) € R];
{x,z) € RR = {x,2) € R.

6E.1 Ris transitive<> R2< R. (Riguet)

F. Symmetric

A binary relation is symmetric if, whenever x has the relation R to », y has
it to x; ie. V(x,p»:{x,y) e R xy€R; or: V(x,p>: [Kx,¥) € Re
xp>eRY.

6F.1 Rissymmetric<> R=R"!. (Riguet)

G. Equivalence

A binary relation is an equivalence relation if and only if it is reflexive and
transitive and symmetric.

The classes into which an equivalence relation divides the elements are the
elements of the “quotient”’ set.

Every equivalence relation is of the form p~'p, where p is the mapping of
the elements of the basic set into the quotient set. (p says, of each element,
which class it belongs to).

H. Anti-symmetric
A binary relation is anti-symmetric if, for all x50,
[Kx,»> e Rand (y,x> € R] = [x=y];
ie. Kx,)e RONR ] = [x=y]:
6H.1 Ris anti-symmetric<> RN R~' < 1. (Riguet)

I. Order

A binary relation is one of order if and only if it is reflexive and transitive
and anti-symmetric.

J. Rectangular

A binary relation is rectangular if it can be expressed as a product set.
For this te be so, {e,, /) and <e,,£,> and ez f1> in S must imply <e,,f,) in S.
Forming the composition as before, this gives:

6J.1 Sis rectangular«> S§-'5={}. (Riguet)
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K. Difunctional

A binary relation § is difunctional (Riguet) if and only if, for every pair
ey and e, in E, S(e,) and S(e,) are either identical or have no intersection, i.e.
for all ey and e, in E, and f; and f; in F:

1 € S(ey) and f; € S(ep) and f; € S(ey)] = (/2 € S(ey)]
i.e. f2€ 5571 S5(e)) = f€ S(ey);

6K.1 Sis difunctional< SS~1Sc S,
6K.2 Sis difunctional<- SS~1S=S (using SC.4).

L. Cyclic

A binary relation R is cyclic if, for every couple {x,y)> such that y e R(x),
itis also true that x € R(y); i.e. <x,)> € R = (x,y) € (RT)1.

6L.1 Riscyclices R< (RT)L.
The cyclic content, R, of a binary relation R is defined by
6L2 R= |J P

PcR
Pis cyclic

The cyclic content of a mapping is the set of states in its basins; it is therefore
the set of states to which every state in the domain will be converted under
incessant repetition of the mapping.

M. Re-arrangement

Cancellation, and the re-arrangement of equations, cannot be performed
by a mere copying of the rules of ordinary algebra, but must be based on first
principles. Some examples of possible methods are given below. Notice that
the calculus is now sufficiently developed to allow operations directly on the
sets and relations themselves, the elements being out of sight.

Example 1. AB< C, and 4 is everywhere defined: what can be said of B?
By 6B.1, 1 < 471 4, so by 5C.10 and 5C.11, B< A~' AB; and from AB< C
and 5C.9, A7VAB< A'C; . B A"1C.
Example 2. SR> Q, and S~! is single-valued ; what can be said of R?
By 6A.1 and 5B.3, S"!Sc1, and so S"!SR<R; and as Q< SR,
STl!Q<S-ISR; " R> S Q.
Example 3. T < SRR™'and Rissingle-valued; can R be eliminated ? RR~! < 1,
sOo SRR 'cS;but TS SRR™!; /. T<S.

2.7 TERNARY AND HIGHER RELATIONS

Examples are given by such statements as:
1. Ship x is at longitude y and latitude z.
2. Mr. x purchased object y for z dollars.
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3. xis between y and z.
4. 2x+y—z=1
S.pistogasristos.

The matter is somewhat simplified by the fact that many ternary relations
are more naturally treated as a binary relation between a variabie and a couple;;
thus the first example is naturally equivalent to the binary relation—Ship x is
at position p—with the subsidiary fact that p, on this Earth, must be the
couple (y, 2).

Extension of the earlier method to ternary and higher relations is at most
points obvious. An n-ary relation is a subset of a product of n sets. The quanti-
fier 3, or V, lowers the order by one.

Care, however,-is needed in the dimensions. The “inverse” of a tetnary or
higher relation is no longer unique (for while the change froim (x, y> to ¢y, x)
is a unique permutation, the permutations of {x,y,z)> are more than one).
Composition, too, mist be specially defined to show what components are
eliminated; thus, while siibsets of E x F x G x & and subsets of G x H xJ
might elimindte the comioti G x H; they miight eliminate only G, or oiily 4.
Wrhieni thie coripoierit sets are ail thie sdme, for exdmple E x E x E x E dnd
E x E x E, the elimidation miglit bé done it miany wiys; so the wdy sélected
must be specially defined. The selection miist, of course, be guided by the
primary aim of the work.

3. APPLICATIONS TO HOMEOSTASIS

The account giveri previously is purely mathematical; for it makes lo appeadl
to any source of striicture or of justification other than to its owh axioms.
Only in this way can we be suré thit we 4ré ot Uncotfisciously dppealing to
parallel known facts in the real world; only so can we be sure that the structure
has 4 strength of its own. We shall now conisider how this striictute is related
to certain structiires alteady well knows in the worids of biology, physics,
and control mechanisms.

As 2 first step it will be convenient to consider Sommerhoff’s concept of
“directive correlation™ 15, It shows well the peculiar advantages of the
mettiod of set theory, and will form a natural transition to the cases in which
the dynamic, or time, aspect is outstanding.

3.1. DIiRECTIVE CORRELATION
In 1950, Sommerhoff gave a rigorous arid operational defiriition that attemp-
ted to catch the essence of what is meant in biology and psychology by co-
ordinatien, integration, purposeful action, adapting the means to the end.
His attempt was in the spirit of the mathematicians who, a century ago,
attempted to give rigorous forms to such common ideas as continuity, torsion,

T
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convergence. Today no one doubts the value of their achievex;xer'ns3 for vague
common-sense and personal intuition were replaced by a disciplined rigor.
Sommerhoff succeeded in his attempt, and I have no doubt that his precise
definition will come to be recognized as fundamental in scientific biology and
psychology. ' . .

In 1950, however, the methods of set theory in Bourbaki's form were little
known, and Sommerhoff used the analytic language that hgd become classic
in physics and chemistry. Here I hope to show that his basic 1fiea can be stated
very much more simply, and therefore perhaps more clearly, in the concepts of
set theory. (It should again be borne in mind that the sets used be}ow may ‘bc
either finite or infinite, with elements differing finitely or infinitesimally, with

Set E of
environment's )
values
/ Set Zof
outcomes
Set D of > 3
disturbances ¢
G
P Set F of ,
regulator’s J :
values
Time fo n 5
Fic. 1,

or without a metric, as the reader wishes; the formulation is the same for all
cases.) The formulation is as follows. _

There is a set D of disturbances d; this is the set of values of the coenetic
variables. They cause, in the environment, values e of the cnvironment’.s set £
of possible values. As the environment always does something, even if only
to make a change of zero degree, the effect of D on £ is everywhere defined;
and as the environment cannot do two things at once, the effect is single-valued;
thus the D-E relation defines a mapping, ¢ say, of D into E. It is as;umed
that the disturbance d occurs at time fo; ¢ produces e, where e = $(d), at n‘me hn.

The organism, brain, regulator, or whatever it is that claims to spgw dxrgc-
tive correlation, is similarly specified by a set F, of elements f; and sxmxl.arly'us
behavior, its response to 4, specifies a mapping p of D into F. For directive
correlation to be shown, the mapping p (“how the-brain reacts”),ymust bear
some special relation to ¢. Our question is: what relation?

20
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When disturbance dhas evoked e and f—responses ¢(d) and p(d) respectively
—these two values interact to give some final outcome, at 1,. Again, because
the outcome must be everywhere defined and single-valued, the interaction
to an outcome must correspond to a mapping, ¢ say, of E x Finto Z, where Z
is the set of possible outcomes when E and F range uncorrelatedly over all
their values. Z in fact must be Y(E x F). Within Z is the subset, call it G, of
outcomes that are *‘good”, that satisfy the focal condition. The relations may
be clarified by Fig. 1.

“Directive correlation” is now defined as bemg shown by p in respect of D,
#, ¢, and G if and only if:

1.1 Vde D: §{{$(d), p(d))) € G.

(Some further restrictions could be added if one wished to exclude degenerate
cases, such as when D has only one element (or is even empty!), or if G = Z,
or G ={}; but it seems simpler to leave them in and merely to notice their
degeneracy should they occur. Directive correlation would be said to be
present, but to zero degree. This condition, it should be noticed, is fundamen-
tally different from cases in which the primary conditions are not met, or are
left undefined.)

The expression above can be simplified algebraically by noticing that the set
specified by

Vd e D: {§d), p(d)>

is identical with the set p 0 ¢!, with D as the set eliminated by the composi-
tion. So the criterion becomes

1.2 fpod™N)<aG.
As ¢ and ¢ are mappings, this expression may be rearranged (as in 2.6M) to
give the final formulation:

1.3 p shows directive correlation -
in respect of D, ¢, Y, and G } <>p<[§(G)loé

The expression, one should notice, is wholly operational, referring every-
where to what the parts do. It also shows exactly what components any dis-
cussion of directive correlation must be based on: omit any and the discussion
becomes meaningless. (These features were also present, of course, in Sommer-
hofI's original formulation.) (At the present degree of generality, no distinction
is made between major disturbances that threaten and minor disturbances
that are used as signals: d may represent both.)

3.2 MACHINES

While Sommerhoff’s concept is basically dynamic, for it treats of three
different events that must occur in time in a certain order, it uses only three
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We will now consider systems that progress through an indefinitely large
number of successive times.

Various definitions and methods are possible; here I shall outline one that
has been well tested and that has shown, over twenty years, its peculiar
appropriateness for questions relating to homeostasis.

Of central importance in science is the system whose present state, if known
completely, determines its next state. Laplace took for granted that the universe
is of this type; Temple !¢ refers to “the fundamental assumption of macro-
physics that a complete knowledge of the present state of a system furnishes
sufficient data to determinate definitely its state at any future time or its
response to any external influence’.

A. States

Formally, he who would define a particular machine (such as a typewriter,
the solar system, the mosquito) must start by specifying a set of states. To
define this set is nothing other than to make unambiguous what is being talked
about. “The mosquito’s susceptibility to DDT” obviously refers to the adult,
but does the reference include the larva, and the egg? “Mosquito” includes
many forms—old and young, male and female, hungry and fed, flying and

Testing, healthy and malarial—so before we can proceed we must indicate,

with sufficient precision, the extent of the mosquito-states under consideration.
Here “mosquito” is the set, its various states are the elements.

These states provide the basic set on which all Bourbaki’s concepts rest.
Not every real thing that is nameable qualifies; for set theory the elements
must have both individuality and permanence of individuality. The rain-drops
running down a window-pane, for instance, cannot be used; for, as they fuse
and break, their individualities are lost, and such operations as union become
undefinable. It is assumed here that any states used to describe a system are
such as allow the set operations to be performed unambiguously. The states
may be defined quantitatively, as astronomy gives the state of a planetary
system by numerical positions and momenta, or by arbitrary names, as the
meteorologist identifies the type of cloud in the sky.

B. Mapping

Given a sufficiently defined set M of states m, the set shows state-determined
behavior if and only if its succeeding state m’ is a single-valued and everywhere
defined function of its present state: m’ = u(m). Such behavior corresponds to
a mapping of M into M, with the form x corresponding to, or being due to,
whatever natural forces are operating in real time to cause the change; p
represents the laws of nature so far as they are showing in the set M.

Such a mapping represents an isolated system. The repetition of u generates
a sequence of states: u(m), u*(m), u*(m), ..., a line of behavior or trajectorv;
such might be shown by an ant colony, when given a piece-of meat-and then
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observed over 24 hours. “Isolation” has thus nothing to do with “closed to
energy and matter”; a system isolated in our present sense may be wide open
thermodynamically. (The question is taken up more rigorously in Section 2I.)

C. Structure

It is with repetition that the characteristic “structure of machine” appears,
where “structure” is used in Bourbaki’s sense to refer to a characteristic form
or pattern. The “structure” of a group or algebra has long been well known in
mathematics; Bourbaki has identified the more general concept, and has
shown ? that it depends always on restriction, commonly that given by the
axioms (of the group, etc.). The “structure of machine” appears because, as the
sequence of statesm, m’,m", m", .. .appears, related bym’ = pi(m),m" = py(m’),
etc., all the ;s are the same: pu; =y, = uy =... etc., and it is this redundancy
(by repetition) that gives the structure. In other words, the structure of
“machine” appears when the laws that govern the system are invariant in time.

D. Succession

A deeper insight into the meaning of “machine” can be obtained by these
methods. Any empirical study of a system gives, as basis, a record of what
happened at what times. It thus specifies a mapping from a domain T of time-
values ¢ into the set M of possible states. Call this observed mapping A. If m
is an observed state, A-!(m) is the set of times at which this state was observed
to occur. Now let o be the mapping of T into T (with some qualification
about the ends of the domain) that converts  to ¢ + 4, i.e. that moves ¢ along
by one unit of time. oA~!(m) is then the set of times one unit later than the times
just mentioned; and AoX~!(m) is the set of states that followed m. Thus, for
the system to be state-determined it is necessary ahd sufficient that

2D.1 Vme M: AoX"!(m) is single-valued.
As any real system must be everywhere defined, we have:
2D.2 The record is that of a machine <> AoA~1is a mapping.

No ¥ the form ABA™! is well known in many branches of mathematics. It
can always be interpreted as what B looks like when seen through, or coded by,
some operation A. Thus, the criterion just given (2D.2) shows that the core
of the concept of “machine” is that the system should show a coded version of
simple succession.

E. Machine with input

Sometimes the mapping u is not constant, but the variations are at least
constrained by being always from a well defined set {81, 2, 113, . ..}. By Section
2.3B, this set of mappings (with subscripts taken from some set I, not neces-
sarily numerical) corresponds to one mapping of I x M into M. This is the
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basic form of the “machine with input”. If the value of 7 stays constant at i,
the system becomes an isolated one with mapping y,. If I is made to vary in
time, by some external source of variation, the system becomes identical with
Shannon’s “noiseless transducer”. Since the mappingof / x M into M specifies,
for every input trajectory, the resulting output trajectory, it corresponds to,
and generalizes, the well known “transfer function”. The mapping is also
identical with that of an “algebra with external operators” (Bourbaki 9).
There can therefore be no doubt of the very great range and applicability of
this basic concept.

F. Joining and analysis

Joining two (or more) machines corresponds to adding to the descriptions
of two (or more) machines a new function (mapping) which specifies one’s
input values (no longer allowed to vary arbitrarily) as a function of the other’s
state. “Feedback” occurs if two machines are joined reciprocally. It is easily
shown that (as is obviously necessary) the new system still accords with the
definition of a machine.

The converse process, of analyzing a machine with input into parts, whose
joining gave the whole machine, can always be done algebraically (for the
kinematic graph has only to be arranged in a suitable product space), but not
all such algebraic possibilities correspond to cases of real interest. Given,
however, that the analysis of the whole into parts is wanted, the whole states
will be specified as n-tuples and the transformation-mapping becomes a
simultaneous one on 7 sets, perhaps on » numerical variables. Each partial
mapping (Section 2.3B) then gives the canonical representation of each part.

G. Diagram of immediate effects

When the whole is to be considered as made of parts, a very common and
important question is: to what extent are the parts independent (what acts
on what)? Answering this question implies construction of the diagram of
immediate effects. The specification in algebraic set theory is due to Riguet®.

Consider a machine with parts X, X,, X, ..., X,, ... (where each part k
is identified by a set X, of elements x,, so that the state of the whole machine
is specified by the n-tuple (x,, x5, ..., X,...). As machine, let there be defined a
mapping u of IT, X, into itself. Let the set of parts be /, so that (in this notation)
I={1,2,...,k,...} (where the numbers are mere labels for the parts).

Suppose that variable (or part) i has no immediate effect on variable J.
This means that if we take a generic state x and observe the various transitions
that occur from it and from all the states that differ from it only in component
i, then we shall find, in the transforms, that the values at component j are all
the same, in spite of the variations at i. More formally, use the operator .V of
Section 2.3C to express these sets and relations. The transition from x is to
u(x). The states that differ from x only in the i~component are the set ¥;(x).
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The transitions from these states will be to #(¥(x)). The set restricted only
by being equal to u(x) in its J~component is ¥;_,(u(x)). The previous set, to
have the same j-components, must occur within this set. So the property “i has

.

no immediate effect on j*' is equivalent to

2G.1 Vx:uV(x)< Vioju(x).

Or, after re-érrangement as in Section 1.6M,

2G.2 Variable i has no immediate effect onvanablej<> uV,u~t < ¥,_,,

Again the form is suggestive, for it says that when there is no immediate
effect from i to j, variation at i, as seen through or transmitted by the machine

i, remains within the class that has the property or corresponds to “no varia-
tion at j”*,

H. Diagram of ultimate effects

The expression 2G.2 above (when x and I are given) is true of certain
<h,j>-couples. It thus defines (by being J) a binary relation Qin / x I. Clearly,
the diagram of ultimate effects is simply the transitive closure, Q7, of 0.

1. Isolation

The set formulation of an “isolated” System can now be stated tigorously.
As before, let 7 be a set of variables or parts; and let (< I x /) be its diagram
of immediate effects. Suppose, within this total system, that the subsystem
composed of parts J(J < [) is “isolated” from the other parts (from /-J).

Events in I-J have no effect on those in J; this means that in the diagram
of immediate effects no arrow goes from any point in I~/ to any point in J.
Thus Q, acting on the set I-J, gives only points in /-J; or, equivalently,
Q7!, acting on J gives only points in J. Thus,

2.1 The set J of variables is isolated <> o\ e<eJ.

Th: proposition may be made intuitively more evident by noticing that as Q,
acting on some variables, gives the set that js disturbed by their activities, so
Q7!, acting on a set, gives the set that does disturb the given set. Q~}(/) < J
says that the disturbers of J are to be found only in set J; i.e. J is not subject
to outside disturbance; J is isolated.

J. Simplification

As cybernetics progresses to the treatment of more and more complex
systems, so will the methods of simplification have to become more powerful
and sophisticated. The foundations of method have already been made clear by
Bourbaki; here the foundations will be given as they apply to the theory of
machines. I assume here that every simplification is achieved by the application

i i = - - - T 45

THE SET THEORY OF MECHANISM AND HOMEOSTASIS '

of an equivalence relation; I am not aware that the n;atter has been discussed
exhaustively but I know of no reason for rejecting this axx‘om .

If a machine u(< M x M) is advantageously to be simplified by the applf.
cation of an equivalence relation, the quotient set must still be a machine (if
the work is to develop further in the same region of discourse). What are the
conditions that this will be so ? .

Take an equivalence relation R(< M x M) and a generic state m of the
machine. The states grouped with it by Ris the set R(m). The tran#‘orms, b){ s
of all these states must lie in the same equivalence class (or t.he quotient machine
will not be single-valued). m goes to u(m), and the qun\.ral.cnce class of fh°
transform is R(u(m)); as just said, all of u(R(m)) must lie in it. The condxt.lon
for compatibility (that the merging does not destroy the structure of machine)
is thus

2J.1 Vme M: uR(m) < Ru(m).

After re;arrangement this becomes

2.2 Ma?hine pis con‘xpatible with } o uRaICR,
equivalence relation R

Again the form can be interpreted : the equivalence relation, as seen through
or coded by, the machine, must not have its classes brokep. : .

When Ris expressed as p~! p(cf. Section 2.6G), the new (simplified) machine’s
mapping o is given at once by

2.3 o=pupl

Again the interpretation is clear: the new mapping is sin;ply the oid one,
seen through the simplifying mapping p. . '
The “difunctional” relation is important here. Any relation that satisfies

~ RR™'R = R (Section 2, 5C.4 and 6K.1), if not a mapping, can be made one by

the application of a suitable equivalence relation to i'ts range. It thus provides
an immediate indication that a simplification is possible.

K. Markovian machines .

It may conveniently be noticed here that all these results can be generalized
to the case in which the transitions are not determinate but have well defined
probabilities. The machine, specified above by a mappir.xg, then becomes
specified by a matrix of transition probabilities, and the tra;gctory becomes a
Markov chain. The basins cease, in general, to be absolute retaxxfers but. mmc
places in which the machine spends an unusually large fraqnon of its time.
Most properties that we have discussed above go over esseptxally nnchanggd,
being merely distributed to some degree. From this point of view th‘e Ma;}:ovxan
machine could be the fully general form, the determinate machine being the
special case in which all probabilities are 0 or 1.
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3.3 EQUILIBRIA

The study of equilibria will always be important in the treatment of systems
of high complexity, for the equilibria, in their various forms, are those states,
or sets of states, in which the system’s behavior no longer depends to a major
degree on the time. By effectively losing a variable, the functional relation

becomes simpler; and the change may reduce the impossibly complex to the
manageable.

A. Stable set, state

‘The state that is in equilibrium under a mapping u is-abstractly identical
with an element invariant under an operator, for both satisfy u(x) =x. A
natural extension is the stable set of states, satisfying u(A4) < A. These ex-
pressions mean, it should be noticed, that p-has, in a sense, lost its change-
making power when reduced to A or x as a domain.

Obvious corollaries are that u”(x) = x, and pl(A) < A.

Often, when p(x) = x, it is of interest to know what will happen if the state
operated on is not x but some state x* near to it (obviously a topology over M
must previously have been defined). If #, applied repeatedly to x*, brings it
back to x, so that limu"(x*) = x, the machine u is said to be “stable” to dis-
p}acemen(s from x; otherwise it is “unstable”. When stable, the whole opera-
tion may be thought of as compound, with x = "8, in which § is an impulsive
d:splacement-operator, such that u(x) = x. The displacements consequent on &,
w.hxch may be multiple-valued, are then ready to be equated to the set D of
disturbances in Sommerhoff’s formulation. In this way directive correlation
may rigorously be demonstrated at any stable equilibrium.

B. Trapping

If the set A is stable under K, so that u(A) < A, and the trajectory, under
repeated action of y, enters the set A4 then the trajectory can never leave it.
Stab'e sets thus act as traps. Should A contain a subset B which is stable, then
if the trajectory, confined to A, enters B it will remain trapped in the even
smaller subset. So trajectories tend to get trapped in smaller and smaller sets.

Again, as it is easily shown that

3B.1 w(C)<Candpu(D)< D= w(CND)<CND

it follows that if any two sets Cand D are trapping sets, so is their intersection.
Thu§ if there are many stable, or trapping, sets occurring in complex over-
lapping patterns, all the intersections will be trapping. and the system will tend
to'be caught in some very small set that is the intersection of a number of
primary sets. '
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C. Lingering and convergence

If the system is Markovian with fractional probabilities it may not be
trapped absolutely in any subset, but there will usually be subsets within
which it will spend a disproportionate amount of time. Some lingering in
preferred subsets will, in fact, occur in all cases except when both rows and
columns of the transition matrix add to 1 (the “doubly stochastic”). If the
system is determinate and continuous (specified, say, by X = ¢(x), with x a
vector), preferred regions will also always occur, the exceptions being the
regions in which the ¢,’s have the special relation

o4, 3¢, o,
3C.1 -a;+'é-;;+...+ 5;"—0,

sometimes written as divg = 0. (The system will show a preference for those
regions where div is negative, for there the phase-volume shrinks.) The fact
that homogeneity of distribution occurs only in the special cases when all the
rows and columas of the matrix add to 1, and when the divergence is exactly
0, shows that we may usually expect the distribution to be non-homogeneous,
with preferred regions existing at which the system either sticks indefinitely

or remains for an undue length of time.

D. Selection

As a mapping reduces its original domain to a subset, it performs the physical
act of selection (though there may not exist any ready-made English noun to
describe the subset). It follows, from Section 2.4, that any machine, in getting
trapped in a stable set, auromatically generates properties and relations.

Formula 5A.8, Section 2, now shows a new significance in an extremely broad
range of application. “4 = M = S(A) = S(M)” says that if a set M is cut down
to a subset A, then every related set (related through S or any other) is also
cut down. In other words, selection, at M, for some property will cause the
emergence of some property in every set related to M. Thus the movement of
a machine to an equilibrium may cause the emergence of all sorts of properties
by no means having an obvious relation to the equilibrium.

If the phenomenon is to show strikingly the selection must be intense, and
for it to show to a major degree the system must be large to the second order
of largeness; for it must be so large that even after intense selection has shrunk
the initially possible set of states to a small fraction, yet this small fraction
must still be large enough to contain noticeable features, or to show more
than trivial behavior. The general theory of equilibria has suffered much from
the fact that most of the easily understood examples of equilibrium occur in
systems so small that the equilibrium itself leaves no room for interesting
events: after a watch has run down, for instance, or.a hot body.come to
uniformity of temperature, little more can happen. A hive of bees, however,
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with rich pastures around, can show an equilibrium in that year after year the
state “living hive” transforms to “living hive”; within this equilibrium,
however, there is room for a great deal of interesting activity.

Here these ideas join those of Sommerhoff, making possible a rigorous
formulation of the general idea that at and around a state of equilibrium
some coordination is essential. The correspondence can be traced in detail.
The set Z of possible outcomes is the set M of all the system’s states. The
set G (of the goal or focal condition) is the set of stable states. R and E are the
two parts obtained when the observer divides the whole system conceptually
into “organism” and “environment”. The set D of disturbances is here the set
of possible initial states (essentially the same as Z). ¢, p and 4 are determined
by the various dynamic forces (of whatever nature) that make the system charge
with time. The system shows its coordination by showing that p is so matched
to ¢ and ¢ that goal G is arrived at, even after displacements from it.

3.4 HOMEOSTASIS
A. Natural selection

Within this framework of ideas homeostasis finds its exact representation.
Natural selection, now the operator y, has acted on a system that is actually
large to the third order; for one order is used in the elimination of the vast
number of subsystems that are dynamically unsuitable—for instance the
interiors of earth and sun, the frozen regions, the regions that have only inert
elements, for instance. The remainder, a small fraction of the totality, is still
large enough to develop intensively selected equilibria; and then the equilibria
themselves are sufficiently large to show a rich internal structure. When these
localized equilibria are split, conceptually, by an observer into “organism” and
“environment”, he finds that the selection that has led to the equilibrium now
shows as a special relation between the parts, that of 3.1.

B. Ultrastability

A host of special cases occur within this general formulation, as the sets
D, E, F (of 3.1) are given different physical realizations. If they are product
sets. for instance, the entities will be seen by the observer as built of parts, and
he will often be interested in how the mapping p (of 3.1) is built out of partial
mappings (2.3B), i.e. with how the parts are coordinated to make a whole.
Much of the study of the brain and its functions is directed to just this question.

Among the special cases is that in which the disturbances D fall into two
distinct classes—many small impulsive and a few large step-function form.
In this case the relation between the components of p implied by the stability
of the whole is that described, somewhat fully, as *“ultrastability”!”.,

A host of other interesting special cases could be described. Some of them
are already developed in linear servo-theory and other branches of regulation-

NPT
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theory. Much remains to be done, especially when the systems contain
Markovian, or stochastic, components.

This account has been written in the hope that those who are working in the
general theory of systems may find in algebraic set theory a tool that is general
enough to be unrestrictive to the biologist while rigorous enough to satisfy
the mathematician. It has also been written to serve as basic reference for
further applications now being made.

.

REFERENCES

1. AsHBY, W. Ross (1940). Adaptiveness and equilibrium. J. menr. Sci. 86, 478-483.
2. AsHBy, W. Ross (1962). “*An Introduction to Cybernetics”. Chapman and Hall,
London. 4th impress.

3. Boursakl, N. (1958). “Eléments de Mathématique. Théorie des ensembles;
Jfascicule de résultats ASEI 1141 Hermann & Cie, Paris, 3me. Ed.

4. BoURBAKL, N. (1954; 1956; 1957). “Théorie des ensembles”. ASEI 1212, 1243,
1258. Hermann & Cie, Paris.

. BourBakl, N. (1951). “Algébre”. ASEI 1144. Hermann & Cie, Paris.

. Boursaxi, N. (1951). “Topologie générale”. ASEI 1142. Hermann & Cie, Paris.

. RIGUET, J. (1948). Relations binaires, fermetures, correspondences de Galois.
Bull, Soc. meth. Fr. 76, 114-155. )

: Rxgau:}':, J. (1951). “Fondements de la Théorie des Relations Binaires”. Thése,

e

. RIGUET, J. (1953). Sur les rapports entre les concepts de machine de multipole et
de structure algébrique. C.r. hebd. Séanc. Acad. Sci., Paris, 237, 425-427.

10. RIGUET, J. (1953). Systémes de coordonnées relationnels. C.r. hebd. Séanc. Acad.
Sci., Paris, 236, 2369-2371.

11. SHANNON, C. E. and WEAVER, W. (1949). “The Mathematical Theory of Com-
munication”. University of Illinois Press, Urbana.

12, McGrLL, W. J, (1954). Multivariate information transmission. Psychometrika,
19, 97-116.

13. GARNER, W. R. and McGrLL, W. J. (1956). The relation between information and
variance analysis. Psychometrika 21, 219-228.

14, Wm‘;«m, N. (1914). A simplication of the logic of relations. Proc. Camb. phil. Soc.
17, 387-390.

15. SommErHOFF, G. (1950). “Analytical Biology”. Oxford University Press, London.

16. TemPLE, G. (1942). “General Principles of Quantum Theory”. Methuen and Co.,
London. 2nd Ed.

17. Asupy, W. Ross (1960). “Design for a Brain”. Chapman and Hall, London.
2nd Ed.

o oo



51

W. ROSS ASHBY

University of Hlinois

PRINCIPLES OF THE SELF-ORGANIZING
SYSTEM*

Questions of principle are sometimes regarded as too unpractical
to be important, but I suggest that that is certainly not the case
in our subject. The range of phenomena that we have to deal with
is so broad that, were it to be dealt with wholly at the technological
or practical level, we would be defeated by the sheer quantity and
complexity of it. The total range can be handled only piecemeal;
among the pieces are those homomorphisms of the complex whole
that we call “abstract theory” or *‘general principles”. They
alone give tne bird’s-eye view that enables us to move about in
this vast field without losing our bearings. I propose, then, to
attempt such a bird’s-eye survey.

WHAT IS "ORGANIZATION"'?

At the heart of our work lies the fundamental concept of
*‘organization”. What do we mean by it? As it is used in biology
it is a somewhat complex concept, built up from several more
primitive concepts. Because of this richness it is not readily
defined, and it is interesting to notice that while March and Simon
(1958) use the word “‘Organizations” as title for their book, they
do not give a formal definition. Here I think they are right, for
the word covers a multiplicity of meanings. I think that in future
we shall hear the word less frequently, though the operations to
which it corresponds, in the world of computers and brain-like
mechanisms, will become of increasing daily importance.

The hard core of the concept is, in my opinion, that of *“‘condi-
tionality”. As soon as the relation between two entities 4 and B

* The work on which this paper is based was supported by ONR Contract
N 049-149,
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becomes conditional on C’s value or state then a necessary com-
ponent of “‘organization” is present. Thus the theory of organization
is partly co-extensive with the theory of functions of more than one
variable. . -
We can get another angle on the question by asking ‘‘what is
its converse?’ The converse of ‘‘conditional on” is “‘not condi-
tional on”, so the converse of ‘“‘organization” must therefore be,
as the mathematical theory shows as clearly, the‘ concept gf
“reducibility”. (It is also called “‘separability”.) This occurs, 1n
mathematical forms, when what looks like a function of s;veral
variables (perhaps very many) proves on closer examination to
have parts whose actions are nor conditional on the values of the
other parts. It occurs in mechanical forms, in hardware, when
what looks like one machine proves to be composed of two (or
more) sub-machines, each of which is acting independently of
the others. e
Questions of “conditionality”, and of its converse “reducxblht‘y .
can, of course, be treated by a number of mathematical and logical
methods. I shall say something of such methods later. Here,
however, 1 would like to express the opinion that the n:xethod of
Uncertainty Analysis, introduced by Garner and McGill (!956),
gives us a method for the treatment of cqnditionalit)( that is not
only completely rigorous but is also of extreme generality. Its great
generality and suitability for application to complex behavior,
lies in the fact that it is applicable to any arbitrarily deﬁncd‘ set of
states. Its application requires neither linearity, nor continuity,
nor a metric, nor even an ordering relation. By this calculus, the
degree of conditionality can be measured, and analyzed, and
apportioned to factors and interactions in a manner e:facl]y garallel
to Fisher’s method of the analysis of variance; yet it requires no
me*ric in the variables, only the frequencies with which the various
¢y nbinations of states occur. It seems to me that, just as Fisher’s
conception of the analysis of variance threw a flood qf l_xght on to
the complex relations that may exist between van?,uons on a
metric, so McGill and Garner's conception of uncertainty analysis
may give us an altogether better understanding of how to treat
complexities of relation when the variables are non-metric. In
psychology and biology such variables occur with great common-
ness; doubtless they will also occur commonly in the brain-like

53

PRINCIPLES OF THE SELF-ORGANIZING SYSTEM

processes developing in computers. Ilook forward to the time when
the methods of McGill and Garner will become the accepted
language in which such matters are to be thought about and
treated quantitatively.

The treatment of *‘conditionality” (whether by functions of
many variables, by correlation analysis, by uncertainty analysis,
or by other ways) makes us realize that the essential idea is that
there is first a product space—that of the possibilities—within
which some sub-set of points indicates the actualities. This way
of looking at “‘conditionality” makes us realize that it is related
to that of “communication”; and it is, of course, quite plausible
that we should define parts as being “‘organized” when ‘‘com-
munication” (in some generalized sense) occurs between them.
(Again the natural converse is that of independence, which
represents non-communication.) )

Now “communication” from 4 to B necessarily implies some
constraint, some correlation between what happens at 4 and
what at B. If, for given event at A, all possible events may occur
at B, then there is no communication from A to B and no con-
straint over the possible (4, B)-couples that can occur. Thus the
presence of “‘organization” between variables is equivalent to the
existence of a constraint in the product-space of the possibilities.
I stress this point because while, in the past, biologists have
tended to think of organization as something extra, something
added to the elementary variables, the modern theory, based on
the logic of communication, regards organization as a restriction
or constraint. The two points of view are thus diametrically
opposed; there is no question of either being exclusively right,
for each can be appropriate in its context. But with this opposition
in existence we must clearly go carefully, especially when we
discuss with others, lest we should fall into complete confusion.

This excursion may seem somewhat complex but it is, [ am sure,
advisable, for we have to recognize that the discussion of organi-
zation theory has a peculiarity not found in the more objective
sciences of physics and chemistry. The peculiarity comes in with
the product space that I have just referred to. Whence comes this
product space? Its chief peculiarity is that it contains more than
actually exists in the real physical world, for it is the latter that
gives us the actual, constrained subse:.
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The real world gives the subset of what is: the product space
represents the uncertainty of the observer. The product space may
therefore change if the observer changes; and two observers may
legitimately use different product spaces within which to record
the same subset of actual events in some actual thing. The “con-
straint”" is thus a relation between observer and thing; the properties
of any particular constraint will depend on both the real thing and
on the observer. It follows that a substantial part of the theory of
organization will be concerned with properties that are not intrinsic
1o the thing but are relational between observer and thing. We shall
see some striking examples of this fact later.

WHOLE AND PARTS

“If conditionality” is an essential component in the concept of
organization, so also is the assumption that we are speaking of a
whole composed of parts. This assumption is worth a moment’s
scrutiny, for research is developing a theory of dynamics that does
not observe parts and their interactions, but treats the system as an
vnanalysed whole (Ashby, 1958, a). In physics, of course, we
usually start the description of & system by saying “‘Let the vari-
ables be xi, x2,..., x»” and thus start by treating the whole as
made of n functional parts. The other method, however, deals
with unanalysed states, S, S2,... of the whole, without explicit
mention of any parts that may be contributing to these states.
The dynamics of such a system can then be defined and handled
mathematically; | have shown elsewhere (Ashby, 1960, a) how such
an approach can be useful. What I wish to point out here is that
we can have a sophisticated dynamics, of a whole as complex and
cross-connected as you please, that makes no reference to any parts
and that therefore does not use the concept of organization. Thus
the concepts of dynamics and of organization are essentially
independent, in that all four combinations, of their presence and
absence, are possible.

This fact exemplifies what I said, that “‘organization” is partly
in the eye of the beholder. Two observers studying the same real
material system, a hive of bees say, may find that one of them,
thinking of the hive as an interaction of fifty thousand bee-parts,
finds the bees “‘organized”, while the other, observing whole states
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such as activity, dormancy, swarming, etc., may see no organiza-
fion, only trajectories of these (unanalysed) sta}‘tes. o
Another example of the -independence of ‘“‘organization™ and
“dynamics” is given by the fact that whether or not a r_gal systkem
is organized or reducibje depends partl){ on the point of view ta, eg
by the observer. It is well known, for instance, that an o,rgan;(ze !
(i.e. interacting) linear system of n parts, such as a petw?r K
pendulums and springs, can be seen frOfn anotl_xer point of view
(that of the so-called “normal” coordinates) in which all’ the
(newly identified) parts are completcly separate, so that the xyho_le
is reducible. There is therefore nothing perverse about my insis-
tence on the relativity of organization, fqr advantage‘of the fact is
routinely taken in the study of quite ordinary dyngmnc systems.
Finally, in order to emphasize how dependen} is thg organiza-
tion seen in a system on the observer whp sees it, I will state the
proposition that: given a whole with arbxtranl_y given behavior, a
great variety of arbitrary “‘parts’ can be seen in it; for all that is
necessary, when the arbitrary part is propos;d, is that we assume
the given part to be coupled to an,othpr suxtab!y re!atcd part, so
that the two together form a whole 1somorph'1c with the whole~
that was given. For instance, suppose the given \\{hole, W of
10 states, behaves in accordance with the transformation:

pgrstuvwxy

grsqsttxyy

W

Its kinematic graph is
u
\s

:l—'~s-——>q<— P

/
v 4

w—>x—>y )

and suppose we wish to “see” it as containing the part P. with
internal states E and input states A:
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With a little ingenuity we find that if part P is coupled to part Q
(with states (F, G) and input B) with transformation Q:
. (F, G)
Vo 1,1 1,2 1,3 2,1 2,2 2,3
1] 2,1 1,2 1,2 2,1 1,2 1,2 [0)
2l .23 - 21 22 22

by putting A = F and B = E, then the new whole W' has trans-
formation
,1,1 1,1,2 4,1,3 1,2,1, etc.
\ 2,2,1 2,1,2 2,1,2 1,2,1, etc.
which is isomorphic with W under the one—one correspondence
,1,1 1,1,2 ,1,3 1,2,1, etc.
w s ? y , etc

Thus, subject only to certain requirements (e.g. that equilibria map
into equilibria) any dynamic system can be made to display a
variety of arbitrarily assigned *‘parts”, simply by a change in the
observer’s view point.

W’

¥

MACHINES IN GENERAL

I have just used a way of representing two “parts”, ‘“‘coupled”
to form a “whole”, that anticipates the question: what do we
mean by a “machine” in general?

Here we are obviously encroaching on what has been called
*‘general system theory”, but this last discipline always seemed to
me to be uncertain whether it was dealing with physical systems,
2nd therefore tied to whatever the real world provides, or with
.nathematical systems, in which the sole demand is that the work
shall be free from internal contradictions. It is, I think, one of the
substantial advances of the last decade that we have at last identi-
fied the essentials of the “‘machine in general”.

Before the essentials could be seen, we had to realize that two
factors must be excluded as irrelevant. The first is *“‘materiality”—
the idea that a machine must be made of actual matter, of the
hundred or so existent elements. This is wrong, for examples can

p——
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readily be given (e.g. Ashby, 1958, a) showing that what is essential
is whether the system, of angels and ectoplasm if you please,
behaves in a law-abiding and machine-like way. Also to be ex-
cluded as irrelevant is any reference to energy, for any calculating
machine shows that what matters is the regularity of the behavior—
whether energy is gained or lost, or even created, is simply ir-
relevant.

The fundamental concept of “machine’ proves to have a form
that was formulated at least a century ago, but this concept has
not, so far as I am aware, ever been used and exploited vigorously.
A “machine” is that which behaves in a machine-like way, namely,
that its internal state, and the state of its surroundings, defines
uniquely the next state it will go to.

This definition, formally proposed fifteen years ago (Ashby,
1945) has withstood the passage of time and is now becoming
generally accepted (e.g. Jeffrey, 1959). It appears in many forms.
When the variables are continuous it corresponds to the descrip-
tion of a dynamic system by giving a set of ordinary differential
equations with time as the independent variable. The fundamental
nature of such a representation (as contrasted with a merely
convenient one) has been recognized by many earlier workers
such as Poincaré, Lotka (1925), and von Bertalanffy (1950 and
earlier).

Such a representation by differential equations is, however,
too restricted for the needs of a science that includes biological
systems and calculating machines, in which discontinuity is
ubiquitous. So arises the modern definition, able to include both
the continuous and the discontinuous and even the discrete,
without the slightest loss of rigor. The “machine with input”
(Ashby, 1958, a) or the “finite automaton” (Jeffrey, 1959) is today
defined by a sct S of internal states, a set I of input or surrounding
states, and a mapping, / say, of the product set /xS into S. Here,
in my opinion, we have the very essence of the *“‘machine”; all
known types of machine are to be found here; and all interesting
deviations from the concept are to be found by the corresponding
deviation from the definition.

We are now in a position to say without ambiguity or evasion
what we mean by a machine’s “organization”. First we specify
which system we are talking about by specifying its states S and its
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conditions 7. If S is a product set, so that S = II;T say, then the
parts i are each specified by its set of states Ty. The “organization”
between these parts is then specified by the mapping f. Change f
and the organization changes. In other words, the possible organi-
zations between the parts can be set into one-one correspondence
with the set of possible mappings of Ix § into S. Thus ‘“organiza-
tion” and “mapping” are two ways of looking at the same thing—
the organization being noticed by the observer of the actual
system, and the mapping being recorded by the person who re-
presents the behavior in mathematical or other symbolism.

“GOOD’” ORGANIZATION

At this point some of you, especially the biologists, may be
feeling uneasy; for this definition of organization makes no
reference to any usefulness of the organization. It demands only
that there be conditionality between the parts and regularity in
behavior. In this I believe the definition to be right, for the question
whether a given organization is “good” or “‘bad” is quite inde-
pendent of the prior test of whether it is or is not an organization.

I feel inclined to stress this point, for here the engineers and
the biologists are likely to think along widely differing lines. The
engineer, having put together some electronic hardware and
having found the assembled network to be roaring with parasitic
oscillations, is quite accustomed to the idea of a “‘bad” organiza-
tion; and he knows that the “‘good” organization has to be
searched for. The biologist, however, studies mostly animal
species that have survived the long process of natural selection:
so almost all the organizations he sees have already been selected
to be good ones, and he is apt to think of *‘organizations’” as
necessarily good. This point of view may often be true in the
bio ogical world but it is most emphatically not true in the world
in ~hich we people here are working. We must accept that

(1) most organizations are bad ones;

(2) the good ones have to be sought for; and

(3) what is meant by “good” must be clearly defined, explicitly
if necessary, in every case.

What then is meant by “good”, in our context of brain-like
mechanisms and computers? We must proceed cautiously, for the
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word suggests some evaluatisn whose origin has not yet been
considered.

In some cases the-distinction. between the *“‘good™ organization
and the “bad” is obvious, in the sense that as everyone in these
cases would tend to use-the same criterion, it would not need
explicit mention. The brain of a living organism, for instance, is
usually judged as having a “good” organization if the organization
(whether inborn or learned) acts so as to further the organism’s
survival. This consideration readily generalizes to all those cases
in which the organization (whether of a cat or an automatic

- pilot or an oil refinery) is judged “good” if and only if it acts so as

to keep an assigned set of variables, the “essential” variables,
within assigned limits. Here are all the mechanisms for homeo-
stasis, both in the original sense of Cannon and in the generalized
sense. From this criterion comes the related one that an organiza-
tion is “good” if it makes the system stable around an assigned
equilibrium. Sommerhoff (1950) in particular has given a wealth
of examples, drawn from a great range of biological and mech-
anical phencmena, showing how in all cases the idea of a “good
organization” has as its essence the idea of a number of parts so
interacting as to achieve some given *‘focal condition”’. I would
like to say here that I do not consider that Sommerhoff’s contri-
bution to our subject has yet been adequately recognized. His
identification of exactly what is meant by coordination and
integration is, in my opinion, on a par with Cauchy'’s identification
of exactly what was meant by convergence. Cauchy’s discovery
was a real discovery, and was an enormous help to later workers
by providing them with a concept, rigorously defined, that could
be used again and again, in a vast range of contexts, and always
with exactly the same meaning. Sommerhoff’s discovery of how to
represent exactly what is meant by coordination and integration
and good organization will, I am sure, eventually play a similarly
fundamental part in our work.

His work illustrates, and emphasizes, what I want to say here—
there is no such thing as “good organization™ in any absolute sense.
Always it is relative; and an organization that is good in one
context or under one criterion may be bad under another.

Sometimes this statement is so obvious as to arouse no oppo-
sition. If we have half a dozen lenses, for instance, that can be
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assembled this way to make a telescope or that way to make a
microscope, the goodness of an assembly obviously depends on
whether one wants to look at the moon or a cheese mite.

But the subject is more contentious than that! The thesis implies
that there is no such thing as a brain (natural or artificial) that is
good in any absolute sense—it all depends on the circumstances
and on what is wanted. Every faculty that a brain can show is
“good” only conditionally, for there exists at least one environ-
ment against which the brain is handicapped by the possession of
this faculty. Sommerhoff’s formulation enables us to show this at
once: whatever the faculty or organization achieves, let that be
not in the “focal conditions”.

We know, of course, lots of examples where the thesis is true
in a somewhat trivial way. Curiosity tends to be good, but many
an antelope has lost its life by stopping to see what the hunter’s
hat is. Whether the organization of the antelope's brain should be
of the type that does, or does not, lead to temporary immobility
clearly depends on whether hunters with rifles are or are not
plentiful in its world.

From a different angle we can notice Pribram’s results (1957),
who found that brain-operated monkeys scored higher in a certain
test than the normals. (The operated were plodding and patient
while the normals were restless and distractible.) Be that as it
may, one cannot say which brain (normal or operated) had the
“good” organization until one has decided which sort of tempera-
ment is wanted.

Do you still find this non-contentious? Then I am prepared to
assert that there is not a single mental faculty ascribed to Man
that is good in the absolute sense. If any particular faculty is
usually good, this is solely because our terrestrial environment is
sc lacking in variety that its usual form makes that facuity usually
go>d. But change the environment, go to really different condi-
tions, and possession of that faculty may be harmful. And “bad”,
by implication, is the brain organization that produces it.

I believe that there is not a single faculty or property of the
brain, usually regarded as desirable, that does not become undesir-
able in some type of environment. Here are some examples in
illustration.

The first is Memory. Is it not good that a brain should have
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memory? Not at all, 1 reply—only when the environment is of a
type in which the future often copies the past: should the future
often be the inverse of the past, memory is actually disadvanta-
geous. A well known example is given when the sewer rat faces the
environmental system known as “pre-baiting”. The naive rat is very
suspicious, and takes strange food only in small quantities. if,
however, wholesome food appears at some place for three days in
succession, the sewer rat will learn, and on the fourth day will eat
to repletion, and die. The rat without memory, however, is as
suspicious on the fourth day as on the first, and lives. Thus, in
this environment, memory is positively disadvantagecous. Pro-
longed contact with this cnvironment will lead, other things being
equal, to evolutionin the direction of diminished memory-capacity.

As a second example, consider organization itself in the sense
of connectedness. Is it not good that a brain should have its parts
in rich functional connection? I say, No—not in general; only
when the environment is itself richly connected. When the environ-
ment’s parts are not richly connected (when it is highly reducible,
in other words), adaptation will go on faster if the brain is also
highly reducible, i.e. if its connectivity is small (Ashby, 1960. d).
Thus the degree of organization can be too high as well as too
low: the degree we humans possess is probably ‘adjusted to be
somewhere near the optimum for the usual terrestrial environ-
ment. It does not in any way follow that this degree will be optimal
or good if the brain is a mechanical one, working against some
grossly non-terrestrial environment—one existing only inside a
big computer, say.

As another example, what of the ‘‘organization’ that the
biologist always points to with pride—the development in evolu-
tion of specialized organs such as brain, intestines, heart and
blood vessels. Is not this good? Good or not, it is certainly a
specialization made possible only because the earth has an atmo-
sphere; without it, we would be incessantly bombarded by tiny
meteorites, any one of which, passing through our chest, might
strike a large blood vessel and kill us. Under such conditions &
better form for survival would be the slime mould, which special-
izes in being able to flow through a tangle of twigs without loss of
function. Thus the development of organs is not good uncondi-
tionally, but is a specialization to a world free from flying particles.
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After these actual instances, we can return to theory. It is here
that Sommerhoff’s formulation gives such helpful clarification. He
shows that in all cases there must be given, and specified, first a
set of disturbances (values of his “coenetic variable’’) and secondly
a goal (his *‘focal condition”); the disturbances threaten to drive
the outcome outside the focal condition. The “good” organization
is then of the nature of a relation between the set of disturbances
and the goal. Change the set of disturbances, and the organization,
without itself changing, is evaluated “‘bad” instead of “good”.

As | said, there is no property of an organization that is good in
any absolute sense; all are relative to some given environment,
or to some given set of threats and disturbances, or to some

given set of problems.

SELF-ORGANIZING SYSTEMS

I hope 1 have not wearied you by belaboring this relativity too
much, but it is fundamental, and is only too readily forgotten when
one comes to deal with organizations that are either biological in
origin or are ip imitation of such systems. With this in mind, we
can now start to consider the so-called “‘self-organizing” system.
We must proceed with some caution here if we are not to land in
confusion, for the adjective is, if used loosely, ambiguous, and, if
used precisely, self-contradictory. .

To say a system is “self-organizing” leaves open two quite
different meanings.

There is a first meaning that is simple and unobjectionable.
This refers to the system that starts with its parts separate (so
that the behavior of each is independent of the others’ states) and
whose parts then act so that they change towards forming connec-
ins of some type. Such a system is “self-organizing” in the sense
t1at it changes from ‘‘parts separated” to ‘‘parts joined”. An
example is the embryo nervous system, which starts with cells
having little or no effect on one another, and changes, by the

- growth of dendrites and formation of synapses, to one in which
each part’s behavior is very much affected by the other parts.
Another example is Pask’s system of electrolytic centers, in which
the growth of a filament from one electrode is at first little affected
by growths at the other electrodes; then the growths become

e
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more and more affected by one another as filaments approach
the other electrodes. In general such systems can be more simply
characterized as “self-connecting’, for the change from indepen-
dence between the parts to conditionality can always be seen as
some form of “‘connection”, even if it is as purely functional as
that from a radio transmitter to a receiver.

Here, then, is a perfectly straightforward form of self-organizing
system; but I must emphasize that there can be no assumption at
this point that the organization developed will be a good one. If
we wish it to be a ‘‘good” one, we must first provide a criterion
for distinguishing between the bad and the good, and then we
must ensure that the appropriate selection is made.

We are here approaching the second meaning of *‘self-organiz-
ing” (Ashby, 1947). “Organizing” may have the first meaning,
just discussed, of ‘“‘changing from unorganized to organized”.
But it may also mean ‘‘changing from a bad organization to a
good one”, and this is the case I wish to discuss now, and more
fully. This 1s the case of peculiar interest to us, for this is the
case of the svstem that changes itself from a bad way of behaving
to a good. A well known example is the child that starts with a
brain organization that makes it fire-seeking; then a change
occurs, and a new' brain organization appears that makes the
child fire-avoiding. Another example would occur if an automatic
pilot and a plane were so coupled, by mistake, that positive
feedback made the whole error-aggravating rather than error-
correcting. Here the organization is bad. The system would be
“self-organizing” if a change were automatically made to the
feedback, changing it from positive to negative; then the whole
would have changed from a bad organization to a good. Clearly,
this type of “self-organization™ is of peculiar interest to us. What
is implied by it?

Before the question is answered we must notice, if we are not
to be in perpetual danger of confusion, that no machine can be
self-organizing in this sense. The reasoning is simple. Define the
set S of states so as to specify which machine we are talking about.
The *“‘organization” must then, as I said above, be identified with
/, the mapping of S into § that the basic drive of the machine
(whatever force it may be) imposes. Now the logical relation here
is that f determines the changes of S:— is defined as the set of
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couples (ss, s5) such that the internal drive of the system will
force state s¢ to change to s;. To allow f to be a function of the
state is to make nonsense of the whole concept.

Since the argument is fundamental in the theory of self-
organizing systems, I may help explanation by a parallel example.
Newton’s law of gravitation says that F = M) Mz/d?, in particular,
that the force varies inversely as the distance to power 2. To
power 3 would be a different law. But suppose it were suggested
that, not the force F but the /aw changed with the distance, so
that the power was not 2 but some function of the distance, #(d).
This suggestion is illogical; for we now have that F = M1 M3/d#@,
and this represents not a law that varies with the distance but one
law covering all distances; that is, were this the case we would
re-define the law. Analogously, were f in the machine to be some
function of the state S, we would have to re-define our machine.
Let me be quite explicit with an example. Suppose S had three
states: a, b, c. If f depended on S there would be three f's: fz, /5,
fe say. Then if they are

} a b
fa b a b
fo ¢ a «a
fo b b a

then the transform of a must be under f;, and is therefore b, so
the whole set of /’s would amount to the single transformation:

a b ¢

“
Y

b a a

It is clearly illogical to talk of f as being a function of S, for such
talk would refer to operations, such as fy(b), which cannot in
fac: occur.

f, then, no machine can properly be said to be self-organizing,
how do we regard, say, the Homeostat, that rearranges its own
wiring; or the computer that writes out its own program?

The new logic of mechanism enables us to treat the question
rigorously. We start with the set S of states, and assume that f
changes, to g say. So we really have a variable, 2(t) say, a function
of the time that had at first the value f and later the value g. This
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change, as we have just seen, cannot be ascribed to any cause in
the set S; so it must have come from some outside agent, acting on
the system S as input. If the system is to be in some sense “self-
organizing”, the “self”” must be enlarged to include this variable a,
and, to keep the whole bounded, the cause of «’s change must be
in S (or a).

Thus the appearance of being “self-organizing” can be given
only by the machine S being coupled to another machine (of one
part):

>
‘S a

e

Then the part S can be “‘self-organizing’ within the whole S +a.

Only in this partial and strictly qualified sense can we under-
stand that a system is ‘‘self-organizing” without being self-
contradictory.

Since no system can correctly be said to be self-organizing, and
since use of the phrase “self-organizing’ tends to perpetuate a
fundamentally confused and inconsistent way of looking at the
subject, the phrase is probably better allowed to die out.

THE SPONTANEOUS GENERATION OF ORGANIZATION

When | say that no system can properly be said to be self-
organizing, the listener may not be satisfied. What, he may ask,
of those changes that occurred a billion years ago, that led lots of
carbon atoms, scattered in little molecules of carbon dioxide,
methane, carbonate, etc., to get together until they formed pro-
teins, and then_went on to form those large active lumps that
today we call “animals”? Was not this process, on an isolated
planet, one of ‘‘seif-organization”? And if it occurred on a
planetary surface can it not be made to occur in a computer? I
am, of course, now discussing the origin of life. Has modern
system theory anything to say on this topic?

It has a great deal to say, and some of it flatly contradictory to
what has been said ever since the idea of evolution was first
considered. In the past, when a writer discussed the topic, he
usually assumed that the generation of life was rare and peculiar,
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and he then tried to display some way that would enable this
rare and peculiar event to occur. So he tried to display that there
is some route from, say, carbon dioxide to the amino acid, and
thence to the protein, and so, through natural selection and evolu-
tion, to intelligent beings. I say that this looking for special condi-
tions is quite wrong. The truth is the opposite—every dynamic
system generates its own form of intelligent life, is self-organizing
in this sense. (I will demonstrate the fact in a moment.) Why we
have failed to recognize this fact is that until recently we have had
no experience of systems of medium complexity; either they have
been like the watch and the pendulum, and we have found their
properties few and trivial, or they have been like the dog and the
human being, and we have found their properties so rich and
remarkable that we have thought them supernatural. Only in the
last few years has the general-purpose computer given us a
system rich enough to be interesting yet still simple enough to be
understandable. With this machine as tutor we can now begin to
think about systems that are simple enough to be comprehensible
in detail yet also rich enough to be suggestive. With their aid we
can see the truth of the statement that every isolated determinate
dynamic system obeying unchanging laws will develop “‘organisms"
that are adapted to their *“‘environments”.

The argument is simple enough in principle. We start with the
fact that systems in general go to equilibrium. Now most of a
system’s states are non-equilibrial (if we exclude the extreme case
of the system in neutral equilibrium). So in going from any state
to one of the equilibria, the system is going from a larger number
of states to a smaller. In this way it is performing a selection, in
the purely objective sense that it rejects some states, by leaving
them, and retains some other state, by sticking to it. Thus, as
every determinate system goes to equilibrium, so does it select.
We have heard ad nauseam the dictum that a machine cannot
sel-ct; the truth is just the opposite: every machine, as it goes to
equilibrium, performs the corresponding act of selection.

Now, equilibrium in simple systems is usually trivial and
uninteresting; it is the pendulum hanging vertically; it is the watch
with its main-spring run down; the cube resting flat on one face.
Today, however, we know that when the system is more complex
and dynamic, equilibrium, and the stability around it, can be
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much more interesting. Here we have the automatic pilot success-
fully combating an eddy; the person redistributing his blood flow
after a severe haemorrhage; the business firm restocking after a
sudden increase in consumption; the economic system restoring
a distribution of supplies after a sudden destruction of a food
crop; and it is a man successfully getting at least one meal a day
during a lifetime of hardship and unemployment.

What makes the change, from trivial to interesting, is simply
the scale of the events. “Going to equilibrium” is trivial in the
simple pendulum, for the equilibrium is no more than a single
point. But when the system is more complex; when, say, a country’s
economy goes back from wartime to normal methods then the
stable region is vast, and much interesting activity can occur
within it. The computer is heaven-sent in this context, for it
enables us to bridge the enormous conceptual gap from the simple
and understandable to the complex and interesting. Thus we can
gain a considerable insight into the so-called spontaneous genera-
tion of life by just seeing how a somewhat simpler version will
appear in a computer.

COMPETITION

Here is an example of a simpler version. The competition
between species is often treated as if it were essentially biological;
it is in fact an expression of a process of far greater gemerality.
Suppose we have a computer, for instance, whose stores are filled
at random with the digits 0 to 9. Suppose its dynamic law is that
the digits are continuously being multiplied in pairs, z_md fhf:
right-hand digit of the product going to replace the first digit
taken. Start the machine, and let it “‘evolve””; what will happen?
Now under the laws of this particular world, even times even
gives even, and odd times odd gives odd. But even times odd gives
even; so after a mixed encounter the even has the better chance of
survival. So as this system evolves, we shall see the evens favored
in the struggle, steadily replacing the odds in the stores and
eventually exterminating them.

But the evens are not homogeneous, and among them the zeros
are best suited to survive in this particular world; and, as we
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the run-in length. Given a particular initial state, the length of the run-in is
the time the system must operate before a cycle commences.

Disclosures. It is useful to refer to the trajectory segment from an initial
state to the state just short of any repetition of states in the cycle. Such a
trajectory segment is here called a disclosure. A disclosure length is the sum of
a run-in length and a cycle length: the length of time before the system dis-
closes that it is cycling.

Activity. Activity of a system is the fraction of elements that, from one
instant in system-time to the next, have changed their element-state. The vari-
able is so named because it is a measure of the extent to which the system is
doing things, or communicating internally.

In this .study activity is considered in systems which typically go to ac-
tivity levels of zero. (A system in a cycle length one is maintaining itself in
the same state, hence the activity of the system is zero.)

3. Method Used

The systems examined lend themselves readily to digital computer simu-

lation: the method used is direct observation of behavior by computer modeling.

The programming of the computer used, an 1BM 7094, is straightforward.
Basiczlly, the program calculates a state and compares that state with all previous
states. If a previous state is the same as that calculated, a cycle has been dis-
closed. The necessary data are then printed out.

A parameter, the aperture, limits the number of states that are calculated
and searched for cycles. The aperture setting used determines the maximum
cycle, run-in, and disclosure length detectable in a particular simulation run.

In the program written, the following relations hold on the aperture (a):

maximum detectable cycle length =a — 1, (2)
maximum detectable run-in length = @ —2, (3)
Maximum detectable disclosure length = a — 1. (4)

4. Observational Procedure

4.1 Number of Elements in the Systems (V)

Since the program's time requirements increase at least linearly with N,
and as one may reasonably expect cycle and run-in length to increase with N, _
considering the resources available, we concentrate on a convenient value of N,
namely 100. All the systems observed have this number of elements.

4.2 How the Structures are Selected
To get an indication of the effect of structure on behavior, five
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randomly chosen structures are used with each transformation. The same five
Ks are used throughout the investigation. Thus five systems using each T are
examined.

Following the general procedure given in Section 2, Ks are constructed
by the use of Kendall and Smiths’ (1951) table of random decimal digits.
Despite their convenience, pseudo-random number generators were avoided
because they have been shown (Greenberger, 1962) to be quite capable of
producing serially correlated numbers.

4.3 How the Initial States are Selected

Each system’s behavior is sampled by initiating trajectory segments from
states selected equiprobably and independently from among all states of the
system. The actual selection of states is carried out by a computer program
in which the high-order bit of N binary numbers generated by a pseudo-
random number generator is assigned in turn to each of the system’s elements.
(The use here of a pseudo-random number generator is not objectionable,
since even if the generated initial states come from a population that is cor-
related, the correlation can be reasonably assumed to be unrelated to charac-
teristics of the field.) Ten states generated by this method are used as initial
states throughout the investigation.

4.4 The Number of States in Each Observed Trajectory Segment
The primary search aperture is 500; however, at least one segment in
each K is run with @ = 5, 180 when no cycles are found with a = 500.

4.5 Summary

A set of Ts sufficient to represent the entire family of 256 is examined.
For each T, fifty trajectory segments are generated and searched for cycles:
ten trajectories, begun at randomly sampled states, in each of five structurally
different systems. The systems examined all have 100 elements.

The data of the study can be visualized as filling a three-dimensional
space such as that shown in Fig. 2. A separate space is occupied by cycle
lengths, run-in lengths, and disclosure lengths. The same representation can
be used for activity values, with the understanding that the points in the space
in this case represent sets of numbers rather than single integers.

5. Results and Discussion

5.1 Introduction

It was mentioned previously that the data are discussed primarily from a
biological point of view. The question of how a system behaves exactly is
neglected in favor of how it behaves usually, an inquiry which is biologically

; more relevant: knowing factors which influence the style of\behavior- in these

3
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watch, we shall see the zeros exterminating their fellow-evens,
until eventually they inherit this particular earth.

What we have here is an example of a thesis of extreme general-
ity. From one point of view we have simply a well defined operator
(the multiplication and replacement law) which drives on towards
equilibrium. In doing so it automatically selects those operands
that are specially resistant to its change-making tendency (for
the zeros are uniquely resistant to change by multiplication).
This process, of progression towards the specially resistant form,
is of extreme generality, demanding only that the operator (or the
physical laws of any physical system) be determinate and unchang-
ing. This is the general or abstract point of view. The biologist
sees a special case of it when he observes the march of evolution,
survival of the fittest, and the inevitable emergence of the highest
biological functions and intelligence. Thus, when we ask: What
was necessary that life and intelligence should appear? the answer
is not carbon, or amino acids or any other special feature but only
that the dynamic laws of the process should be unchanging, i.e. that
the system should be isolated. In any isolated system, life and
intelligence inevitably develop (they may, in degenerate cases,
develop to only zero degree).

So the answer to the question: How can we generate intelligence
synthetically ? is as follows. Take a dynamic system whose laws
are unchanging and single-valued, and whose size is so large that
after it has gone to an equilibrium that involves only a small
fraction of its total states, this small fraction is still large enough
to allow room for a good deal of change and behavior. Let it go on
for a long enough time to get to such an equilibrium. Then examine
the equilibrium in detail. You will find that the states or forms
now in being are peculiarly able to survive against the changes
induced by the laws. Split the equilibrium in two, call one part
“ crganism” and the other part “environment”: you will find that
this “organism” is peculiarly able to survive against the distur-
bances from this “environment”. The degree of adaptation and
complexity that this organism can develop is bounded only by
the size of the whole dynamic system and by the time over which
it is allowed to progress towards equilibrium. Thus, as I said,
every isolated determinate dynamic system will develop organisms
that are adapted to their environments. There is thus no difficulty
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in principle, in developing synthetic organisms as complex or as
intelligent as we please.

In this sense, then, every machine can be thought of as “self-
organizing”, for it will develop, to such degree as its size and
complexity allow, some functional structure homologous with an
“adapted organism”. But does this give us what we at this Confer-
ence are looking for? Only partly; for nothing said so far has
any implication about the organization being good or bad; the
criterion that would make the distinction has not yet been intro-
duced. It is true, of course, that the developed organism, being
stable, will have its own essential variables, and it will show its
stability by vigorous reactions that tend to preserve its own
existence. To itself, its own organization will a/ways, by definition,
be good. The wasp finds the stinging reflex a good thing, and the
leech finds the blood-sucking reflex a good thing. But these
criteria come after the organization for survival; having seen what
survives we then see what is “‘good” for that form. What emerges
depends simply on what are the system’s laws and from what
state it sta:ted; there is no implication that the organization
developed will be ““good” in any absolute sense, or according to
the criterion of any outside body such as ourselves.

To summarize briefly: there is no difficulty, in principle, in
developing synthetic organisms as complex, and as intelligent as we
please. But we must notice two fundamental qualifications; first,
their intelligence will be an adaptation to, and a specialization
towards, their particular environment, with no implication of
validity for any other environment such as ours; and secondly,
their intelligence will be directed towards keeping their own
essential variables within limits. They will be fundamentally
selfish. So we now have to ask: In view of these qualifications,
can we yet turn these processes to our advantage?

REQUISITE VARIETY

In this matter I do not think enough attention has yet been
paid to Shannon’s Tenth Theorem (1949) or to the simpler “law
of requisite variety” in which I have expressed the same basic
idea (Ashby, 1958, a). Shannon’s theorem says that if a correction-
channel has capacity H, then equivocation of amount H can be
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Fig. 2. The experimental plan

abstract systems may suggest actual control methods used by organisms, it
being at least plausible that evolution may often seize and build on what hap-
pens typically. However, it should be noted that this biological orientation
is not totally irrelevant to the concerns of machine designers. The problems
faced by the designer or manager of truly complex systems may be problems
already faced and largely solved by nature herself in existing organisms.
Section 5.2 sets out some of the observed regularities in behavior. In
Secuion 5.3 an attempt is made to relate observed behavior to certain general
characteristics of Ts

5.2 Regularities in Behavior

Since behaviors and structures are sampled at random, diversity of be-
havior is to be expected, and indeed, it is found: over all trajectory segments
examined, for example, cycle lengths range from one to 4,040, and run-in
lengths from zero to 5,085 states. Under the conditions which prevail in this
study, consistency of behavior would seem the more remarkable finding.
Behavioral consistency is nevertheless seen frequenty, not only within systems,
but across systems using the same 7.

Consistency of behavior is so frequent, in fact, that it is often useful to
sumtnarize the common behavior of the five systems that use the same T by
speaking as if the T itself “‘shows” the common behavior, even though Ts
themselves cannot properly be said to “behave.” In this same connection:
when some common behavioral trait is shown by all the systems using the
same T, that traitis shown by systems whose structure are taken at random
from a population of structures. In such cases the T may (within limits, due
to sampling error, of course) be assumed to produce the observed common

trait without regard for the systems’ structure. Such Ts, in this paper, are said
to be pragmatically structure-insensitive, or, just structure-insensitive with re-
spect to the common trait. One of the interesting findings is that such stryc.
tural insensitivity is exhibited by many 7s, and with respect to behaviors whose
relative constancy over structure appears to be unanticipated.

Disclosure Lengths. The significance of disclosures lies largely in the fact
that disclosure lengths stand as a barrier to the understanding of a system by
simple observation. 1f a naive observer is to understand the system, in the
sense of being able to distinguish its temporary from its terminal behavior, his
capacity to record and compare states (his aperture) must exceed the lengths
of the system’s longest disclosures.

In the systems of the present study, disclosures can conceivably be of
any length between zero and, roughly, 109 states. It is therefore reasonable
to suspect that the disclosures of the systems examined might typically be too
long for cycles to be detected. The facts are that the bulk of the trajectory
segments examined have disclosures less than 500 states in length. Of the fam-
ily of 256 Ts, there are 196 Ts that, using an aperture of 500 states, show dis-
closures in over half of their fifty trajectory segments. That is, for almost 75
per cent of the Ts, cycles are found using an aperture of 500, over half of
the time in starts from random initial states, regardless of the systems’ structure.

A condition that contributes importantly to the tendency of a T to have
short disclosures is that T have a first column of the standard form (see Table 1),
and reading from the top down, resembling 0000, or a second column resembling
1111. A condition that contributes to a T's having long disclosures is that T
have a column resembling either 0110 or 1001. Reasons why these character-
istics might be expected to influence the length of disclosures are suggested in
Section 5.3.

Periodicity of Permanent Behavior (Cycle Lengths). Cycles of Length One.
Of the 12,800 trajectory segments of the family of 256 Ts, 4,010 segments
terminate in equilibrial states. The observed overall relative frequency of
equilibrial states is therefore approximately 0.314. Taking into account 2,754
trajectory segments for which terminal cycles are not found, and since these
segments may end in equilibrial states, an upper bound on the relative number
of equilibrial states among all trajectory segments is 0.529. Therefore, for
the family of systems examined, given the sampling conditions used in the pres-
ent study, the frequency with which trajectory segments end in an equilibrial
state is between roughly 1/3 and 1/2.

There are Ts observed for which equilibrial states are found very fre-
quently. 55 Ts, about one out of five, produce equilibrial states, with an
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removed, but no more. Shannon stated his theorem in the context
of telephone or similar communication, but the formulation is
just as true of a biological regulatory channel trying to exert some
sort of corrective control. He thought of the case with a lot of
message and a little error; the biologist faces the case where the
‘“message” is small but the disturbing errors are many and large.
The theorem can then be applied to the brain (or any other
regulatory and selective device), when it says that the amount of
regulatory or selective action that the brain can achieve is abso-
lutely bounded by its capacity as a channel (Ashby, 1958, b).
Another way of expressing the same idea is to say that any quantity
K of appropriate selection demands the transmission or processing
of quantity X of information (Ashby, 1960, b.) There is no getting
of selection for nothing.

I think that here we have a principle that we shall hear much
of in the future, for it dominates all work with complex systems.
It enters the subject somewhat as the law of conservation of
energy enters power engineering. When that law first came in,
about a hundred years ago, many engineers thought of it as a
disappointment, for it stopped all hopes of perpetual motion.
Nevertheless, it did in fact lead to the great practical engineering
triumphs of the nineteenth century, because it made power
engineering more realistic.

I suggest that when the full implications of Shannon’s Tenth
Theorem are grasped we shall be, first sobered, and then helped,
for we shall then be able to focus our activities on the problems
that are properly realistic, and actually solvable.

THE FUTURE

Here I have completed this bird’s-eye survey of the principles
th.7.t govern the self-organizing system. [ hope I have given justifi-
cation for my belief that these principles, based on the logic of
mechanism and on information theory, are now essentially
complete, in the sense that there is now no area that is grossly
mysterious.

Before 1 end, however, I would like to indicate, very briefly,
the directions in which future research seems to me to be most
likely to be profitable.
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One direction in which I believe a great deal to be readily dis-
coverable, is in the discovery of new types of dynamic process.
Most of the machine-processes that we know today are very
specialized, depending on exactly what parts are used and how
they are joined together. But there are systems of more net-like
construction in which what happens can only be treated statisti-
cally. There are processes here like, for instance, the spread of
epidemics, the fluctuations of animal populations over a territory,
the spread of wave-like phenomena over a nerve-net. These
processes are, in themselves, neither good nor bad, but they exist,
with all their curious properties, and doubtless the brain will use
them should they be of advantage. What I want to emphasize
here is that they often show very surprising and peculiar properties;
such as the tendency, in epidemics, for the outbreaks to occur in
waves. Such peculiar new properties may be just what some
machine designer wants, and that he might otherwise not know
how to achieve.

The study of such systems must be essentially statistical, but
this does not mean that each system must be individually stochastic.
On the cortrary, it has recently been shown (Ashby, 1960, c) that
no system can have greater efficiency than the determinate when.
acting as a regulator; so, as regulation is the one function that
counts biologically, we can expect that natural selection will have
made the brain as determinate as possible. It follows that we can
confine our interest to the lessér range in which the sample space is
over a set of mechanisms each of which is individually determinate.

As a particular case, a type of system that deserves much more
thorough investigation is the large system that is built of parts
that have many states of equilibrium. Such systems are extremely
common in the terrestrial world; they exist all around us, and in
fact, intelligence as we know it would be almost impossible other-
wise (Ashby, 1960, d). This is another way of referring to the
system whose variables behave largely as part-functions. I have
shown elsewhere (Ashby, 1960, a) that such systems tend to show
habituation (extinction) and to be able to adapt progressively
(Ashby, 1960, d). There is reason to believe that some of the well-
known but obscure biological phenomena such as conditioning,
association, and Jennings’ (1906) law of the resolution of physio-
logical states may be more or less simple and direct expressions
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aperture of 500, in at least 48 of their 50 trajectory segments. For obvious
reasons, these 7s are here called equilibrial Ts. Such Ts are, of course, structure-
insensitive with respect to the production of equilibrial states. Characteristics in
T that influence this extreme tendency to produce equilibrial states are considered
in Section 5.3.

It bears mentioning that the equilibrial states produced by equilibrial Ts
are not necessarily trivial. That is, the states are not “all 1's” or ‘‘all 0’s”. A
particular example is 7: 01 for which the equilibrial states observed show very

00

1

01
nearly half 1’s and half 0’s. (While these terminal densities of element-states
are close to that predicted — namely, exactly half 1’s and half 0’s — by an
elementary probability model of densities in these systems, in the case of other
Ts, the discrepancies are large.)

Cycles of Length More than One. For the family of systems examined, it
can be seen that the frequency with which trajectory segments end in a cycle
of length more than one is between roughly 1/2 and 2/3. Thus, if a distinction
is drawn between equilibrial states as being “steady’’ behavior, and cycles of
length more than one as being “rhythmic’’ behavior, as compared with steady
behavior, the systems studied most often show rhythmic terminal behavior.

Two regularities that hold across structure are found among the larger
cycles: (1) where a T's cycles are of length two, and (2) where a s cycle
lengths are multiples of a (non-unity) common factor.

When all of a s cycles are of length two, the T is said here to be a
doubled T. Doubled Ts are not given much attention here, as their appearance
is likely due in large measure to the fact that elements all have two element-
states.

More surprising is that some 7s show cycle lengths which, while differing,
are all multiples of a common factor greater than one. The factors (greatest
com ron divisors) found are two, three, four, and eight. Ts showing such be-
hav.cs are here called multiple Ts. As examples, producing cycles that have a
greatest common divisor (ge.d.) of three are Ts: 10 and 01;

01 1
10 10
00 10
producing cycles that have a g.e.d. of four are Ts: 01 where * indicates either
Oorl. 10
0*
0*

While g.e.d.’s two, four, and eight suggest that the binary element-states
may be of some importance in determining the magnitude of the g.e.d., it is

difficult to see how the binarity of the element-states could produce a ge.d.
of three. For the present, the general conditions that produce multiple Ts will
be left for future clarification.

It might be mentioned that some 7s show a tendency to have cycles

with relatively long, prime lengths. For example, T: 00 shows cycles of length
1
01
10

653 (prime). This T also shows a cycle of length 2,391, which has a highest
prime factor of 797. Ts with these behaviors are rather few, however, (four
out of 256), and the appearance of the prime cycle lengths is sensitive to struc-
tural change.

Temporary Behavior (Run-In Lengths): Distribution of Run-in Lengths.
Run-in lengths (of those Ts for which sufficient numbers of disclosures were
observed) have distributions (within Ts) which can be largely described as
unimodal, usually with a skew in the direction of longer run-ins. While there
are exceptions, most 7s’ run-in lengths are distributed in 2 manner not markedly
different from a normal curve.

Progression of Activity in Equilibrial Ts. What is the general nature of
the progression in equilibrial Ts? The answer is not unexpected: Activity, in
systems which use equilibrial Ts, and which start from random initial states,
falls off to zero in a fairly uniform, exponential decay.

5.3 Behavior as Related to Characteristics of Transformations.

In this section, disclosure, cycle, and run-in lengths are related to charac-
teristics of transformations. The aim is to examine certain measures which can
be extended without great difficulty to tables that give the behavior of com-
ponents with many component-states, and many input wires.

The measures examined are:

(1)  Internal homogeneity — reflects the tendency for T to output the
same state on successive occasions.

This measure is scored by separately counting the “0” and “1” entries in
T; the greater number is the internal homogeneity of 7. The measure scores
Ts from 4 to 8, with increasing numbers indicating greater sameness of the
entries of T,

(2)  Fluency reflects the extent to which T resembles those Ts that pro-
vide maximum through-put of signalling from an element’s input to output,
when one input is being held constant.

Ts with maximum fluency have columns of the forms: 0110 and 1001.
Fluency is scored (for the simple Ts of this study) by matching the entries in
one column of a T against both column-forms (one at a time) given above,
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of the multiplicity of equilibrial states. At the moment 1 am
investigating the possibility that the transfer of ‘‘structure”,
such us that of three-dimensional space, into a dynamic system—
the sort of learning that Piaget has specially considered—may
be un auromatic process when the input comes to a system with
many equilibria. Be that as it may, there can be little doubt
that the study of such systems is likely to reveal a variety of
new dynamic processes, giving us dynamic resources not at present
available.

A particular type of system with many equilibria is the system
whose parts have a high “threshold”—those that tend to stay at
some “‘basic” state unless some function of the input exceeds
some value. The general properties of such systems is still largely
unknown, although Beurle (1956) has made a most interesting
start. They deserve extensive investigation; for, with their basic
tendency to develop avalanche-like waves of activity, their dynamic
properties are likely to prove exciting and even dramatic. The fact
that the mammalian brain uses the property extensively suggests
that it may have some peculiar, and useful, property not readily
obtainable in any other way.

Reference to the system with many equilibria brings me to the
second line of investigation that seems to me to be in the highest
degree promising—I refer to the discovery of the living organism's
memory store: the identification of its physical nature.

At the moment, our knowledge of the living brain is grossly
out of balance. With regard to what happens from one milli-
second to the next we know a great deal, and many laboratories
are working to add yet more detail. But when we ask what happens
in the brain from one hour to the next, or from one yeur to the
next, practically nothing is known. Yet it is these longer-term
changes that are the really significant ones in human behavior.

It scems to me, therefore, that if there is one thing that is crying
cut to be investigated it is the physical basis of the brain’s memory-
stores. There was a time when “‘memory” was a very vague and
metaphysical subject; but those days are gone. “‘Memory”, as a
constraint holding over events of the past and the present, and a
relation between them, is today firmly grasped by the logic of
mechanism. We know exactly what we mean by it behavioristically
and operationally. What we need now is the provision of adequate
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resources for its investigation. Surely the time has come for the
world to be able to find resources for ore team to go into the

matter?

SUMMARY

Today, the principles of the self-organizing system are known
with some completeness, in the sense that no major part of the
subject is wholly mysterious.

We have a secure base. Today we know exact/y what we mean
by “‘machine”, by “‘organization”, by “integration”, and by “self-
organization”. We understand these concepts as ‘t‘horo.ugl}ly”and
as rigorously as the mathematician understands ‘‘continuity’” or
*‘convergence”. - .

In these terms we can see today that the artificial generation of
dynamic systems with “iife” and “inte.lligence.” is not merely
simple—it is unavoidable if only the basic requirements are rpgt.
These are not carbon, water, or any other mateljxal entities
but the persistence, over a long time: of the action of any
operator that is both unchanging anq single-valued. Evef'y such
operator forces the development of its own form of life and
intelligence. ' .

But will the forms developed be of use to us? Here the sntuatlo'n
is dominated by the basic law of requisite variety (and Shannqn s
Tenth Theorem), which says that the achieving of appropriate
selection (to a degree better than chance) is absolutely. dependent
on the processing of at least that quantity of infqrmatlon. Future
work must respect this law, or be marked as futile even before 1t
has started. ' . .

Finally, | commend as a program for research, the identification
of the physical basis of the brain’s memory stores. Our knowledge
of the brain’s functioning is today grossly out of balance. A vast
amount is known about how the brain goes from state to state
at about millisecond intervals; but when we consider our know-
ledge of the basis of the important long-tex.'m. cl.xanggs we find it
to amount, practically, to nothing. I suggest it is time }h?t we made
some definite attempt to attack this problem. Surely it is tume that
the world had one team active in this direction?




3 fool—-—— 100
fal //
S o
v 5 50 J/
S .
bk I o
=& “~ s
¢ 3 ~o
58 > 03
S v S5 6§ 7 4 ¢ 5 85 7 8
2% ,gg/em/ﬁaﬂmymoo/ r Fluency of 7
8 3
v-“»§
) w0
-3 _
§.§ “/»’-"‘/ ’/» ‘«\
8§ C | A
f$ 90 23 voT 23 v 5 6 r
emory of' T Hestancy of T

Fig. 3. Por cent of Ts which show ““few” (in less than half of all trajectory
segnients examined) disclosures, = 500

ordinate, due to a high per cent of Ts that showed relatively few disclosures,
indicates that, in that category, disclosures, with respect to an aperture of 500
states, tend to be fong.

As can be seen in Fig. 3, the tendency for a system to show longer dis-
closures is encouraged by low internal homogeneity, high fluency, high memory,
and intermediate hesitancy. Fluency, which can be thought of as a measure of
the element’s capacity to transmit information, is clearly the most potent
factor; memory is the least effective, the apparent relationship shown being

- statistically questionable.

Considering the fact that increasing the hesitancy of the systems’ ele-
ments can encourage an increase as well as a decrease the length of disclosures,
it may be of interest to point out that where T has the lowest hesitancy it is
trivially true that a system’s field is then entirely filled with cycles of length
two, and therefore, all disclosures are of length two. (In more complex sys-
tems using components with n component-states, the lowest hesitancy can give
rise to Ts whose systems have fields entirely filled with cycles of length n,
therefore, once again, all disclosures are relatively small, in this case of length
n.) On the other hand, it should be obvious that the T with greatest hesitancy
produces fields entirely filled with cycles (and disclosures) of length one. This
makes clear a point easily overlooked: strong behavioral constraints (so far
as disclosure lengths are concerned) are produced by both extremes of hesitancy.

Equilibrial Ts. The relations between the occurrence of equilibrial Ts and
the four measures were tested in the same manner used for disclosure lengths.
The number of Ts that are equilibrial and non-equilibrial, as judged by the
standard chi-square test of independence, are reliably associated with internal
homogeneity and hesitancy, while the effects of fluency and memory are rea-
sonably accounted for by chance. (The chi-squares are: for internal homogeneity,
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THE SELF-REPRODUCING SYSTEM*
) W. ROSS ASHBY -

High among the interesting phenomena of organization shown by life
is that of reproduction. We are naturally led to ask. How can a sys-
tem reproduce itself? And we go headlong into a semantic trap un-
less we proceed cautiously. In fact, the answer to the question,
“How does the living organism reproduce itself?” is “It doesn’t.”

No organism reproduces itself. The only thing that ever has had
such a claim made for it was the phoenix, of which we are told that
there was only one, that it laid just one egg in its life, and that out
of this egg came itself. What then actually happens when ordinary
living organisms reproduce? We can describe the events with suf-
ficient accuracy for our purpose here by saying:

(1) There is a matrix (a womb, a decaying piece of meat, a bac-

teriological culture tube perhaps).

(2) Iato it is introduced a form (an ovum, a fly’s egg, a bacter-

ium perhaps).

(3) A complex dynamic interaction occurs between the two (in

which the form may be quite lost).

(4) Eventually the process generates more forms, somewhat

like the original one.

In this process we must notice the fundamental part played by
the matrix. There is no question here of the ovum reproducing itself.
What we see is the interaction between one small part of the whole
and the remainder of the whole. Thus the outcome is a function of
the interaction between two systems. The same is true of other
forms. The bacterium needs a surrounding matrix which will supply

*The work on which this paper is based was supported by the Office of
Naval Research, Contract N 62558-2404.
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oxygen and food and accept the excretion of CO,, etc. An interac-
tion between the two then occurs such that forms somewhat resem-
bling the initial bacte:ium eventually appear.

So, before we start to consider the question of the self-repro-
ducing system we must recognize that no organism i1s self-reproduc-
ing. Further, we would do well to appreciate that Rosen [2] has re-
cently shown that the idea of a self-reproducing automaton is log-
ically sélf-c,oqt,radictbry. He uses an argument formally identical
with that used by me [1] to show that a self-urganizing system is.
strictly, impossible. In each case the idea of a self-acting machine
implies that a mapping must be able to alter itsel‘—i.e., that it is
within its own domain. Mathematics and logic can do -nothing with
such a concept. It is in the same class as the fantasy that can see
a man getting behind himself and pushing himself along,

I make these remarks, not in order to confuse or to obstruct, but
simply to make sure, by clearing away sources of confusion, that we
do really find the right approach to our topic. Though the adjective
“self-reproducing® is highly objectionable semantically and log:-
cally, it does of course refer to a highly interesting process that
we know well, even if we sometimes use inappropriate words to
describe it.

I propose, then, to consider the question re-formulated thus:

A given system i1s such that, if there occurs within it a certain
form {or property or pattern or recognizable quality generally), then
a dynamic process occurs, involving the whole system, of such a
nature that eventually we can recognize, in the system, further
forms (or properties or patterns or -qualities) closely similar to the
original.

I ask what we can say about such systems.

CAN A MACHINE DO IT?

Having got the question into its proper form, we can now turn
¢ the question whether a machine can possibly be self-reproducing.
In a sense the question is pointless, because we know today that
all questions of the type “Can a machine do it?® are to be answered
“Yes.” Nevertheless, as we are considering self-reproduction, a
good deal more remains to be said in regard to the more practical
details of the process. Our question then is: Does there exist a
mechanism such that it acts like the matrix mentioned, in that, given
a“form,” the two together lead eventually to the production of other
forms resembling the first?
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I propose to answer the question largely by a display of actual
examples, leaving the examples to speak for themselves.

The first example | would like to give is a formal demonstration
in computer-like terms showing the possibility. Let us suppose a
computer has only ten stores, numbered 0 to 9, each containing a
two-digit decimal number, such as 72, S0, 07, or perhaps 00. The
“laws” of this little world are as follows: Suppose it has just acted
on store S—1. It moves to store S, takes the two digits in it, a and
b say, multiplies them together, adds on 5 and the store-number S,
takes the right-hand digit of the result, ¢ say, and then writes the
original two digits, a and b, into store c. It then moves on to the
next store and repeats the process; and so on indefinitely.

At first sight, this “law® might seem to give just a muddle of
numbers. At store No. 3 say, with 17 in the store, it mui.ipiies to-
gether 1 and 7, adds S to the product, getting 12, adds the store
number 3, getting 15, takes the right-hand digit, getting 5, and puts
17 into store 5. It then goes on to its next store, which is No. 4.
There seems to be little remarkable in this process. On the other
hand, a 28 in a store has a peculiar property. Suppose it is in store
7.2x8=16,16+5=21, 21 + 7= 28, 28 gives 8, so 28 goes into
store 8. When we work out the next step we find that 28 goes again
into store 9, and so on into store after store. Thus, once a 28 turns
up in the store it spreads until it inhabits all the stores. Thus the
nachine, with its program, is a dynamic matrix such that, if a “28"
gets into it, the mutual interaction will lead to the production of
more 28’s. In this matrix, the 28 can be said to be self-reproducing.

The example just given is a formal demonstration of a process
that meets the definition, but we can easily find examples that are
more commonplace and more like what we find in the real world.
Suppose, for instance, we have a number of nearly assembled screw
drivers that lack only one screw for their completion. We also have
many of the necessary screws. If now a single complete screw driv-
er is provided, it can proceed to make more screw drivers. Thus we
have again the basic situation of the matrix in which if one form
is supplied a process is generated that results in the production of
other examples of the same form.

On this example, the reader may object that a great deal of pre-

fabrication has been postulated. This is true, of course, but it does

not invalidate the argument, because the amount of prefabrication
that occurs can vary over the widest limits without, becoming atyp-
ical; and some prefabrication has to be allowed. After all, the liv-




32.1, df = 3; fluency, 4.2, df = 3; memory, 4.9, df = 4; hesitancy, 98.2,
df = 4.) The results are given in Fig. 4 where ordinates are the per cent of
Ts in a given category that are equilibrial.
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It was mentioned above that the T with the greatest hesitancy produces
fields entirely filled with cycles of length one; it is for that reason equilibrial.
On the other hand, the T with the lowest hesitancy is a doubled transformation.
Therefore, the proportion of equilibrial Ts in each category of hesitancy, if
the relationship is simple and well-behaved, should increase from zero to unity
with increasing hesitancy. As can be seen in Fig. 4 such is the case, with the
function in fact resembling the normal ogive. With respect to the other measures,
it might be expected that greater internal homogeneity would lead to a greater
production of equilibrial states due to a lack of variety in the element’s signalling;
and greater fluency, providing greater “informational transparency” in a system,
might be expected to encourage a lesser tendency for the system to “stick” at
a single state. (It is difficult to predict with confidence what effect increasing
memory should have on the appearance of equilibrial states.)

Fluency, as expected, and memory curves exhibit trends toward an inverse
relzgonship. The statistically significant measures internal homogeneity and
hesitancy, as expected, both show increasing functions. The potency of hesi-
taicy in the production of equilibrial states supports earlier iheoretical work
by Ashby (1960).

Modal Cycle Length and Run-In Length as Functions of Four Messurss
of Ts  An indication of the effect that the measures have on the typical cycle
length can be gained from Fig. 5. Fig. 5 was obtained as follows: The modal
cycle length was determined for each of the 198 7s which showed cycles in
sufficient numbers. The modal cycle lengths were then grouped into intervals
according to the number of digits in the modal value. That is, each T was
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FIGURE 5. Modal (most frequent) cycle lengths as functions of four measures of
Ts. (The question mark indicates the percent of Ts in the categories for which too
few disclosures are shown to allow a reliable determination of modal values).

assigned a logarithmic interval describing its modal cycle length. For each of
the four measures, Ts were grouped by their modal cycle length intervals and
the category of the measure. The numbers of Ts with cycle lengths in the given
intervals were compared to the total number of 7s in that category of the mea-
sure, expressed as percentages, and piotted as the ordinates of Fig. 5 with

solid circles. The open circles in the figure give the percentages of Ts in the
category with too few observed cycies to be classified by modal cycle lengths.
Therefore, the open circles indicate the total extent to which the solid circles
in a category are in doubt. (The open circles correspond closely to those of
Fig. 3. The correspondence would be exact if two additional Ts had not been
classed as to their cycle length modes.)

The fact that the distributions of modal cycle lengths are in doubt reduces
the usefulness of Fig. S, but the following trends are suggested: (1) increasing
internal homogeneity tends to decrease cycle length, (2) extremely high memory
appears to increase cycle length, (3) moderate hesitancy appears associated
with larger cycles. (The high uncertainty associated with increasing fluency

-makes it difficult to pick out any trends with confidence.)

The same procedure used for cycle lengths applied to run-in lengths yields
Fig. 6. It can be seen that except for memory, the trends found for cycle
lengths are repeated in the run-in lengths, run-ins being, overall, longer than
cycle lengths. Memory, however, affects cycle and run-in lengths differently



78

W. ROSS ASHBY

ing things that reproduce do not start as a gaseous mixture of raw
elements.

(The same scale of “degrees of prefabrication® sometimes con-
fuses the issue when a model maker claims that he has *made it all
himself.” This phrase cannot be taken in any absolute sense. If it
were to be taken literally, the model maker would first have to make
all the screws that he used, but before that he must have made the
metal rods from which the screws were produced, then he must have
found the ores out of which the metal was made, and so on. As there
is practically no limit to this going backward, the rule that a model
maker “must nake it all himself” must be accompanied by some es-
sentially arbitrary line stating how much prefabrication is allowed.)

The two examples given so far showed only reproduction at one
step. Living organisms repeat reproduction: fathers breed sons, who
breed grandsons, who breed great-grandsons, and so on. This pos-
sibility of extended reproduction simply depends on the scale of the
matrix. It can be present or absent without appreciably affecting the
fundamentals of the process.

FURTHER EXAMPLES

The subject of self-reproduction is usually discussed on far too
restricted a basis of facts. These tend to be on the one hand simply
the living organisms, and on the other hand machines of the most
rudimentary type, such as the watch and the motor car. In order to
give our consideration more range, let us consider some further ex-
amples. Those I give below will be found to be sometimes unortho-
dox but every one of them, 1 claim, does accord with the basic def-
inition—that the bringing together of the first form and matrix leads
to the production of later forms similar to the first.

Example 3. A factory cannot start producing because the power
is not switched on. The only thing that can switch the power on is
a spanner (wrench) of a certain type. The factory’s job is to pro-
d ice spanners of that type.

Example 4. A machine that vibrates very heavily when it is
switched on can be started by a switch that is very easily thrown
on by vibration. Such a system, if at rest and then given a heavy
vibration, is liable to go on producing further heavy vibrations.
Thus the form “vibration,” in this matrix, is self-reproducing.

Example 5. Two countries, A and B, were at war. B discovered
that country A was a dictatorship so intense that every document
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bearing the dictator’s initials (X.Y.Z.) had to be obeyed. Country
B took advantage of this and ruined A’s administration by bombing
A with pieces of paper bearing the message: “Make ten copies of
this sheet, with the initials, and send to your associates. X.Y.Z.*
In such a matrix, such a form is self-reproducing.

Example 6. A number of chameleons are watching one another,
each affected by the colors it sees around it. Should one chameleon
go dark it will increase the probability of “darkness” appearing
around it. In this matrix, the property “darkness” tends to be self-
reproducing.

Example 7. In a computer, if the order 0101010 should mean
“type 0101010 into five other stores taken at random,® then in this
matrix the form 0101010 is self-reproducing.

Example 8. A computer has single digit decimal numbers in its
various stores. It is programed so that it picks out a pair of num-
bers at random, multiplies them together, and puts the right-hand
digit into the first store. In this condition, as any zero forces an-
other zerc to be stored, the zero is self-reproducing.

Example 9. Around any unstable equilibrium, any unit of devia-
tion is apt to be self-reproducing as the trajectory moves further
and further away from the point of unstable equilibrium. Thus, if a
river in a flat valley happens to be straight, the occurrence of one
meander tends to lead to the production of yet other meanders. Thus
in this matrix the form “meander”® is self-reproducing.

Example 10. A similar example occurs when a ripple occurs in
a soft roadway. Under the repeated impact of wheels, the appearance
of one tends to lead to the appearance of others. In this matrix,
“ripple” is self-reproducing. /

Example 11. (Due to Dr. Beurle) A cow prefers to tread down
into a hole rather than up onto a ridge. So, if cows go along a path
repeatedly, a hollow at one point tends to, be followed by excessive
wear at one cow’s pace further on, and thus by a second hollow.
And this tends to be followed by vet another at one pace further on.
Thus, in this matrix, “hollow” is self-reproducing.

Example 12. Well known in chemistry is the phenomenon of
“autocatalysis.” In this class is the dissociation of ethyl acetate
(in water) into acetic acid and alcohol. Here, of course, the disso-
ciation is occurring steadily in any case, but the first dissociation
that produces the acid increases the rate of/the later dissocCiations.
So, in this matrix, the appeatance,of|one ‘molecule of ‘acetic acid
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when very high: cycles tend to be increased in length, while run-ins tend to be
decreased. Very high memory evidently provides these systems with an increased
capability for complex terminal behavior relatively soon after the systems start
operating from a random state.

Percent Ts in A
the given cotegory i
with run-in length ‘ ¢ 1

modes indicatad ’
100

FIGURE 6. Modal (most frequent) run-in lengths as functions of four measures
of Ts. {The question mark indicates the percent of Ts in the categories for which
too few disclosures are shown to allow a reliable determination of modal values).

Summary. - The relationships between measures and behaviors can be
roughly summarized as follows (Table 2).

Table 2. 4 Summary of the Effects of Increasing Certain Mens-
ures of T's on Behavior

Behavior

Measure Disclosure Per cent of Cycle Run-In

Lengths Equilibrial Lengths Lengths
Ts

Internal N A “a hS

Homogeneity

Fluency ” ? ? ?

Memory ? ? — N

Hesitancy AN " AN LS
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5.4 Discussion

On Empirical Study of More Complex Systems. The regularity of the re-
lationships between measures and behavior seen here suggests that empirical
study of other interesting families of systems may be feasible, even though the
numbers of transformations involved may preclude the exhaustive testing of
whole families. Evidently, if behaviors and transformations are not specified
too rigidly, abstract systems such as those examined here do not always show
the discontinuities that might be expected of them.

On "Biologics! Clocks". While it is beyond the scope of the present paper
to go into the question of how parallels can be usefully drawn between the
abstract systems examined and naturally occurring systems, there are some
interesting speculations that can be made. in the case of a multiple T, that is,
aT for which the five systems which use that T ali show cycle lengths with a
common (non-unity) periodicity, the T is, of course, with respect to the common
periodicity of the cycle length, pragmatically structure-insensitive. Therefore,
for a multiple T it is reasonable that, if not all, at least a large number of systems
using this T have cycle lengths that are multiples of that same factor. Were
systems made of the appropriate parts to be found occurring naturally, and
especially if the systems’ structures were due to irregular, non-systematic circum-
stances, then it would not be uncommon for these natural systems, in constant
surroundings, to show similar behavioral rhythms. Having previously noted the
frequency with which rhythmic behavior is shown, a further implication is that
“‘biological clocks™ may be more the rule than the exception, and that when such
rhythms are regularly found to occur, it is not to be concluded that there exist
clock-mechanisms responsible for the rhythms which are spacially distinct and
localizable. Like the periodicities of the systems studied, natural rhythms of
real things may be due to spacially extended system-properties.

What Happens in Structurally Larger Systems? It is of particular interest
to consider what should happen to the behavior of the systems of the present
study if the number of their elements were increased. There is an interesting
approach to this question suggested by the results. This approach would assume
that because certain behavioral characteristics are observed to hold over asetof
randomly sampled structures, the behaviors are therefore pragmatically indepen-
dent of structural changes generally, and independent of the number of elements
in the systems in particular. It would therefore be predicted that equilibrial Ts
will remain equilibrial, doubled Ts will remain doubled, and multiple Ts will
continue to be multiples of the same factors, no matter how large the number of
elements in their systems. That such a prediction may not be entirely speculative
is indicated by one piece of evidence. A trajectory segment run for a 1000-efement
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tends to encourage the appearance of further molecules of the same
type.

Example 13. In the previous example the form has been a mate-
rial entity, but the form may equally well be a pattern. All that is
necessary is that the entity, whatever it is, shall be unambiguously
recognizable. In a supersaturated solution, for instance, the molec-
ular arrangement that one calls “crystalline” is self-reproducing,
in the sense that in this matrix, the introduction of one crystalline
form leads to the production of further similar forms.

Example 14. With a community of sufficiently credulous type
as matrix, the introduction of one “chain letter® is likely to lead to
the production of further such forms.

Example 15. In another community of suitable type as matrix,
one person taking up a particular hobby (as form) is likely to be

followed by the hobby being taken up by other people.

Example 16. Finally, I can mention the fact that the occurrence
of one yawn is likely to be followed by further occurrences of sim-
ilar forms. In this matrix, the form “yawn® is self-reproducing.

REPl;x’ODUCTION AS A SPECIALIZED ADAPTATION

After these examples we can now approach the subject more
realistically. To see more clearly how special this process of repro-
duction is, we should appreciate that reproduction is not something
that belongs to living organisms by some miraculous linkage, but is
simply a specialized means of adaptation of a specialized class cf
disturbances. The point is that the terrestrial environments that or-
ganisms have faced since the dawn of creation have certain spe-
cialized properties that are not easily noticed until one contrasts
them with the completely nonspecialized processes that can exist
inside a computer. Chief among these terrestrial properties is the
extremely common rule that if two things are far apart they tend
t have practically no effect on one another. Doubtless there are
cxceptions, but this rule holds over the majority of events. What
this means is that when disturbances or dangers come to an organ-
ism, they tend to strike locally. Perhaps the clearest example would
be seen if the earth had no atmosphere so that the organisms on it
were subject to a continuous rain of small shotlike particles travel-
ing at very high speeds. Under such a rain the threat by each parti-
cle is local, so that a living form much increases its chance of sur-
vival if replicates of the form are made and dispersed. The rule of
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course is of extremely wide applicability. Banks that may have a fire
at one place make copies of their records and disperse them. If a
computing machine were liable to sudden faults occurring at random
places, there would be advantage in copying off important numbers
at various stages in the calculation so as to have dispersed repli-
cates. Thus, the process of reptoduction should be seen in its prop-
er relation to other complex dynamic processes as simply a spe-
cialized form of adaptation against a special class of disturbances.
It is all that and nothing more. Should the disturbances not be local-
ized there is no advantage in reproduction. Suppose, for instance,
that the only threat to a species was the arrival of a new virus, that
was either overwhelmingly lethal or merely slightly disturbing. Un-
der such conditions the species would gain nothing by having many
distinct individuals. The same phenomenon can be seen in industry.
If an industry is affected by economic circumstances or by new
laws, so that either all the companies in it susvive, or all fail, then
there is no advantage in the multiplicity of companies; a monopoly
can be as well adapted as a multiplicity of small companies.

FUNDAMENTAL THEORY

After this survey we have at least reached a point where we can
see “reproduction” in its proper nature in relation to the logic of
mechanism. We see it simply as an adaptation to a particular class
of disturbances. This means that it is at once subject to the theo-
retical formulations that Sommerhoff (3] has displayed so decisive-
ly. The fact that it is an adaptation means that we are dealing es-
sentially with an invariant of some dynamic process. This means
that we can get a new start, appropriate to the new logic of mechan-
ism, that will on the one hand display its inner logic clearly, and on
the other hand state the process in a form ready to be taken over by
machine programing or in any related process. We start then with the
fundamental concept that the dynamic process is properly defined
by first naming the set S of states of the system and then the map-
ping f of that set into itself which corresponds to the dynamic drive
of the system. Reproduction is then one of the invariants that holds
over the compounc’ of this system and a set of disturbances that act
locally. If then f is such that some parts within the whole are af-
fected individually, *reproduction” is simply a process by which
these parts are invariant under the change-inducing actions of the
dynamic drive f.
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It must be emphasized that reproduction, though seeming a sharp-
ly defined process in living organisms, is really a concept of such
generality that precise definition is necessary in all cases if it is
to be clear what we are speaking of. Thus, in a sense every state
of equilibrium reproduces itself; for if f(x) = x, then the processes f
of the machine so act on x that at a moment later we have x again.
This is exactly the case of the phoenix. It is also “self-reproduc-
tion® of a type so basic as to be uninteresting, but this is merely
the beginning. 1t serves as a warning to remind us that processes
of self-reproduction can occur, in generalized dynamic systems, in
generalized forms that far exceed in variety and conceptual content
anything seen in the biological world. Because they are nonbiologi-
cal the biologist will hesitate to call them reproducing, but the logi-
cian, having given the definition and being forced to stick to it, can
find no reason for denying the title to them. What we have ingeneral
is a set of parts, over some few of which a property P is indentifi-
able. This property P, if the concept is to be useful, must be mean-
ingful at various places over the system. Then we show that “self-
reproduction of P”® holds in this system if along any trajectory the
occurrence of P is followed, at the states later in the trajectory,
5y their having larger values for the variable “number of P's pres-
ent.”

It should be noted that because self-reproduction is an adapta-
tion, which demands (as Sommerhoff has shown) a relation between
organism and environment, and because the property P must be
countable in its occurrences over the system, we must be dealing
with a system that is seen as composed of parts. | mention this be-
cause an important new development in the study of dynamics con-
sists of treating systems actually as a whole, the parts being no-
where considered. This new approach cannot be used in the study
of reproduction because, as I have just said, the concept of repro-
fuction demands that we consider the system as composed of parts.

The new point of view which sees reproduction simply as
a property that may hold over a trajectory at once shows the prop-
er position of an interesting extension of the concept. Repro-
duction, as 1 said, is a form of invariant. In general, invariants are
either a state of equilibrium-or a cycle. So far, we have considered
only the equilibria, but an equally important consideration is the
cycle. Here we reach the case that would have to be described by
saying that A reproduces B, then B reproduces C, and then C repro-
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duces A. Such a cycle is of course extremely common in the biolog-
ical world. Not only are there the quite complicated cycles of forms
through the egg, pupa, imago, and so on that the insects go through,
there is of course also the simple fact that human reproduction it-
self goes regularly round the cycle: ovum, infant, child, adult, ovum,
and so on.

A further clarification of the theory of the subject can be made.
Let us define “reproduction® as occurring when the occurrence of a
property increases the probability that that property will again occur
elsewhere; this of course is positive reproduction. We can just as
easily consider “negative” reproduction, when the occurrence of a
property decreases the probability that the property will occur else-
where. Examples of this do not appear to be common. We can of
course atonce invent such a system on a general-purpose computer;
such “negative reproduction” would occur if, say, the instruction
00000 were to mean “replace all zeroes by ones.” I have found so
far only one example in real systems—namely, if, under electro-
deposition, a whisker of metal grows toward the electrode, the
chance of another whisker growing nearby is diminished. Thus
“whiskers® have a negative net reproduction.

This observation gives us a clear lead on the question: Will
self-reproducing forms be common or rare in large dynamic systems?
The negatively self-reproducing forms clearly have little tendency
to be obtrusive—they are automatically self-eliminating. Quite other-
wise is it with the positively self-reproducing forms; for now, if the
system contains a single form that is positively self-reproducing,
that form will press forward toward full occupation of the system.

Suppose now we make the natural assumption that the larger the
system, if assembled partly at random, the larger will be the number
of forms possible within it. Add to this the fact that if any one is
self-reproducing, then self-reproducing forms will fill the system,
and we see that there is good reason to support the statement that
all sufficiently large systems will become filled with self-reproduc-
ing forms.

This fact may well dominate the design of large self-organizing
systems, forcing the designer to devote much attention to the ques-
tion: “What self-reproducing forms are likely to develop in my sys-
tem?” just as designers of dynamic systems today have to devote
much attention to the prevention of simple instabilities.
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INFORMATION FLOWS IN SYSTEMS

INTRODUCTION

The study of a large complex systems such as the brain, a city, a
national aeconowmy, or the like is exceedingly difficult under any but the
most favorable circumstances. Under special conditions - identity of al}
the system components, linearity of the system relationship, decomposabili-
ty of the system into loosely coupled subsysteas, the applicability of sim-
plifying homomorphisms, etc. - some headway can be made, but in general the
sheer quantity of information in the behavior of complex systems threateas
to overwhelm and bewilder the investigator, sven one armed with a computer.
Ashby believed that information theory, generalized to N dimensions, would
become an effective tool for the study of such systems, and indeed it has
been used and developed by several researchers for that purpose since the
time of his work. In "Principles of the Self-Organizing Systea" Ashby not-
ed that the organization of a system is related to constraints it exhibits.
These constraints can be measured by information theory (or uncertainty
analysis, a nearly synonymous term) which thersfore represents a tool for
the ameasurement of organization. The basic idea is that if variables are
related, a constraint exists between them which can be measured with the
quantities of information theory; no "tramsmission”, no relation. Ia this
context information theory is invoked simply as a statistical tool for the
measurement of multivariable correlations, though without the need for
metric variables which the correlation coefficient, the analysis of vari-
ance, and related statistical devices require. The gain in using informa-
tion theory in this way is that one @ay study organization in systems too
complax for detailad comprehensive study; the loss is that all details,
conteant, and meaning of the relationships are lost, leaving only "quantity
of relationships™ as the outcome of the investigation. In more recent work
(102, 104, 111] the theory has in fact proved to be a very useful tool for
the study of structure in multivariable systems, but it is not yet practi-
cal for computations unless the number of varisbles is quite modest (lass
than 25, say). In the absense of simplicities such as decomposability,
Ashby's expectation that information theory would allow study of huge sys-
tems - he mentions 10 billion elements - seens forever doomed on statisti-
cal grounds alone, and on computational grounds besides.

. In "Setting Goals in Cybernetic Systems" another sort of information

flow" is considered - the quantities of information involved in design,
and in setting goals. Insofar as design can be understood as the appropri-
8te selection of one design from a collection, the amount of selection can
be measured and is subject to the laws of information theory. This is a
unique perspective; it is much more common to think of design as creation,
while Ashby, characteristically viewing it from the inverse perspectivs,
Sees it as selection.

In "Information Flows within Coordinated Systems" Ashby illustrates a
basic methodology, in which the constraint within a system of four vari-
ables is partitioned in various ways using the entropy and transaission
measures, the point of the paper being that for a certain degree of coordi-
fation & certain minimum of information "flow” is required. In "Information
Processing in Everyday Human Activity" he sttempts to estimate how much
information is required, at a minimum, to perform a simple household task.
Both papers may lesve the reader with an uncomfortable feeling that the
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numerical results are directly dependent upon rather arbitrary numerical
assumptions made at the outset. This is quite so but is merely a reflec-
tion and verification of Ashby's observation, in the paper on self-
organizing systems, that constraint and organization are not absolute pro-
perties of a system but have to do with the relation between the system and
the observer. The papers assume this relationship and then illustrate a
method, and it is the latter which represents the main thrust of these two
publications.

"Measuring the Internal Information Exchange in a System" provides
certain key identities in information theory, and "Two Tables..." adds
more. The former paper gives explanations and interpretations for the
quantities involved. At the time, Ashby was very keen on the Q terms,
called "interactions," since he believed them to be intimately associated
with a system's inherent complexity which, of course, he was always in-
terested in quantifying, understanding and unravelling. As the paper shows
there is considerable justification for that hope. Subsequent work mostly
by Klaus Krippendorff {112] has shown, however, that Q has not borne out
these initial hopes and is seriously misleading as an indicator of what we
understand intuitively by the word interaction. The problem is mainly that
Q arises from two opposing causes of opposite sign, one representing
"genuine" interaction and one a statistical effect; the latter pollutes Q
and makes it unusable as an indicator of the former. Krippendorff has con-
trived a much better indicator and the reader should be aware of that re-
cent development so as to avoid uncritical acceptance of Ashby's paper -
which has, nevertheless, been very influential.

E
2]

Setting Goals
in
Cybernetic Systems

W. ROSS ASHBY

Borden Neurological Institute
England

Getting clear the matter of goals is of the first importance
in cybernetics, for most applications of cybernetics start with
someone saying “[ want . . ”. Here I am thinking of cyber-
netics not as a way of explaining things. but as a new science
and technical method enabling us to tackle practical problems
that would otherwise defeat us by their complexity. Coordi-
nating the traffic around an airport, stabilizing the flows of
money between international banks, normalizing the com-
position of the blood in a patient without kiduevs—all these
must start with the question “What do you want?” The process
itself will end at the goal: the cybernetician’s thoughts must
start there.

What is a goal? We all know something abent it, and a
child of three frequently says “I want . . so we all start
with a personal awareness of intention, purpose. need, desire.
But when we ask how a niachine can have a desire, we find
ourselves in difficulties. The difficulty becomes even greater
if the system that is to have the goal is not even one machine
but a mixture of machines and men, with the goal involving
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SUMMARY INSTABILITY OF PULSE ACTIVITY
Reproduction has, in the past, usually been thought of as ex- IN'A NET WITH THRESHOLD
clusively biological, and as requiring very special conditions for By PROFS. W.R. ASHBY, H. Von FOERSTER
its achievement. The truth is quite otherwise: it is a phenomenon and C.C. WALKER
of the widest range, tending to occur in all dynamic systems, if suf- Electrical Engineering Research Laboratory, University of lllinois, Urbana

ficiently complex.

The brdin may well use this tendency (for self-teptoducing forms
to occur) as part of its normal higher processes. The designer of
large self-organizing systems will encounter the property as a major
factor, as soon as he designs systems that are really large and self-

For half a century, threshold has been known to be important in the activi-
ties of nerve cell and synapse, but little is known of the general properties that so
ubiquitous a feature must impose on the system’s behavior in the large. Beurle' s
in his investigations of the transmission of waves of activity over a conducting net,

organizing. :
noticed that a net with threshold would have a marked tendency to be unstable,
but his assumptions were complex, and the origin of the instability is not easily
‘ identified. Here we propose to show that an instability, similar to his, can readily
REFERENCES be traced from a simpler origin.
L. W. Ross Ashby, “Principles of the Self-ofganizing System,® Symposium The instability we refer to would soon show itself if one made an artificial
‘;’;é::;:’?;‘::“ﬁ;’;f“"‘" University f lllinois, June 7-10, 1960, nerve-net with unspecified, rich connectivity, with threshold at the junctions, and
2. R. Rosen, *On ; Logical Paradox Implicit in the Notion of a Self-re- then attempted, as the net transmitted pulses, to keep the net's activity at a moder-
producing Automaton,” Bull, Math. Biophysics, Vol. 21, pp. 387-39a, ate value. The net would tend to run either down to a state of total inactivity,
1959, z from which one could scarcely get it to stir, or up to a state of total activity, which

3. G. Sommerhoff, *Analytical Biology,® Oxford University Press, Lon-

don. 1950 would lesson only at the onset of exhaustion or some other extraneous factor.

The origin of this instability can be traced as follows. Suppose the whole
net is composed of a large number of interconnected units which handle informa-
tion represented everywhere by identical pulses of some physical activity. Each
of these units has n identifiable inputs. A unit ‘fires in time interval ¢ (to ¢ + At)
— emits a pulse of duration 8¢ <At — if and only if at least 8 of the inputs have
received a pulse within the preceding time interval (t— At to t. The following
argument is applicable both to nets with essentially one-directional information
flow (from a network-input to a network-output) and also to nets with rich in-
ternal cross-connections (provided none of the feed-back loops is short).

We shall describe the activity on the inputs of a particular unit by first
associating a probability p with the occurrence of a pulse in a particular time
interval At on a specified input. We define:

. (N A

4~

: where N is the number of pulses counted in time ¢ which have passed through a
} sufficiently large bundle of L randomly selected inputs. From this we have the



W. ROSS ASHBY

only the whole, not the parts. How can such a system have a
purpose or desire?

The solution of this first difficulty, I suggest, is to do what
the psychologists have done for a century: drop the intro-
spectional aspect and turn to the aspect of behavior. Stop ask-
ing “Does this system feel a want?” and ask instead “How
does it behave?”

Those whose knowledge of these matters is mainly intro-
spectional may well hesitate to abandon their main source of
information. But a century’s work in psychology has shown
that the introspectional approach, though vivid and apparently
unquestionable, is in fact grossly unreliable. Look, for instance,
at a piece of uncolored (white) paper: if anything is obvious
and trustworthy, it is that :here is no red present. Yet the
physicists have convinced us that what we see is not the paper
but a message from the retina saying that the three primary
colors “balance.” The introspective viewer sees onlv his own
retina, not beyond it.

A report based on introspection is in fact simply the output
of the brain’s final, verbalizing stage. Such report can give
only a coded version of what is happening earlier in the
processes; to take a coding literally is an evident mistake.
Psychoanalytic studies have shown in innumerable cases
how mistaken a person can be when he describes his own
motives or goals. ‘Briefly, the introspectional approach, in sci-
ence, has so far proved to be either just useless or positively
misleading.

But if a goal is not a want, what is it? Ever since McDougall,!
ps/chologists have understood that it can be treated equiva-
lently as a way of behaving. “Take a timid animal.” he wrote,
“such as a guinea-pig, from its hole or nest, and put it upon the
grass plot. Instead of remaining at rest, it runs back to its hole;
push it in any other direction, and, as soon as you withdraw
your hand, it turns back towards its hole.” Just the same be-
havior is characteristic of the missile that persists in going
toward a source of infrared rays, that reasserts its direction
if diverted, and that will change direction if the source moves.

SETTING GOALS IN CYBERNETIC SYSTEMS

The experiences of a century in psychology and of thirty years
in automatic control systems have shown that, for practical
purposes, we can achieve clarity by replacing the idea of a felt
need with the idea of a focus in a stable dynamic system.

When the system is as simple, essentially, as a missile that
“seeks” infrared rays, the thesis will probably not be disputed.
But what of the more complex? What of natural evolution, for
instance, with organisms apparently developing their own
goals? What of man? Can he not choose his own goals? Can-
not the cybernetician make a machine that can choose its own
goal?

To get our ideas untangled, let us first take the case of

natural evolution, since here the facts are, today, beyond
dispute. This case is that of a planet, subject both to un-
changing laws (such as those of gravity, optics, hydrodynamics)
and, over all of 10" years, to a constant energy input. Through
all this time, photons of the visible wavelengths have poured
in ard have left at infrared lengths to the night sky, in a
steady flux of about 10?* ergs per day. This unceasing flow of
free energy has kept the molecules on the planet in a mild
but inceasing turmoil, during which the less stable combina-
tions have incessantly been superseded by the more stable.
Today, after 10" years, what remains is mostly of extremely
high stability, ranging from such minerals as granite to such
dynamically stable forms as the mammal, a form older than
the Alps and the survivor of several ice ages.
. Looked at in this way, natural evolution and the emergence
of forms such as the guinea pig, with its well-developed goal,
are in no way unusual: they merely exemplify the fact that
aln.ost all state-determined systems tend to preferred regions.
It is the exceptional system that does not show such preferred
regions. Thus, the continuous state-determined system with
equations

Xt =g (Xi, ..., Xa) (i=1,...,n)

shows nonconvergence only where div g has the special value




probability p ; that precisely / inputs on a particular unit receive a pulse in the
time interval At:

pi= (’:) Pl = pp-s (2)

Consequently, the probability p’ that at least § inputs are active in this time inter-
val, that is, that the unit fires, is given by the cumulative binomial probability

function? :

» 4{%0(?)9‘ (I-ppr-+ =

! f (3)
n:

G=Nrm= 0)![’“” (1-zp=0dz
0

The instability arises when we allow the resulting pulse frequency f'=p'/ As
to be itself the generator of a further frequency f"=p" /At, and so on. Under
these conditions we ask what will happen in the net as time goes on. Equilibrium
is reached if the pulse activity on each input equals the pulse activity on each out-
put, that is, if:

‘= p=p*
P=r=s (4)
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However, differentiating expression (3) once and twice with respect to p shows
that for all cases where solutions for (4) with0<p* <7, andn>1, exist, p’ (p/
starts at the origin with zero slope and exhibits a single inflexion at the point:

P= 5 (6)

Thus the stability criterion (5) is satisfied only where p*=0orp® = 1.

Fig. 1 illustrates the stiuation in a simple case where p' is plotted against
p forn =10 and 0 = 5, using (3). The equilibriap * are the three points where
P'lp) intersects p'= p: 0, 0.42 and 1. Those at 0 and 1 are stable; that at 0.42
is unstable in the sense that the slightest perturbation from this value is followed
by the system going to one of its extreme values. (In. Fig. 1 the change in p from ‘
an initial value of 0.5 is indicated by the stairway.) Fig. 2 shows how various per-
turbations provoke a runaway to an extreme value.

It seems, therefore, that the more richly organized regions of the brain offer
us something of a paradox. They use threshold intensively, but usually transmit
impulses at some moderate frequency, seldom passing in physiological conditions
into total inactivity or maximal excitation. Evidently there must exist factors or
mechanisms for stability which do not rely on fixed threshold alone.

One such mechanism that offers itself readily is the non-linear dependency
of threshold on output that is sometimes referred to as ‘inhibition by depletion’.

If this dependency is of the form:
0 =pu-1i(pym
with: .
1 < 3 m
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0.2 Take ¢’s at random, and the system resulting is almost
certain to show stability at preferred regions, within which it
will behave in the goal-seeking way.

“Making a system that seeks a goal” is thus trivially easy:
one forms a state-determined dynamic system at random
(e.g., let it be specified by the spins of a coin). One is then
almost certain to have a system that, like a guinea pig, will
show that it is actively goal-seeking for some preferred state.
It is true that the preferred state may well be meaningless or
useless to the designer, but we should notice at this point that
getting a machine to have some goal is no problem at all.

Achieving an Assigned Goal

Having disposed of this pseudoproblem, we can now con-
sider the real, and difficult, problem. This arises when the
designer not only wants the system to be goal-seeking but also
wants it to seek some goal already specified. Air-traffic control
systems are required to make collisions minimal, not maximal,
and a physiological stabilizer of blood composition must have
as its goal just those values that the human finds normal. Here
the majority of stable states that might occur on random
assembly are not acceptable.

When the system is small ( designing a room thermostat,
say), the designer needs no further general theory; he goes
straight to the particular details. But when the system is of
“cybernetic” size, he may still be uncertain of the next steps.
I want to suggest in this paper that the general nature of the
sitnation can be made much clearer if we apply what is already
krown in information theory.

The situation is most evident when a designer faces a
heap of components from which he is going to construct his
machine (but it is equally so when he faces a sheet of paper
on which he will write a program). The point is that by his
selection of the assembly or program he wants, from the set
that includes both what he wants and what he does not, he
transmits a message to the ~nd product, and all the laws of
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communication are applicable. To design a thermostat that
will hold- 72°F is to transmit the value “72” to the machine,
Consider the less trivial example of the designer who wants to
allot values —2, —1, 0, +1, or 42 to the four coefficients a, b,
¢, din

x = ax + by
y =cx + dy

so that the system will be stable. In this case the quantity of
information that must be transmitted from designer to system
is calculable. 5* types are possible, of which 114 have the real
parts of their latent roots both negative. In the worst case
(if all values are equiprobable), the selection implies a trans-
mission of log: (625/114) bits, i.e., just under 214 bits. Thus,
in this example, the channel represented by F ig. 1 must be
able to transmit at least 214 bits (per act of design).

DESIGNER ————»{ MACHINE

Fig. 1.

The example is trivial: what matters is whether the principle
s sound. If so, it will give us a deeper insight into problems
that are anything but trivial.

Before we go further, however, we must notice a matter
that might easily confuse us. Suppose some complex regulator
accepts m inputs Xi (i = 1,..., m), data about aircraft at an
airport perhaps, and emits orders, values on n variables Y;
(i=1,...,n), to the aircraft. The designer is then asked to
design it so as to be a “good” traffic controller. The basic
situation may be represented as in Fig. 2. How the outputs
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x P _—»Y1

“ s o 00
" s e o0

X > ——'*'Yn '

Fig. 2.

depend on the inputs is a relation F, the “transfer function”
(in a general sense) of the system. The designer’s task is to
act so that the desired goal, selected from all the events (good
and bad) that can occur at an airport, is transmitted to, and
acts effectively as, a “good” F. This good F, it should be
noted, comes from the set of all possible F’s (not from the
set of Y-values), so the transmission implied by the selection,
along the channel C, is essentially independent of the trans-
mission from X to Y. In this paper our attention will be focused
on the quantities transmitted through such a channel as C.

The situation perhaps can be made intuitively more vivid
if the designer’s task be formulated as that of conveying to
the heap of components what he means by the phrase “a suc-
cessful airport,” in the operational mode of getting the heap,
'vhen assembled, to separate the “good” set from its comple-
ment. Similarly, the problem of designing a pattern-recognizer
(for genuine dollar bills, say) may be regarded generally as
one of trying to tell the machine, in its undeveloped state,
what is meant by “genuine, dollar, and bill.” Again, this flow
of design-information is cssentially distinct from the flow that
occurs later when the finalized machine scans an actual piece
of paper and emits a verdict. Similarly, in information re-
trieval (getting from a library, say, the documents relevant
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to “social feedbacks in universities”), the difficulty can .be
regarded as essentially one of getting across to Fhe”machme
what is meant by “society, feedback, and university.” In gen-
eral, thinking of the design process as one of telling the ma-
chine what you want helps to make more evident the flow of

information that is intrinsic to the act of designing.

Sponsor and Designer

If this thesis is granted, we are led inescapably to the deduc-
tion that exactly the same situation exists at the prior stage,

represented in Fig. 3.

i
GOAL |SPONSOR > DESIGNER

Fig. 3.

Whence came the particular goal that the designer transmitted
to F? Rarely is the designer himself the originator; more com-
monly, as in the example of the air-traffic control system, the
goal comes from what I will call generically the sponsor.
Again I argue, as before, that effects must have causes. Selec-
tion among the F’s can be attributed to prior selection among
the designer’s possible goals. And this selection must be at-
tzibuted to prior selection among the sponsor’s possible goals.
Further, it is axiomatic through information theory { though
seldom stated explicitly) that complex effects, as “mes“sages
received,” require at least as much complex causation as  mes-
sages sent.” By as much we mean either the number of b‘ltS
or, more simply, the number of possible messages. So with
this axiom we can assert that there must be sulficient trans-
mission, from sponsor to designer, for the selection made by
the sponsor (among his possible goals)to reach the designer.
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Often this requirement is so obvious that these remarks
would appear to be unnecessary. But it also often happens that
the requirement is not, in fact, adequately met. It is more than
likely that at this meeting there are some designers who have
been given nothing like sufficient information (channel B)
about the sponsor’s goal, yet who are expected to achieve high
and appropriate selection in the system F. Sponsors must learn
enough elementary cybernetics to appreciate when they are
asking the impossible. The sponsor must learn, in fact, that he
is as subject to Conant’s First Theorem?® as every other would-
be regulator. He is a regulator insofar as, with some goal in
mind, he is trying to bring the designer, who might design all
sorts of things, to accept his particular goal (for transmission
to the system F). If the designer misunderstands and designs
for G" instead of G, the sponsor must correct him and keep
acting until the designer has the sponsor’s G as his guide. This
is an act of regulation and so is wholly subject to Conant’s
Theorem, which asserts that transmission of the corresponding
quantity of information (through B) is absolutely unavoidable.
Armed with this theorem, the designer can demand that the
sponsor transmit sufficiently.

The only worker in this field who seems to have clearly
understood and stated these requirements was the elder von
Moltke, who, in 1858, founded and organized the German
General Staff. The key principle he gave it was that of the
“directive.” In this method the senior (corresponding to the
sponsor here) gives no orders to the junior. Orders were re-
placed by the rule: the senior shall take all necessary time to
explain to the junior what the senior wants from the senior’s
point of view; then he shall leave the junior free to use all
personal initiative and local knowledge to achieve the goal.
Von Moltke evidently had the clearest intuitive understanding
of these quantitative flows.

Sometimes, however, the sponsor need not transmit every-
thing. What is necessary is that to the designer shall come
sufficient information (as determining factors) to enable him
to select his goal adequately. But the determination need not
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all come from the sponsor. A sponsor may well specify so much
and then say “I delegate the rest to .” He may
delegate it to a junior, who must then supply the rest. He
may delegate it to the designer himself. The designer may him-
self delegate further, to the spins of a coin, perhaps. But in all
cases the total of determination coming to the designer must
be not less than the quantity required for the selection of his
goal.

Such supplementation may take various forms. One well-
known form occurs when the genes set the goal for the living
organism. But, in the higher organisms, the goal is too complex
to be transmitted through the genetic channel, so a part of
the determination is delegated to the environment. Says the
gene-structure to the kitten, “I have told you something about
mice—now go out and get the finer details from the mice
themselves.” We call such supplementation “learning.” And
a learning machine is simply any machine that is specified
only partly by its designer, who delegates the remainder of
the specification to some “teaching” environment.

Quantities of Information

Once these general principles governing goals are clear, the
rest is a matter of special techniques in special cases. But there
is one aspect that I would like to mention, as I Lelieve it to be
of central importance. It concerns the case in which the goal
is of very high complexity, as in artificial intelligence, high-
order pattern recognition, and high-order regulation.

Without stopping to examine closely the idea of “com-
plexity,” T shall assume that a complex goal is one which has
many parts and in which the required relations between the
parts show high conditionality of part on part: when, that is,

\ the whole goal is a nonreducible function of many variables. I

want to stress that the dilference in information content be-
tween the simple (reducible) and the complex (nonreducible)
goal is enormons. The basic argument can be given clearly by
( using set theory. Thus: If each of n variables can take k dis-
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(A, mandm being constants), stability criterion (5) is fulfilled if:
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CONNECTANCE OF LARGE DYNAMIC (CYBERNETIC) SYSTEMS:
CRITICAL VALUES FOR STABILITY

Many systems being studied today are dynamic large and complex: traffic

at an airport with 100 planes, slum areas with 104 persons or the human brain with

10" neurones. In such systems, stability is of central importance, for instability
usually appears as a self-generating catastrophe. Unfortunately, present theoretical
knowledge of stability in large systems is meagre: the work described here was in-
tended to add to it.

Most of these large systems, often biological or social, are grossly non-linear,
which increases the difficulties associated with them. Here we consider linear
systems merely as a first step towards a more general treatment.

We have attempted to answer: What is the chance that a large system will
be stable? If a large system is assembled (connected) at random, or has grown
haphazardly, should we expect it to be stable or unstable? And how does the
expectation change as n, the number of variables, tends to infinity?

Monte Carlo-type evidence 2 had suggested that the probability of sta-
bility decreased rapidly as 7 was increased, in some cases perhaps as fast as
2-”, an exponentially-fast vanishing of the chance that the system will be
stable. This result, however, was for systems that were fully connected, where
every variable had an immediate effect on every other variable. While this case
is obviously important in theory, it is not the case in most large systems in
real life: not every person in a slum has an immediate effect on every other
person, and not every cell in the brain directly affects every other cell. The
amount of connectedness (‘‘connectance”) is often far below 100 per cent.

We have studied how much incomplete connectance affects the probability of
a system'’s stability.

Let the linear system’s state be represented by the vector x f=x <x .

e Xp >, where each x; is a variable, a function of time), and its changes in
time by the matrix equatson
x = Ax

To “join the variables at random” is to give the elements in A values taken
from some specified distribution. ‘“Non-connection from X; 0 X; " corresponds
to giving the element a/ the value zero. Thus, if the specsﬁed distribution has a
peak at zero, sampling from it will give the equivalent of a dynamic system with
many non-connections. The connectance, C, of the system can then be conveni-
ently defined as the percentage of non-zero values in/the distribution. Thus, if
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tinct values, then the number of reducible (i.e., rectangular)
relations between them is the number of rectangular subsets.
In the space of k* points, it is 2*. But the number of relations
in general, not restricted to the reducible, is 2%", Thus, speci-
fying one of these relations (the subject of events acceptable
as goal-achieving) requires, in the reducible case, kn bits,
and in the nonreducible case, k" bits.

The difference may be trifing to the printer, but numerically
it is out of this world. Suppose, for instance, that the traffic
at an airport involves only 100 variables (probably an under-
estimate) and that each variable need be distinguished in
only 5 degrees (again, a very moderate demand). If the goal
is reducible, specifying it may demand up to 500 bits; if it is
not reducible, the quantity rises to 10™ bits, one bit for every
atom in the universe! This fantastic leap is in no way excep-
tional; on the contrary, all that I have done in the last few
years has shown that it is entirely typical. Allowing interaction
commonly makes the informational content increase by vast
orders of magnitude.

In these huge quantities we have a useful fixed point, and
can keep some sense of proportion, by remembering Bremer-
mann’s limit.* Because of the quantal coarseness of matter,
nothing made of it, machine or brain. can process information
faster than about 10" bits/p/sec. Take tons of computer and
decades of time, and no feasible computation can handle more
than about 10 to 10™ bits. Thus, a generally complex goal,
in the very moderate airport example just given, is already
making demands quite beyond the achievable. I suggest that
many of our troubles today, in our struggles with complex
systems—especially in those researches that try to push into the
really large and new—are basically ascribable to the fact that
we are often attempting to handle quantities of information
that are, by Bremermann’s limit, actually unmanageable.

There are at least two ways in which the ideas and methods
of information theory may help. First, even a rough approxi-
mation may suffice to warn us that we are attempting the
impossible. Second, it may throw a quite unexpected light

———— sy - —

SETTING GOALS IN CYBERNETIC SYSTEMS

on the various strategic approaches to a problem. Here is an
example that I encountered recently.

Suppose, as in Fig. 2, that the designer has to select the
right function F in this system with the m inputs X, . . . , Xa.
Now this system has an obvious transmission from the X’s to
the Y's, but transmission in information theory means more
than the driving of electrons along a wire. Essentially, informa-
tion theory is the science concerned with deviations from sta-
tistical independence. If the values of the Y’s are not inde-
pendent of those of the X's, then the ordinary “transmission
through” occurs, but other deviations are possible. Thus the
Xi’s may show deviations from independence (correlations,
say) among themselves; then a transmission may be defined

will not be zero. What effect will such correlation have on the
quantity of information that must be handled by the designer?

Suppose T(X: :...: Xa) = 20 bits. Another way of writing
this fact follows.
OH(X,, .... Xu) = QLH(X,) y 9-20

Now “2 to an exponent entropy” is effectively the number of
indcpendent values, equivalent to the correlated. So the ex-
pression says that the transmission of twenty bits cuts the
effective number of states at the input to the fraction 2-%.
Next, take the fact that the number of mappings of p input
states into q output states (i.e., the number of F’s from which
the designer must select) is g®. To select one F may demand
up to p log: q bits. If q is fixed, the number of bits is propor-
tional to p. But p has been cut by 2-%, i.e., to one-millionth.
Thus, the transmission, among the Xis, of twenty bits does
not just, for instance, subtract twenty bits from the designer’s
work: it cuts his work to a millionth part.

Having in mind this example and my other experiences of
the last five years, I think it may reasonably be asserted that
our most urgent need in artificial intelligence (and similar
researches in highly complex systems) is that we be aware at
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every moment of whether the information content is dependent
upon a multiplier or upon an exponent. Crude and elementary
as this distinction is, without it a worker may struggle to
achieve a ten percent saving in efficiency, unaware that, be-
cause of a wrong basic strategy, he is working at a level a
million times too high.

1
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Information flows*
within co-ordinated systems

W. ROSS ASHBY
University of Iliinois, Urbana, llinois. U.S.A.

Summary

Every coordinated activity, whether in the movements of a tight-rope
walker’s limbs, or in the traffic flows of a big city, requires an internal flow
of information between the parts being co-ordinated. Once the co-ordi-
nation is well defined, the minimal quantity of internal information flow is
determined numerically. An example is given to illustrate the principle.

This numerical quantity can be partitioned in various ways, correspond-
ing .o the various organizational ways for managing the co-ordination. So
one can relate a proposed organization, in city or brain, to its resources for
internal communication, to see if they are compatible.

Effects with delay (“memory’’) can be included in the formulation without
essential change. Demands for memory, in co-ordinated activity, can be
met in a varicty of quantitatively different forms; so a designer can select
among them for the most appropriate. An example is given as illustration.

‘We have brains primarily so that our bodily activities may be co-ordinated:
$0 thut dur left hand shall act properly in conjunction with our right. Co-
ordination and integration have long been recognized in physiology as the
brain’s highest functions, but cybernetics today is equally concerned with
co-ordination in systems of other types. Big cities need co-ordination in their
traffic flows; the prevention of smog requires that many preventive and

* The work on which this paper is based was partly supported by contracts

~AFOSR 70-1865 and OEC-1-7-071213-4557
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the coefficients are drawn from a distribution with 99 per cent zeros, and if

n = 1,000, then each line of the equation would contain about ten non-zero co-
efficients, corresponding to a system in which each variable is directly affected
by atout ten other variables.

Because our work was essentially exploratory, we used the distribution in
which the non-zero elements were distributed evenly between —1.0 and +1.0.
The elements in the main diagonal, corresponding to the intrinsic stabilities of
the parts, were all negative, distributed evenly between —1.0 and —0.1. Thus
each sampled value of A corresponded to a system of individually stable parts,
connected so that each part was affected directly by about C percent of the
other parts.

On a digital computer, a value for n was given and a value for C. Ran-
dom numbers appropriately distributed were then sampled to provide a matrix

. barwitz’s criterion was applied to test whether the real parts of A’s latent
roots were all negative (the stable case) and the result recorded. Further sam-

-

ples, giving further As, allowed the probability of stability f/P) to be estimated.

The probability was then re-estimated for another value of C, and so on, until
the variation of Pwith C became clear.

The results showed the feature that we wish to report here. As the sys-
tem was made larger, a new simplicity appeared. Fig. 1 shows a selection of

the results, enough to illustrate the principal fact.
When n = 4, the probability that the system would be stable depended on

C in a somewhat complex curve (which could perhaps be predicted exactly).
But as n increases, the curve changes shape rapidly towards a step-function, so

I even when n is only 10, the shape might be so regarded, at least for some practi-

cal purposes. Thus, even at n = 10, questions of stability can be answered simply

by asking whether the connectance is above or below 13 per cent: 2 per cent

deviation either way being sufficient to convert the answer from “almost cer-
tainly stable’’ to “almost certainly unstable’.

Thematter is being investigated further, but it may be of general interest
to notice that this work suggests that al large complex dynamic systems may be
expected so-show the property of being stable up to a critical level of connect-
ance, and then, as the connectance increases, to go suddenly unstable,

This work was supported in part by the US Office of Scientific Research.
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remedial actions be co-ordinated if one remedy is not to be nullified by
another: and in social problems, too, the activities of welfare agencies need

co-ordination. The purpose of this paper is to show that all co-ordinations
require that information be transmitted within the system (a proposition
that might be thought obvious), but particularly to show that the transmis-
sions can be measured quantitatively. Every well-defined co-ordination spe-
cifies a basic total quantity of transmission. such that less than this quantity
makes absolutely impossible the achievement of the co-ordination. It will
also show that this total quantity can be analysed (partitioned) in various
ways so that we can see how much is required between the components. In
regulating tratfic flow, for instance, it would show how much transmission
1> required between point and point. In the brain. it would show how much
transmission is required between cell and cell, or between centre and centre.

Co-ordination is essentially a holistic phenomenon, discernible only over
the whole. The method of information analysis presented here is also of
this type. It does not say that between points X, and X; so much transmis-
s1on must occur: it treats all the transmissions as a complex interrelated set,
and allows the transmission between (say) X; and X; to take almost any
value provided that suitable adjustments are made in the other internal
transmissions.

The method could be presented in formal and abstract symbols. leaving
the reader to find their application. I prefer to present one example, per-
haps oversimplified, to show the method at work. The reader should have
little difficulty in adapting the example to his own needs. The example is
artificial; I would have preferred to have analysed real data, but it seems
that no one has yet collected data on co-ordination with sufficient breadth
to make this type of analysis possible. Perhaps when the existence of this
method is better known, the experimenters will supply appropriate data.

THE YIGHT-RQPE WALKER'

As cxample. let us consider that classic type of co-ordination shown by the
tight-rope walker. The focal condition (SommerhofT, 1950) is obviously that
his four hmbs must always have positions such that their centre of gravity
lies »emca!ly ‘over the wire. (To keep the example simple I here ignore such
.omphczmons as their angular momenta.) The unskilled person may well
be able to move his limbs through just as wide a range as the expert. but
.qnsknllc?“pcrson will use combinations of position. all four limbs to the
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left say, that the expert wouid avoid. Thus the contrast between the un-
skilled and the expert may be shown by the fact that the expert confines
his actions to a particular subset of those anatomically possible.

The suggestion is not, of course, derived simply from tight-rope walking.
As Sommerhoff (1950) showed extensively in biological examples, and as
Ashby (1967) showed in the terms of set theory and binary relations, the
identification of “‘co-ordination™ with ‘“deviations from statistical inde-
pendence in an n-dimensional frequency table™ is both broad and rigorous.
Given any well-defined co-ordination between n variables, there is implied
a frequency distribution over events in the n-dimensional space to which
Shannon-type measures of information are applicable.

It is simpler now to proceed by example.

To avoid infinitesimals, suppose each of the four limbs can go to one of
five places situated at distances -2, —1, =0, +1, +2 from the central
plane. Thus, if the limbs L,, L,. L;. L, are at (respectively) -1, +2, -1,
+1, the average is +0.25, and their center of gravity is away from the cen-
tral plane. If we allow two or more limbs to be at the same distance, there
are 5* possible distributions (postures) of which only a subset would be
used by the expert. It is easily verified that of these 625 postures, 85 have
the zero average of the co-ordinated posture (61 in the 6 types of symmetri-
cal distribution such as 00400, 01210. etc.; and 12 each in the asymmetrical
10120 and its reflection).

To obtain the necessary frequencies (or probabilities after dividing by
the total) we may proceed on either of two assumptions (that lead, in fact,
to just the same numerical results). One way is to assume that the 625 pos- -
tures, of the unskilled and the 85 of the expert are actually equiprobable, a
very arbitrary assumption that may well be false when we consider actual
people. The other way is to think of the case where the facilities for trans-
mission will have to be provided, and to ask: suppose the worst happens—
that without transmission all 625 postures occur, and that the expert (for
othe: reasons) may be forced to produce all the 85: what is the least quantity
of transmission facility that we must provide to be safe? This second form
of the question seems to be free from objection (unlike the first), so [ shall
‘reat it as the question to be put.

With the frequencies now assumed to be equal (or the probabilitics after
dividing by 85) we can now find the basic entropxes These are defined in the

usual way, by Z |
HX) = ¥ p,log (—)
d P
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As we shall be using frequencies here, however, an arithmetically more con-
venient method, if the frequencies are n,, n, ..., n;, ..., summing to a, is to

find H(X) as |
- (n logn — 3 nlog n,)

n

(With the n, all integers, much interpolation may be avoided.)

In the general case, these entropies would be found by whatever method
was appropriate. In this example we can soon find that L, has the following
frequency distribution, in the co-ordinated postures.

Value: -2 -1 0 +1 +2
Frequency: 15 18 19 18 15 Total: 85

So H(L,) = 2.315 bits/posture. By symmetry, this is also the value of H(L,)
etc.
(L,L,) has the following distribution, over its 25 values.

+2 s 4 3 2 1 15
+1 4 5 4 3 2 18
L,: 0 34 05 4 3 19
-1 203 4 5 4 I8
=2 i I 2 3 4 5 15
-2 -1 0 1 2
L,

So H(L,.L,) = 4.544 bits/posture. All the 85 values of (L,L,L,) are dif-
ferent, so H(L,L,L,) = log, 85 = 6.409. Similarly H(L,L,L,L,) = 6409
bits/posture. If a posture is significant over a time span of (say) 0.5 seconds.
then twice these numbers would give the entropies in bits per second.

PARITIONING THE INFORMATION FLOW

The farther analysis uses the methods introduced by McGill (1954) and
developed by Garner (1962) and Ashby (1965. 1969). The most important
quantity required now is the total transmission. represented and defined by

T(L,:Ly:Ly:Lg) = H(L,)+ H(L;) + H(L;) + H(L,) - H(L,L,L,Ly)

It measures the total deviation from statistical independence implied by the
co-ordination (with the marginal distributions given). Here its value is
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2.850 bits/posture. Its importance is due to the fact that with less than this
total quantity of internal transmission the co-ordination cannot be ensured.

It is worth noticing that the total transmission required is not the obvious
log, 625 — log. 85 (= 2.878) but a quantity smaller by 0.028. The reason
is that the larger quantity would apply were each variable L, to be distri-
buted evenly over the five values. In fact the distribution (in the co-ordinated
case) is not even. Thus, if the variable’s distribution is changed from 17, 17,
17, 17, 17 to 15. 18, 19, 18. 15, the change would bring the conjoint 4-vari-
able distribution nearer to the co-ordinated form without any transmission
being used between the variables. Thus the algebraic and numerical analysis
has already revealed a possibility for economy and efficiency that otherwise
might have passed unnoticed. (In this example the gain is trivial; in other
cases it might be of major importance.)

The total quantity of transmission required may be obtained by adding
various components. One possible way is to use the fact that T(L,:L,:
L,: L,) is identically equal to

T(L,:L))+ T(Ly:Ls) + T(L,Ly:L;Ls)

Such a partition would be appropriate if the total co-ordination were
achieved by mechanisms or channels that ( 1) achieved suitable co-ordination
between L, and L. (between the arms. say) regardless of the positions of
the legs. (2) achieved co-ordination between the legs regardless of the
arms. ard (3) co-ordinated arms and legs in a way not depending on the
details of the relation berween the arms (e.g. if the arm-pair has centre of
gravity at +0.5 then the leg-pair must have centre of gravity at —0.5). The
three quantities are found to be

0.086. 0.086. and 2.678

(respectively), summing to 2.850. of course. .

Such numbers may be useful in various ways. Thus, suppose that only
2-bit shannels were available. Instead of taking two such channels to
achieve the 2.678. we could try another way of distributing the transmissions.
Another way is represented by the partition (of the total) to

T(L|:L2) + T(L|L2:L3) + T(L,LzL;:L;)

This partition would be appropriate if the co-ordination were achieved by
frst a constraint holding between L, and L.: second. by the cutcome of




132

Main papers

this constraint (the vector (L,L,)) acting to constrain L, ; and then the
consequent {L,L,L;) acting to constrain L,.
The quantities required are (respectively)

0.086, 0.449 and 2.315

still excessive in the last quantity. We have also, however, that this last
quantity may be partitioned further:

T(L,LoLy:L) =T(L\Ly: L) + To,(LyiLs)
2.315 = 0.449 + 1.866

Thus the requirement could be met by an extra channel of capacity 0.449,
together with one whose average capacity is 1.866, linking Ly and L; with
the coding between them determined conjointly by L, and L,.

Here I have written as a designer might see the matter, and use the equa-
tions to guide the design. The physiologist might use them if, say, he knew
that no channel of more than 2.000 bits/posture was neuronically possible.
Then the analysis would show decisively that any proposed neuronic arrange-
ment using the first mode must be rejected: such a net could not achieve the
observed co-ordination.

The coding question will not be treated in this paper as it is still being
studied. By Shannon and Weaver’s (1949) theorems, the necessary codings
will certainly exist, but the theorems assume that successive acts of co-ordi-
nation (successive postures here) can borrow signalling capacity in order
to make up an cfficient code. If this cannot be done, then the actual capa-
cities required may be somewhat higher than the numbers given here.
Further consideration of coding can be given only when more details of the
particular case are available.

MEMORY

in the co-ordination just described, it has been assumed that the variables
specify the positions of the four limbs taken simultaneously. Exactly the
same logic, and the same algebraic method hold good when the co-ordina-
tion occurs over time: when later events must be co-ordinated with earlier.
/1 (X, Y) may be the entropy of two distant events taken simultaneously,
but it is equally possible that X and Y are separated only in time, so that
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X = Z(t) say, and Y = Z (¢ + k). Now, if the system is to co-ordinate X
and Y, it must have “memory”, in some form, over the time span k. An
example will show the method and something of the possibilities. Again it
is artificial, for lack of presently existing real data.

Let us suppose that three unmanned vehicles will be landed on a planet,
which has five places of interest. It is required that the three vehicles shall
(1) at one time go to some three of the five places (no two vehicles to the
same place), and (2) at another time, meet, all three, at a place other than
those visited singly. (Events (1) and (2) may occur in either order.) And it
is required that the co-ordination’s demands on memory shall be minimal.

The computations are straightforward. We prepare for the worst case,
where all events and distributions are equiprobable. Let the five places be
{1,2.3,4, 5}, and the three vehicles {4, B, C}. Let 4, B, C represent their
places on the first occasion in real time (regardless of whether event | or 2
is achieved), and A’, B’, C’ their places on the later occasion. Thus the vec-
tor A, B, C. A', B’, C’ would show the defined co-ordination if its value
were (4.4, 4,5 2, 1>0r(2,5,3,1, 1, 1), and other similar combinations.

The basic entropies, in the “‘co-ordinated” case, are easily found.

(1) The Svalues of A occur all with frequency 48, so H(4) = log, 5
= 2.322. Similarly for H(B), ..., H(C’).

(2) The 20 permitted values of AA’ occur all with frequency 12,50 H (4, 4")
= 4.322: similarly for H (B, B’) and H (C, C).

(3) Of 4BC, 5 values (event 2) occur each with frequency 24, and 60 val-
ues (event |) each occur twice. So H(A, B, C) = 5.114 = H(A'. B',C’).

(4) The 240 permitted values of ABCA'B'C’ each occur once; so
H(A.B,C A", B'.C") = 7.907.

The units are bits per double event.

One obvious way of organizing the system is to co-ordinate within each

event at each of the two times, and also to co-ordinate between the two

u.mcs.« :l'hF total transmission required over both distributions of vehicles,
15 6.C25 bits, analysed to

T(A:B:C)+ T(A':B:C)+ T(ABC: A’B'C")
1.851 + 1.851 + 2.322

. Al:loxher method of organizing to achieve the co-ordination, would be to
onsider the “trajectory” (or transition) taken by each vehicle, as A4 might
8045 Bd~2andC4 -1, and then co-ordinate the trajectories. This
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Summary: Little is known about the behavior of dynamic systems with many
intricately interacting parts, and about the factors which tend to affect their
behavior in general, rather than detailed, ways. This paper describes a study of
such systems built up out of unit elements which compute recursive logical
functions.

Each element has two binary inputs and a binary internal state which is also
the element’s output state. (Output of elements can be branched.) Recursion is
introduced by lettering the element’s state at the next instant of system time
(t + 1) be a function of the present states of the two-inputs as well as its internal
state at the present system time (t). Hence, there are 256 different functions that
can be computed, and a particular element’s behavior is defined by the one func-
tion it computes. )

One hundred identical elements connected at random constitute one sys-
tem. Two hundred fifty six types of systems, corresponding to all the 256 logi-
cal functions, are studied by computer simulation, using five different sets of con-
nections, starting the systems at ten randomly chosen initial system states. After
being set at the initial state each system produces its behavior without further
interference. We studied particularly the effects on these behaviors of those
factors that might determine (i) how long a system would take to arrive at its
terminal cycle and (ii) the size (periodicity) of the cycle shown terminally.

Among the facts elicited, the following seem especially notable:

1. Such systems tend to end in a complex cycle of behavior. The very
short cycle is by no means the common ending.

2. The style of behavior, .apart from details, is often strikingly inde-
penceat of the pattern of connection.

3. One of the factors markedly affecting the length of time before the
terminal cycle can be detected by an observer is the extent to which the elements
act as informational transmitters.

4. A factor strongly affecting the tendency to terminate in a very short
cycle is the number of conditions in which the elements’ states will remain un-
changed at the next instant of time.

5. The use of elements whose transitions are highly dependent on the
element’s preceding states encourages short initial periods before the system
reaches long terminal cycles.
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would demand the quantities

TA:A)+T(B:B)+T(C:CH + T(4A4': BB : CCY
0322 + 0322 + 0322 + 5.059

0.966

The term T (A4 : A’) represents “memory” affecting only vehicle A, regard-

less of what the other vehicles do; and the same for vehicles Band C. What
“memories” of this type demand only 0.966 bits

is striking is that the three
hé single, and more obvious,

as compared with 2.322 bits demanded by t
first type. The method thus enables different functional forms of “memory”
to be examined for various characteristics.

One would, of course, also have to consider the physical method used to
achieve the co-ordination between transitions. T(AA': BB : CC). Itis suf-
ficient for us here to notice that these numerical analyses refer only to devia-
tions from statistical independence in their quantities. not to any reasons.
or physical causes, for the deviations. Thus any quantity T. here called
“transmission”. does not necessarily need an engineer’'s communication
channel: suitably paired responses to a common signal may well provide
the formal ““transmission”’ demanded by these identities.

The coding problem remains, but I am content if [ have shown that the
fundamental concepts of cu-ordination and integration can be measured,
and that the measurements may give information about the system that is

much deeper than can be obtained by simple intuition.
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Information Processing in
Everyday Human Activity

W. Ross Ashby

Information-processing in Man has so
far been tested by finding his utmost
capacity on somé highly specialized task
§uch as playing the piano or stenograph-
mg'speech. How much is transmitted
during his ¢veryday life has been, so far
as we are aware, not estimated. Yet this
quantity must be basic in any study o
his higher psychophysiok)gy.yWe lZav‘:
therefore attempted to assess it.

‘ We soon found that while the obtain-
ing of numerical estimates was easy
these estimates differed so widely-f-by'
factors of a millionfold or more — as to
make clear that the real problem was
not .the obtaining of numbers but the
elucidation, and the logical justification
of ‘tl‘xe method to be used. Several pos:
sibilities were explored. In this article
:;al;epon on, and confine ourselves to,

o Wﬁ no“( consider the essentials.
of thzecxél!'y instructive is consideration
that mmrmmql q.uantity of transmission
“ u'st‘ occur if some piece of every-
c&‘);faftmty is to be accomplished suc-
tvenu lfy. Thus, if a man is to walk for
" hia €W steps, the various movements
add: P, knee, and ankle (with minor

1uons) must be coordinated; that is

The authop |
of Electrin 0¥ i3 & profeesor in the Departm
v m::fne-l Engineering, University of Illia:i:f

to say the various movemients must not
occur with statistical independence.
S‘uc.wufnl walking implies a major de-
viation from independence, and this
deviation can be measured by Shan.
non’s (1949) and McGill's (1954)
measures of “transmission.”

This “transmission,” as b bits per
second, does not imply that b bits must
be sent from the hip's sensory endings
to the knee's muscles of control; but it
does imply that at least b bits per second
must be transmitted somewhere in the
system, in some appropriate manner, if
the whole coordinated activity is to be
produced by the normal processes of
cause and effect.

.To 'make the idea perfectly clear,
since it is basic, let us consider the
fpilowing simple example of coordina-
upn.( not quite from everyday life): A
pianist, during a passage, plays on the
notes A, B, C, D, E, F, but only so
as to produce chords of the interval of
a thnyd. If we form a frequency table
showing how frequently the two fingers
(X and Y) struck the various pairs, the
fmly nonzero frequencies will be those
in the asterisked cells of Table 1.



TABLE 1

Total

F o 0 0 * g 8 1

E 0 0 * O 1

dyey D 0+ 000 2
by C e 00 0 * O 2
finger B o000 * 0O 1
Y A 0O 0 * 0 0 O 1
A B CDEF 8

Note played by

finger X

If the nonzero frequencies occur equally
(the most severe case), the entropy of
Y (=3 P log,P) will be on the prob-
abilities Y6, V8, V&, Y4, V8, '8, and will
thus be 2.5 bits. H(X) has the same
value. H(X, Y) will be of % repeated
8 times and will thus be 3.0 bits. The
transmission implied by the restriction
on the pairings is then 2.5+2.5-3.0,
i.e., 2.0 bits per chord. Similarly, every
set of actions showing coordination be-
tweet variables implies a minimal
quantity of iransmission between those
variables. It should be noticed that ask- -
ing “how little can a man transmit?” i8
by no means as absurd as it may at
first seem. This minimal quantity of
transmission to achieve a given co-
ordination may be regarded as analo-
gous to the minimal quantity of work
that a man (of known weight) must do
to climb a given height. This latter
quantity is fundamental in any question
of energy: our quantity has a similar
statvs in any question of coordination.

Whzn the variables are more than two
— 1 Xo oo Xy say — the measure
of the total transmission necessary (O
achieve the given coordination will
be given by T(X;: Xz:. . X)) =
H(X,) +. . +H(X,) —HX,, . . ..
X,) (McGill, 1954; Ashby, 1965).

With these ideas in mind, we took the
following defined Action as basis for
study and as reasonably typical of a
piece of “everyday life.”

(The human subject is given as
being engaged in reading when he
encounters an unfamiliar French
word.)

Action: He walks across the room
to his book shelf (avoiding a chair
that is in his path), finds his French
Dictionary (among 100 other books),
finds the word, reads the English
translation, and writes down the cor-
responding English word.

Now “information,” as understood
today, has meaning only when defined
over some sample space (Shannon), or
over a set of frequencies (McGill): the
multiplicity of possibilities is essential.
If therefore we think of this Action as
having been performed by a particular
person in a particular room on a par-
ticular day, then rhis event is unique
in the universe, has no multiplicity, and
makes any question about its informa-
tional properties merely improper. To
bring this event into some relation to
a measure of information, we must ex-
tend it to a ser of Actions. It is this
extension, in our opinion, which is the
critical and essential step in the develop-
ment of a logically defensible method.

This point of view (if disputed) may
be made more plausible by considering
a related question in the measurement
of probabilities. Suppose we watched
the door of Smith's store and ascer-
tained the urique fact that the last
person to step through the doorway

pefore 12 noon was male. (This is the
“particular event.”) The question might
then be raised: What is this event’s
probability? -

Such a question demands a sample
space: none has been defined. If the
question of probability is to be pressed,
a sample space must be provided.
Clearly, the particular event may be
embodied in many different sample
spaces, each of which will give its own
measure of the event’s probability. Thus,
we might extend the event to include
all those people who passed through
Smith's door at all hours of the day,
or, keeping the time to noon, we might
extend it to include the doors of all
the stores in the street; and many other
extensions are possible. Clearly, which
extension is selected must depend on
other criteria, depending on why the
question was raised in the first place.
Here all we need notice is that, so far
as method is concerned, some sample
space must be selected.

The foliowing extensions of the
unique Action seemed to us to be
reasonably in accord with our restric-
tion to “everyday life”:

1) Variations that would occur even
if the subject attempted at once to re-
peat his Action.

a) Those due to inaccuracy of
muscular movement, as in
walking.

b) At what pages the Dictionary
falls open as the subject searches
for the word. ,

2) Variarions that might not occur
on immediate repetition but would
ocecur i similar Actions were taken on
other days.

a) The particular French word
sought.

b) The position of the obstructing
chair.

¢) The position of the Dictionary
among the other 100 books.

I 3) Nort varied (in our study below)
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were all variables not in (1) or (2)
above; in particular:
a) The architectural features of
the room.
b) The subject's initial position in
it.
¢) The French Dictionary.
d) The other 100 books.
e) The subject himself, his past
experience, and his memories.

With the set of Actions well defined,
we can now proceed to obtain well de-
fined estimates of the necessary trans-
mission between the variables if the
coordinated and successful Action is to
be achieved. (And as the average adnlt
does perform the Action successfully,
we can be sure that the average adult
does transmit at least this quantity;
should he transmit more, the excess
measures his inefficiency.)

The computation, and its logic, can
perhaps be made clearer if the following
proposition be accepted as an axiom:
Once the sample space or set (over
which the transmission is to be com-
puted) has been defined. the computa-
tion proceeds in just the same way. and
must arrive at the same number.
whether the subject is an intefligent
Homo or is a Robor designed 10 per-
form just that set of uctions and nothing
more. The approach through this axiom
may reduce greatly one’s initial intuitive
estimate of what is necessary. In partic-
ular, it removes from our consideration
all the activities within the nervous sys-
tem. for these activities are neither
described nor varied in the defined set
of actions. (If the reader prefers to in-
troduce neuronic variations into those
listed above, his numerical answer
would be different from ours: the
method, however, would be the same.
Essentially, he would be answering a
different question.)

The Action falls naturally into about
nine successive components that are
sufficiently’ independent for their trans-



missions to be compounded by simple
addition. The nine are given in Table
2, with our estimates of the transmission
required in each component (details
are given in the Appendix). Though
many modifications might be made, our
experience has suggested that such
modifications are not likely to change
the estimates by more than a factor of
about 2. We are content that better
estimates may be made later; in this
paper our focus is essentially on the
logic of method.

TABLE 2

(1) Walking 10 paces on two

legs while maintaining nor-

mal verticality ............... 30 bits
(2) Selecting a path to avoid

collision with the chair .. 10 bits
(3) Finding the Dictionary

among the 100 other books 7 bits
(4) Reaching out to the Dic-

tionary, grasping it, and

removing it from the shelf 22 bits
(5) (When the book falls
open) Identifying how the
opening is related to the
wanted word' .......cccc.c... 10 bits
Repeating the opening by
finger-movements till the
page of the wanted word is
reached: .......coeivmeiicnnnns 39 bits
(7) Reading the French word

(to verify that the correct

word has been reached).... 6 bits
(8) Reading the corresponding

chiglish word (taking it to

some -central “cerebral”

31171 - KOOSO 14 bits
(9) Converting the stored

word, through finger-

movements, to a written

WOPd oo 31 bits

Total 169 bits

(6

~

Discussion

The most surprising feature of the
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final result was, to us, the smaliness of
the number: 169 bits for about a
minute’s activity, or 3 bits per second.
On further consideration, however, we
concluded that the estimate may be
essentially sound, for the following
reason.

The question asks, in effect: If a
robot is built to carry out the defined
Action successfully, with the coordina-
tions and corrective actions necessary,
how much transmission must be pro-
vided? The answer cannot be far from
our estimate, for either the machine
will not be able to give a tolerable
imitation of this Action (by being ex-
cessively clumsy), or it will demon-
strably be using transmission wastefully.
Yet even if it (or the human counter-
part) were only 1% efficient, and used
300 bits per second, one would still
want to know (say) why man’s optic
nerve, with about 500,000 fibers. offers
at least that latter number of bits per
second. We may well ask: Why do
man's sense organs accept all the extra
information?

A possible answer is suggested as
soon as we realize that the two systems
we are comparing are a Robot (or a
man) performing the defined Action
and nothing more, and the man of real
life. who can perform not merely this
Action (call it 4,) but who can also
perform a great number of other Ac-
tions Aj, A3, A, ... Even while en-
gaged in A4,, the normal man is able
to respond to the intrusion of other
variations — the ringing of the tele-
phone, the discovery that the Diction-
ary is missing, the collapse of the book-
shelves. and a host of variants not given
in our list of “‘everyday variants™ above.
These choices berween A,, Aa, As, etc.,
will require a “higher level” activity
with information-processing extra (o
that used within any particular A. Our
estimate suggests that this “higher level”
activity, not detectable while the Action
is in progress, is. in fact, requiring much

larger quantities of transmission than
that used in the more obvious Action
itself. One is reminded here of the mod-
ern computer, which differs from the
older computer largely in the amount
of organizational activity it undertakes,
activity concerned not with direct com-
putation but with which computation
shall occur, and how and where.

Any estimate of the quantities of
information-processing occurring  in
these higher levels requires, of course,
consideration of the population of A's,
and is beyond the scope of this study.

Finally, the fact that these estimates
are acutely dependent on just which
sample space is chosen (and chosen
arbitrarily) may disturb the reader. for
the freedom implies that the choser can
make the estimate. here 169 bits, take
any value he pleases. Can so arbitrary
an estimate have any scientific value
or use?

Here we would point out that a some-
what similar situation. exists with “po-
tential energy.” The potential energy
of a brick, say, can be given anv arbi-
trary value, either by digging a suitably
deep well under it (into which it can
fail), or by bringing a suitably cold
object near to it (to which it can give
heat), or even by bringing up some
antimatter! Yet the concept of potential
energy in physics is obviously by no
means useless. In practice, of course,
we commonly use it to find its change,
AE, which makes the arbitrary total
value irrelevant. In addition, the quan-
tity ot potential energy is always dis-
cussed in relation to the operations in
which it takes part. Perhaps one result
31 our work is to suggest that the

quantity of information” in a biologi-
cal system would be better considered
ot as a measurement to be made for
its own sake but in relation to a defined
et of operations in which it is playing
an active part.
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Appendix
The Estimates

Component . Assuming a minimal
analog for walking of 4 states of leg posi-
tion and 4 states of each arm for balance,
and assuming a 7-position plumb bob as
a reference for balance orthogonal to the
line of movement: for transmission be-
tween the bob and the left arm, 4 log, 4,
i.e., 8 bits; similarly for the right arm.
For transmission between the legs, also
8 bits. Starting and stopping, each requires
in addition that the organism must turn
the plane of the bob and change the degree
of freedom of both the arms, so an addi-
tional 6 bits will be needed.

Component 2. The subject can avoid
collision if he can select to about % ft
in a 10 ft width (= log, 20, i.c., 4.3 bits),
and if he can select to % ft in 30 ft of
progression (= log, 60, ie., 5.9 bits).
Thus the avoidance of collision does not
require more than 10.2 bits.

Component 3. To select one object from
100 others requires log, 100. i.e., 6.6 bits.
More may be necessary in practice because
the difficulties of coding may lead to the
use of an inefficient form of coding. But
in any case there is no need to exceed 100
bits, for this would suffice for the very
ineficient method (when both the Dic-
tionary and other books are uavarying)
of examining them one by one.

Component 4. To reach to a given point,
shoulder. elbow, and wrist wiil have to
be appropriately set to one of about 32,
16, and 8 positions respectively. The three
are not wholly independent, so that the
transmission necessary will be somewhat
less than the sum of 12 bits. Once the
hand is near the book, theré may still be
required a hooking of the index finger over
the top of the spine — one of 8 positions
at the middle joint and one of 4 at the
terminal joint (= S bits), and similar
movements at one other finger to grasp the
book opposite to a rigid thumb.

Component 5. Since the book is opened
(by component 6) as approximately a
dichotomy, the decision whether the
wanted French word lies before or after
the place of opening requires no more than
about 1 bit. However, a code using as



The significance of these facts for various applications in biological compu-
ters is discussed.

1. introduction

A complex system is conveniently defined (Simon, 1962) as anything made up
of many parts that interact in a non-simple way. At present there is little known
about the behavior of such systems, even those with otherwise relatively ele-
mentary features. The work reported here examines temporal characteristics
of behavior in a family of complex systems defined with reference to theoretic-
ally basic properties of the systems’ parts and their interrelationship. The work
was undertaken to provide a better grasp of how systems behave generally, that
is, to sketch extremes, to find the behavior to be expected typically, and to ex-
amine the possibility that styles of system behavior may be related to simple
characteristics of the parts’ behavior.

The data are discussed from a point of view that will be most familiar to
the biologically oriented reader. However, since control mechanisms in demand
today are approaching biological complexity, and as the increased use of heuris-
tic programs and Monte Carlo methods in conventional computing machines sug-
gests that there may come to exist a need for probabilistic machinery, the results
given here.may be of interest to hardware-oriented readers as well.!

The parts composing the systems studied are simple electrical devices, here
called elements, that can interact with one another. Each system is formed by
taking many elements and joining them in an intricate arrangement; a family of
systems is produced by systematically varying the elements’ behavioral properties.
The typical behaviors of individual systems of the entire family are the objects
of experimental inquiry.

Given primary attention are three aspects of behavior: (1) the periodicity
of the systems’ terminal behavior, i.e., the length of time between repetitions in
terminal behavior; (2) the duration of the temporary behavior, i.e., the length
of time before the system settles into its terminal behavior; and (3) the activity
in the system, i.e., the relative number of elements that change states, from one
instant of time to the next.

1. A more detailed treatment of the work is found in: “‘A study of a family of complex
systems, an approach to the investigation of organisms’ behavior,” by C.C. WALKER, AF
Grant 7-64, Technical Report No. 5, June 1965, Electrical Engineering Research Laboratory,
Engineering Experiment Station, University of lllinois, Urbana, lllinois. Available on request
through the Biological Computer Laboratory, Department of Eiectrical Engineering,
University of Illinois, Urbana, llinois, U.S.A.

Previous results (Ashby, 1960; Fitzhugh, 1963) suggest that in intricately
structured systems the production of very short cycles is related to the tendency
of the parts to remain unchanged at the next instant of system time, and that
systems which produce very short cycles reach activity levels of zero along an
approximately exponential decay. Little else about such systems’ behavior of
relevance to the present study is known at present.

2. The Systems Studied; the Behavior Observed

2.1 The Systems Studied

The systems examined are:

a) Structurally intricate. A system's structure, by which is meant the net-
work of connections that mediate its elements’ interactions, has many loops and
is without obvious regularity: the ‘“‘circuitry” implied by the structure is very
involved.

The process by which structures are actually determined is given in abstract
terms below, and is interpreted operationally in Section 4.

b) Structurally rigid, The structure does not change thereafter, once a
system is constructed.

¢) Built of simple parts. The basic parts of which the systems are built,
i.e., the elements, are functionally elementary. Elements are described fully
below, but, to anticipate that discussion, they are devices just complicated
enough to provide for structural complexity in the system, and to allow memory
in the individual element.

d} Functionally homogeneous. The elements of any one system are
identical. '

e} Not influenced by factors outside the system. The activities of the
systems are determined wholly from within, except for certain ‘‘start” and
“stop" prerogatives reserved to the experimenter.

f] Clocked. Time, in the systems, is quantized.

Elements. So as to consider basic forms, the elements are taken to have
two states, two independent inputs and any number of outputs; their inputs’
states and their own states determine their succeeding states. The outputs of
an element at any time carry the element’s state at that time.

Transformations (Ts). Given the form of an element established above, a
table such as Table 1 is a suitable representation of an element’s behavior.
Table 1 shows what the element’s next state will be when its present state and
its inputs’ states take the values shown. The table gives the element’s
transformation (T).



little as this would be difficult to con-
struct (identifying which letter of the
aiphabet is at the opening would require
log, 26, ie., 4.7 bits). Over the whole
Action, with 10 such decisions, 10 Dbits
would be the minimum.

Component 6. A book of 1024 (=210)
pages requires 10 dichotomies to arrive
at a particular page. If each dichotomy is
not accurate but is made within the middie
one-fifth of the block, log. 5. i.e., 2.3 bits,
is needed for the selection of this fifth.
Further, after each dichotomy, the decision
whether to operate on the left or the right
block demands 1 bit: 3.3 for both. Ten
steps require 33 bits. Then, oa the selected
page, one word must be selected from
(say) 50 words, a further need for 5.6
bits.

Component 7. Testing whether the lo-
cated word in the Dictionary is the same
as the sought word requires no more than
deciding first whether the initial letter of
each word is “same or different,” a 1-bit
discrimination, followed by 1 bit for each
succeeding letter. An average word of 6
letters thus has a basic requirement of 6
bits. As the coding would have to be
somewhat peculiar to achieve the mini-
mum, the practical requirements will usual-
ly be somewhat greater,
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Component 8. To obtain some state in
the brain corresponding to some one word
of 20.000 requires a transmission of log,
20,000, ie.. 14.3 bits. (H(X)=H(Y) =
H(X,Y) = log, 20,000.)

Component 9. Transcribing the stored
word. with the subject experienced in writ-
ing whole letters, requires less than log, 26
bits per letter (4.7), with (say) a repeti-
tion of 1 in 10 for error (of known loca-
tion). requiring a 10% increase. A 6-
letter word would thus require 6 x 4.7 x
1.1 = 31 bits.
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Measuring the Internal
Informational Exchange in a System

by W. Ross AsuBY (%) (United Kingdom),
Professor at the University of lilinois, Urbana (U.S.A.)

If the researches in Cybernetics of the last ten years have shown
anything, they have shown that really large systems — the living
brain, an actual society, a big computer program, the biochemical
processes of a cell, a nerve-network — have such excessively large
complexities that the scientist, having only relatively small resour-
ces for their study and control, must necessarily simplify. He
must focus his attention on some one aspect at a time, tempo-
rarily ignoring all others. '

The force of this argument has recently become overwhelming.
When large quantities of information-processing was demanded,
one used to feel that all that was necessary was vet a little more
speeding up of the electronic machinery, or perhaps a doubling
or so of the size of the computer. BREMERMANN (1], however,
has now demonstrated that no system made of matter as we know
it today, and therefore subject to the mass-energy relation and to
Heisenbergian uncertainty, can possibly process more than 10¢
bits per gram per second. Take tons of computer and centuries of
time, and one merely adds a few units to the exponent. Nothing
is easier, however, than to make demands that go almost infinitely
beyond this limit. Suppose, for instance, that a machine has 10.000
two-state relays : any thought of searching through its configura-
tions instantly raises a demand for at least 2!, i.e. for 103
operations. This number is physically impossible by a little less
than 3.000 orders of magnitude. Cybernetics is today known to be

{" Text of a lecturc given at the 4th Internassonal Congress on Cybernetics, Namur.
19-23 october 19u4.

The work on which this article is based was supported partly by the United
States Air Force Office of Scientific Research, under Contract AFOSR 7-63



Table 1. The Standard Form for an Element Transformation
Tuble, here a General Trunsformation

Next Present
Ntate of Element State of Eletent
0 1
0 " € ey
Present Statesof 0 1 ey g
Inputs 1 0 (29 2
(L, R) 1 1 °y ey

The states of an element are formalized as the integers 0 and 1. For sim-
plicity, the inputs to a given element carry the states of the elements which out-
put to the given element. The two inputs on an element are kept separate
from one another and are arbitrarily designated its left (L) and right (R) inputs.

FIGURE 1.

An arbitrary
field with
six teen
states.

The marginal headings will be omitted in later transformations when no
confusion is likely to result from their omission.

Each table entry €.8,y...,8 is either 0 or 1, and is assigned one of
these values in any particular transformation. Since there are eight different
entries and each may be 0 or 1, there exist 28 or 256 different transformations.
We consider them all.

Structures (Ks). The structures used are generated by a process which
can be visualized as follows: Let N elements be numbered from 1 to N.

Place the numbers 1, 2, ..., ¥ in an urn. Take the first element’s left input,
draw a number at random from the urn and join that input to an output of the
element designated by the drawn number. Replace the number in the urn.
Repeat for the right input. Continue the process for each of the rest of the
elemets, The end of the process is a definite structure (K/. There is nothing
variatde or probabilistic about it once it is obtained. Note that self-affecting
elements are permitted. Note also that each input is connected to some ele-
ment in the system; the systems are therefore autonomous or input-free in
the terminology of automata theory. As a further simplification, the struc-
tures are taken to be rigid. As was already mentioned, once a structure is
defined, it does not change thereafter.

Time. Time in the systems is discrete, t =1, 2, 3, ..., and the actions
of the elements occur simultaneously. When an element assumes a state, its
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outputs immediately communicate that state to those elements which it affects,

2.2 The Behavior of the Systems

The state (henceforth, when unqualified, this word refers to the state of
the system) is the set of all element-states at a particular time, the elements
taken in a fixed order (the order of their conventional numbering). For any
given system its state at any time is a function of the preceding state, and noth.
ing else. Denoting by S the state at time t, and by S’ the state at time ¢ + 1,

§'=f£1s), (1)

where f is itself a function of the transformation and the structure. Thus, the
systems of this study are ‘“independent mechanisms” in the sense of Murray
(1955).

Fields. Each system of this study can be considered completely deter-
mined by the specification of (1) a transformation and (2) a structure. These
two data determine not only the specific system in the physical sense, but
its entire repertoire of behavior as well. A system’s behavioral repertoire is
conveniently visualized in the form of a diagram, e.g., Fig. 1, in which points
represent states, between which are drawn arrows representing the system’s
state transitions determined by f [of Eq. (1)]. In this study such a diagram
is called a system's field.

Cycles-Terminal Behavior. 1f the points in Fig. 1 represent all the states
of some arbitrary system, then arrows suitably drawn between the points form
a field. The systems of this study are independent mechanisms. Their fields,
therefore, show connected arrows ending in sets of states which, if the systems
are thought of as working with no limit in time, are continually reproduced.
These states are the systems’ terminal, or permanent behaviors. Such states
are commonly said to be in cycles The number of states in a cycle is here
called the cycle length, which is the length of time between successive repeti-
tions of any one state in the cycle. In Fig. 1, there are three cycles, with
cycle lengths of one, four, and one states, respectively.

In the present study, very short cycles, those of length one, are given
special attention. Cycles of length one are here called states of equilibrium.
Such states are formally equivalent to what is common in the biologically
important concepts: ‘‘is at rest,” “has decided,” “is adapted,” ‘‘has learned
the task,” and so on.

Run-Ins — Temporary Behavior. n Fig. 1, note that there are states
which are not in cycles. Once produced, such states do not recur. These
states are the system’s temporary behavior. A trajectory segment which im-
mediately precedes a cycle is here called a run-in. _The number of states in the
run-in, from some initial state up-to, but not including any cyclic states, is
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urgently in need of methods that shall give us what we can actually
get — that shall give us what we really want, not what we think
we want. Finding methods for simplifying is thus the very core
of today’s problems in Cybernetics.

One such method is to study the system in its informational
aspect. The aim of this paper is to show how this aspect can be
treated mathematically, scientifically, and operationally.

Information theory was originally a study of two variables, the
sender’s state and the receiver’s. McGiLL {2] studied informational
relations between three and four variables and indicated how the
relations could be generalised to n. Here I want to consider
the relations between n variables, especially when 7 is really large.
as large, say, as the number of cells in the human brain — about
10%.

The basic idea motivating this paper can be most readily seen
by a practical example. Suppose a fleet, equipped with all modern
signalling devices, finds just before it sails for war that a component
used throughout the apparatus has proved defective, so that the
fleet has to put to sea with only fifty old-fashioned hand-lamps
for signalling from ship to ship. Clearly, the admiral may dispose
of his fifty signallers in various ways over the ships, and there may
be no manoevre of the whole fleet that is completely impossible ;
yet this lack must impose some characteristic on the fleet’s manoe-
vrings. After studying its manoevres for some time the enemy
admiral might well say: This fleet's wavs of manoevring strongly
suggest to me that it is seriously short of intcrnal communscations.

With this idea in mind, I want to examine the question of how
to mcasure the total internal exchanges of information within a
system, especially within a dynamic system, such as a fleet or a
brain. We might refer to this quantity as the total ¢ turn-over ™
of information, or &en of its informational ‘ metabolism ™ ;
but cs experierice has shown that such picturesque ideas are apt
to lead merely to a flood of verbiage of no definite import, a word
may be advisable to make sure that our developing ideas have a
completely clear and operational basis.

WHAT IS ** INFORMATION THEORY *’ ?

In my opinion, Dr. R. B. BaNERJl's [3] suggestion is right:
information theory is basically just counting, and simply a branch
of combinatorics. When a man says: You can’t get len mancvres
out of that satellite with onlv eight signals, he is using the essence of
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information theory — he is counting the number of distinet cuuses
the number of distinct effects, and comparing the numbers, \\'l;m;(;
SHANNON [ 4] showed his skill was not in inventing a new philosophy
or a new mystery but in showing how the counting could b extended
into cases that would quite defeat the counting methods of the
bank-teller — cases in which the causes were continuous (on a
wave-form), cases in which the relevant causes were mixed with
irrelevant causes (** noisc '), and so on. Thus, if we study the
* internal informationul cxchange ** within a system we are really
measuring the quantities of cause and effect working inside the
system. The function p log p comes into the topic simply because

as SHANNON showed, this function, and it alone, gives numbers thilt'
remain proportional to the equivalent number of causes

(JENERALISING TO 2 VARIABLES

The first steps, taken by McGILL [2] and later with GARNER 3]
were natural and need not be justified at this stage. I shall show
some of their consequences, and hope that these will justify their
ongmgl decisions. (I do not exclude the possibility that other gene-
ralisations may be advisable in other developments.)

I.assume that we have before us some well defined set J of
variables — A, B,... I,... N — and that there are n of them. (I
shall generally use capitals for sets or variables, and lower case for
elemmts or values.) The n variables might be, for instance. n
coordinates specifying the positions of the ships of a fleet, or the
temper.aturos of the air at » places in a country, or the electric
potentials at n points on a living brain. Each sct of n values gives
one state, a particular value of the vector or n-tuple . a,,b, .. i,
~.n > Many such states will provile a frequency table and, in the
hml.t, probabilities. We thus start with an objective basis for com-
puting the entropies, exactly in accordance with SHANNON'S original

de‘ﬁmtxons. Thus, H(A) will represent the entropy (scatter, uncer-

tainiy, variety, etc.) of variable A with all the other variables igno-

red, 1.e. combined by sununation. H(A, B, C) will similarly represent

the entropy of the vector < a, b, ¢ 5, and so on. H(A, ... N), which

We can write briefly as H(J),is the entropy of the whole set of states,

with every distinction preserved. -1 will be used to represent the

set with I omitted ; similarly -1] will represent the set with both

I and J onitted. Subscripts will be used in SHANNON'S way : to

show variables that have been held constant (or are assumed known,

or otherwise have zero entropy).
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..

First we may notice that Hg (I), Which can be found as H(J)-

H(J-I), measures the amount by which the variable I varies (on
the entropy scale) when all other variables in the system are held
constant. It clearly measures, from the ** causa] ** point of view,
how much of I's changes cannot be allocated to any other variable,
and that must therefore be allocated to the residue labelled ¢ noise **.
Thus it measures in a precise sense the ** intrinsic noisiness ** of
the variable I. For any system to be worth investigation, these
entropies, for all of A, B,...N, must be sufficiently small. All are
measurable, of course, directly from the observed frequencies.

Following SHaNNON and McGILL, we define the ** transmission *’
between any two variables I and J.T(I:]), by

TI:J) = H(D + H(J) - H(L, J) (1)

This is the transmission with all other variables simply ignored,
ie. lost by being summed to form a two-way table showing only
the frequencies of the values of I and J.

T(L J.K:L) = H(L ], K) + H(L) ~ H(L J, K, L) (2)

This transmission is that between variable L and the vector 1 JK,
treated as if it were one variable (of three components).

TWA:B::N) = H(A) + H(B) + ... + H(N) — H(A, B,...N) (3)

This transmission is the * total*’ transmission between all
the variables. It is perhaps the most important quantity of the SVs-
tem, for it measures the total constraint holding over the system
(the entropies of the individual variables being regarded as given).
For this reason it measures the total quantity of relationships that
eXist in the system — the total quantity of law, as one might put
it. Once an actual system has vielded a primary body of factual
data, the ** total transmission computed from this data measures
the total quantity of law that can be extracted from the data. Thus
it is possible to measure how much law a given body of data con-
taus before the particular details of the law (or laws) have been
dis :overed.

The direct transmission between I and J

Tg_U(I : J) = Hg_U(I) + Hg_IJ(J) - Hg]_U(L ]) (4)

is often interesting since it measures the transmission between I
and J when all other variables are held constant. Thus it measures
the direct transmission between  them. (T(I: J) may include
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relations holding between I and ] because of their relationships
with other, common, variables.)

The ¢t interactions ©* () are defined through the transmissions
and through the interactions with fewer variables

QUL J.K)=TyJ:K) - T(J: K) (5)
O T oM = Q. .. M) — O, ... M) (6)

Their properties will be discussed after some equations relating
these quantities have been given.

All the equations that follow have cither been given before (by
SHANNON, McGILL, or GARNER), or are readily derivable from the
basic definitions by elementary algebraic operations or by using
McGiLL and GARNER'S rule that if an equation is true, it will
remain true if every term in it has added to it the same subscript.
A great number of equations can be developed ; here I shall give
only those of outstanding interest.

Group [ :

H(A, B, . . N) = H(A) + Ha(B) + Han(C) + ...Hap u(N) ()

T(A:B:..:N)=T(A:B) + T(A,B:C) + T(A,B,C: D)
— ...T(A, .. M:N) (8)

TA:B: Ny =ZyT(L: ) + ZyQ( ], K) + ... O(A,B,...N) (9)
Tg ,(A:B) =T(A:B) + TO(AB D) + EUQ(A, B.1,])
+...Q(A,B,...N) (10)

In these sums, the rule will be used throughout this paper that
the sum is to be taken over only the distinct forms ; those forms that
are necessarily identical by svmmetry are to be ignored and omitted.
Thus, if = (A, B, C}, ZyT(I: J) will represent the quantity

T@A:B) + T(B:C) + T(A: () (11)

the identical terms T(B: A), T(C : B), and T(C : A) being omitted.

The equations or expansions (7) to (10) are all of direct interest.
They apply (as contrasted with those to be given later) when every
variable has essentially individual characteristics, so that the ir}dl-
viduality must be sustained. They all show how some total quantity,
characteristic of the whole system, is built up by the additive combi-
Nation of quantities pertaining to the parts. Thus, equation (7),
concerning H(A, B, ... N), shows how the total entropy is related
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to entropies obtained by examining the variables one at a time (in
some given or natural order). Thus the first contribution H(A),
can be obtained experimentally by observation of A alone. H,(B)
¢ be obtamed by controlling only A and by observing only B.
And so on.

Another way of looking at such an expansion is to notice that the
quantity

H(A) + H(B) + ... 4+ Hpap_ m(N) — H(A,B,... N) (12)

ts a known constant (in fact, zero), so the equation can be used
whenever some of the components can be measured easily and others
only with difficulty, or perhaps not at all. The easy measurements
and the equation will then provide a method for estimating quan-
tities that might otherwise remain unmcasurable. (The law of
conservation of cnergy is used by physicists and engineers incessantly
in just this way, the known energies being used to deduce the
missing, unknown, energy.) '
The next two equations (8) and (9) — relating to the total trans-
~mission T(A:B: :N)  <how how this quantity characterising the
whole system can be partitioned into quantities often of direct
interest. Thus equation (8) shows how it might be analysed.when
the two variables A and B are pre-eminent, with the others falling
into some natural sequence C, D, .. N. It analyses the whole
transmisrion into that between A and B plus that between the
subsystem AB and variable C plus that between subsystem ABC and
variable D, and so on.

[NTERACTION

Lquation (9) analyses the total transmission into portions that
can be related to different degrees of complexity in the system.
I'ust comes XT(I: J), the sum of all the transmissions between
pairs. The next portion, £ Q(I, J, K), is the sum of all the threc-
variable **interactions ™ (defined earlier in the paper). Their
significance can be seen most clearly if the equation is written out
with n = 3

T(A:B:C) = T(A:B) + T(B:C) + T(A:C) + Q(A, B, C) (13)

Here the interaction Q is clearly identificd as that portion of the
total transmission which cannot be ascribed to any of the variables
acting i pairs. It represents, in other words, the amount of trans-
mission (constraint, law, cntropy) that is ascribable only to the
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three variables acting as a unique triple. (An exampleis given below.)
It thus measures the degree to which the system (here of three
variables) is irreducibly complex, i.e. not to be treated by exami-
nation of the variables two at a time. Conversely, if Q(A, B, Q) is
zero, this fact at once tells us that this system’s laws m;v be treated
piecemeal, two at a time, and that the tota] constraint is just the
sum of the constraints between the two variables of each pair.

Extension to more variables is now easy. Q(A, B, C, D) measures
the degree to which the variables A, B, C, and D, regarded as causes,
evoke effects (on one another) that cannot be ascribed to them
three-at-a-time, but can be accounted for only by their acting as a
unique quadruple.

The numerical values and the distributions of the interactions
are so fundamental in the study of anv complex system that some
further discussion is advisable. As a first property we may notice
that Q is a symmetrical function of its arguments, i.e. mere
rearrangement of the letters within the parentheses does not alter
its value. Q(A, B, C, D) must necessarily have the same numerical
value as, say, O(C, B. D, A), and there is really only one interaction
involving tke four variables, though the definitions of equations
(5) and (6) might suggest the contrary. A simple proof of this state-
ment is given by expressing Q(A, B, ... G) in terms of the basic
entropies H

Qv B. .. G) = — H@A B, ...G) + LH(g-1) — ZH(g-2) + ...
- ZpH(L J) = ZH(D (14)
where £H(g-1) means the sum of all entropies with g-1 variables
teken from the g variables A, B, ... G; and s0 on. The last two

Sums range over the same <et. As it is known (SHANNON y)) that
the H-functions are symmetrical, the function Q is evidently sym-
metrical also. In this respect, these ‘¢ interactions *’ are closely
related to those of FISHER'S analysis of variance, a resemblance that
has been traced in detail by McGiLL and GARNER [5).

. Tt in equation (9), the system provides numbers that are large
In the higher order interactions. then this ** information analysis "
says, in effect : This system is intrinsically complex, richly connect-
ed internally, and must be accepted as complex. Not infrequently,
however, sytems are found to essentially simple ; the fact will be
reflected in the vanishing of the higher order interactions. Thus all
who work with large <ystems, hoping to find among them some that
are not as complex as they look, will be specially interested in
those sytems that have higher order interactions all zero. What
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can be said about such cases ? The subject deserves extensive treat-
ment ; here I shall quote only a few selected facts to indicate the
trends.

As a first example, consider the situation in which a hundred
families, each of father, mother, son, and daughter, are vacationing
at a resort. 400 vanables are well defined : the 400 places at which
the 400 people may be at any one moment. Let us suppose that
within each family there is a good deal of correlation in movement :
where Mr. X gives a good deal of information about where
Mrs. X is, and where his son and daughter are. Suppose further
that the different families are unknown to one another and are
wholly independent in their movements. In such a 400-variable
system, after many ** states *” have been:observed and tne entro-
pies. transmissions, and interactions computed, it will be found that
while some of the 4-variable interactions are non-zero (those whose
four arguments refer to one family), all interactions of five or more
variables are zero. Thus, though the ** system ’* has 400 variables,
the fact that it really consists of 100 independent subsystems of
four variables each will be reflected in the fact that all interactions
Q of five or more variables are zero.

The fact can be expressed more precisely in the following theo-
rems, which are easilv proved when one remembers that ¢ inde-
pendence *’ (between X and Y, say) corresponds to the quantitative

relation
H(X) + H(Y) - H(X, Y) = O

Theorem 1.

If the set of arguments of Q(A, B, ... G) can be partitioned into
two sets such that all subsets of the one are probabilistically inde-
pendent of all subsets of the other, then Q must be zero.

T heorem 2.

If a set J of variables A, B, ... N, is such that no subset of J
can be increased in size beyond % variables without including at
least one vanable that is wholly independent of the rest of the
subset, then all interactions between 2 4+ 1 or more variables will
be zero. :

The example illustrates this theorem with £ = 4. Thus, * sys-
tems " that really consist of independent subsystems have zero
higher interactions. With this fact we can begin to see something
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of thg relation between zero interactions and the possibility of
breaking an apparently complex system down to simpler systems

It must not, however, immediately be concluded that va-nishin :
of the higher interactions proves that the System must consist o%
independent parts. One counter-example will be sufficient Consider
the system of three variables — A, B, and C, each of the t;vo values
o and I only — whose eight states occur with the probabilities

A B C Probabulity
o o o o

o o 14 o

[ t o 0.276906
o 1 t 0.169281

1 o o 0138453

¢ o 1 0.346133

1 1 0 0 069227

1 1 1 o

1.000000

Q(A, B, O) = o (to the sixth decimal) but a simple inspection shows
that no variable can be picked out as independent of the other two.
To. obtain further insight into the nature of the interaction
functxons. Q we may next look at an example in which all the
* transmission ” (constraint) is in the interaction term only. The
story goes that three suspected spies — Mr's X, Y, and Z — were
kept under observation to see whether they were acting in col-
l}lsmn. Each was found to visit only An'twerp or Berlin or
Copenhagen, and it was established that on any one dayv the three
men were likely to be distributed equiprobably over the nine
combinations (with A for Antwerp, etc.) : .

Mr. X at A A A B B B ¢ C C
Mr. Y at A B C A B C A B C
Mr. Z at B C A C A B A B C

Are their movements really independent ?

< If we cxamine them by pairs, testing for independence between
-+ and Y, for instance, we find the frequencies of positions to be :

Mr. Y at A I/g 1,9 1,9
‘ B 19 119 179
C I/g 1,9 I/g
A B C
Mr. X at
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Ouicome Pyobability
A's B’s C's

H H H 0.405
H H T 04S
H T H oos
H T T 045
T H H 045
T H T 009§
T T H 045
T T T 405

1.000

When the transmissions and interaction are analysed as before they
are found to be

T(A:B:C)=T(A:B) + T(B:C) + T(A:C) + Q(A, B, Q)
1.062 =0.531 +0.531 +0.320 —0.320 (16)

The interaction is here negative : an arithmetical possibility whose
meaning has been discussed by McGILL [2). We also notice that while
A and C have transmissions with B amounting to 0.531 bits per
event, due to the obvious effect that B’s value has on A’s and C’s,
there is an apparent * transmission * between A and C of 0.320
bits per event, due entirely to their common relation with B. The
interaction Q amounts to just (the negative of) this quantity. Thus
a three-variable interaction measures (among other things) the
amount of indirect transmission between variables.

To sum up what has been said so far, it is clear that the * total
transmission "’ over a system can be measured and that it can be
related to the transmissions between the parts in various interesting
ways. Examination of these relations in any particular case may
give a valuable insight into the nature of the processes going on in
the system.

UNIFORM VARIABLES

So far, in our treatment of the n variables, we have allowed each
one to retain its full individuality. When the system becomes very
large, however, the retention becomes unpractical, as would happen
if we attempted to predict a society’s history by considering every
citizen as a person with certain special characteristics, every one
of which was too significant to be passed over. Some large systems,
however, have variables sufficiently like one another to make
averaging and similar processes meaningful. This is certainly the
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case when the system is a gas composed of identical molecules, but
it may be sufficiently true of many other systems to be worth study
and application.

We therefore turn from considering, say, T(A : B) to considering
such symmetric functions as the sum of all the two-variable trans-
missions — ZjT(I:J) — or their mean value, which will be
indicated throughout by an upper bar: T(I : J). (The convention
mentioned earlier is continued below : sums and means will be
based on only those forms that are distinct.) Some of the more
interesting equations and expansions, readily obtainable from
Group I, are given now.

Group I1:
ZIT(Q-I :I) = Z H(I) — ZHg (1) (17)
Z, Tg, (L)) = T@A:B: .. :N) + = 50, 4 iB £0,

I.4
z
4o (n-2) (n+1)Q”

- Y Py

(where XQ, means the sum of all distinct three-variable interactions)
. — . 3 4 n
=, Tay, 0D = T D) + (3205 + (4200 + .. +15)Q. (10)
I I 2.
S, Tgd:0) = ;ETE@-1:D) + 732Q3 + 245,
P (20)

The chief interest in these equations lies in the fact that the expe-
rimenter can use them so that easily observable variables give
est'mates of quantities that might be excessively difficult to measure
dire:tly. This method is, of course, used everywhere in the classic
sciences where, for example, a planet’s brightness (easily ooser-
vable) is used to indicate its mass, or a bacterium’s power to make
bubbles of gas appear in a solution of lactose is used to indicate
whether its body contains a certain enzyme. When some part of
the brain is investigated, some variables (e.g. total oxygen consump-
tion, amplitude of potential variation) may be readily observable,
while others such as the communicational interchanges between
the nerve cells may be most difficult. These equations provide rela-
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tions by which the readily observable may be made to give (indi-
rect) information about the inaccessible. .
Equation (17), for example, says that the total transmissions
occurring between variables and the rest of the system is equal to
the sum of all the variables’ entropies, diminished by all their
intrinsic noise. Now the total amounts of transmissions may be
difficult to measure ; on the other hand, the entropy of any one varia-
ble can often be obtained easily by direct observation of that one
variable. If the variables are sufficiently uniform, the sum will
be a mere multiple of this quantity. If the intrinsic noisiness is
known, or can be assumed to be zero, the equation will at once give
an estimate of the transmission represented, which may be of much
profounder interest.

The next three equations, (18) to (20), are of special interest as
showing some very attractive simplicities if the interactions should
really be all zero. We would then have four quantities of outstand-
ing importance all equal, so that knowledge of one would give
knowledge of all

TAA:B:...:N) = ZUTg_U(I )]
=ZUT(I:J)

= SET@1:]) (21)

Thus, to take equation (18) first, the total amount of transmission
({:onstraint, law) would be equal to the sum of the direct transmis-
sions between all pairs. In the example of the fleet, mentioned
earlier, the direct communications between fifty signallers in pairs
wogld have this relation to the total law, or orderliness, that can
be imposed on the fleet as a system. (Any actual application of the
equation to such a system would, of course, demand a much closer
scrutiny of how the basic mathematical assumptions match the
actual conditions holding in the real fleet.)

Equation (19), when the interactions are all zero, shows that the
sum of the direct transmissions would equal the sum of the total
(pairwise) transmissions. Now the latter can be estimated by direct
observation of only two variables at a time, and is thus relatively
simple. This measurement, with a suitable multiplier, would then
enable one to estimate how much direct transmission was occurring

— 2 quantity very difficult to measure in so tangled a system as
the brain,
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Conversely, if in a society, the activity of the telepnone exchanges

showed how much direct communication was occurring, equation

(19), with zero interactions, would show the total pairwise transmis-
sion. .

MEAN TRANSMISSIONS

Equations relating the mean values cannot, of course, be obtained
directly from Group II by just replacing sums by means, for the
various sums, even in one equation, differ in their number of terms.
Thus the equations for means are often somewhat different from
those for sums, so that some relations appear most simply when
expressed in means, some when expressed as sums. Group III con-
tains the most interesting results. (The letters representing variables
are, of course, all dummies, for they are assumed to run through
all distinct combinations in forming the mean.)

Grour III:
H@) = H(I) + B‘I(x) + ﬁu(l) + ...+ ﬁgﬁl(x) (22)

Tg, (1) =T@:J) + (9L J.K) + (99 J. K. 1)

+ ...+ Q(A,B,...N) (23)
TA:B:...:N)=T([: ) + T(L, J: K) + T(L, J. K: L)

+ ... +TII1:0) (24)

Let.T(A:B: ... : G), where the mean is taken over all possible

distinct combinations of g elements drawn from g, be written T, ;
Q.

then - -
T,=@T, + Qs+ Q¢+ ... + (25)
AT, =Qp + 00,1 + OTpa + - + (£)Qper + Opuy  (26)

- where AT; = T,,;,—T; by definition.
Equation (22) shows how the entropy of the system as a whole
H(Y), can be partitioned into components that correspond to the

varying amounts of entropy shown, on the average, as o, 1, 2, ...,
n-1 of the variables of the system are fixed. Since these are means

they will be estimatable anywhere in tne system if it is, as we are
here assuming, everywhere uniform.
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Equation (23) shows how the average amount of direct variab}
to-variable transmission is related to the average total transmissi e-
between them (measurable by observations of only two at a tj o)
and the amounts of interactions. @ time)

Equgtign (24), of fundamental importance, shows how the total
transmission over the whole system can be partitioned into avera
effects : 8¢
— between variables in a pair,

— between pairs and a third,
— between triples and a fourth, and so on.

Equations (25) and (26) display a fact that should b

' ons ( 3 7 e capable of
yldg application, and that may give a deep insight into a spystein(')s
intrinsic complexity. It can be stated formally.

Theorem 3.

. If t%e k-th differences (¢ > 3) of the sequence o, T,, 'T‘, T‘
a-1, 14 are 2ll zero, and if @ = 0, then all interacti in ing
more than & variables are zero. wetions fnvolving
The proof is readily obtained by £ i '
. : y first proving equation (25) and,
from it, equation (26). Then put g =1, 2, 3, ... in succes(sigzl and
get the equations (with T, formally equal to o)

;\k’r) =0= Qp + §k+l

-\'f: =0=0, + 2Q_x+x + Qies

ATy =0= Qk + 3@141 + 3-Q-k+: + Gns
et cetera.
From these, yith O, =o, it follows, line by line, that Qe =0

and so on '
. .E. D
The converse follows directly from equation (26). © )

Theorem 4.

If all mean interactions involving % or more variables are zero
lt)léen thelk~th differences of the sequence o, Ty, T,, ..., T, will all
zero. In particular, the sequence will not increase faster
: , ase f;
polynomial of degree &-1. ester than 2
. T_'hu? systems of small intrinsic complexity (no high order inter-
Ctions) will be characterized by a relatively slow rate of increase
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s the transmission is measured over larger and larger subsets of
variables. Thus measurements made in ways selected to be techni-
cally simple may give information about communicational aspects
that mught be excessively difficult if attempted in the direct and
obvious way

DyNaMIC sYSTEMS

[t must be appreciated that though our examples in the preced-
ing pages have often referred to dynamic systems — to systems
actively changing in time, such as the fleet, the nervous system, a
society -~ inforination theory and its theorems have no direct or
natural relation to real time : the user of the theory is entirely
free to suy how his variables are related, if related at all, to events
in real time. In spite of the theory’s original application to events
in. real time, with messages from a sender arriving at some later
time at a receiver, the ideas are based only on pairings or correspon-
dences of events, with the user free to sclect the correspondence that
shall suit his particular purpose. The transmission, for instance, is
defined c¢qual to

H(X) + H(Y) — H(X,Y)

but 15 wholly indifferent to when the events X and Y occurred in
real time. '

An obvious method for introducing real time is simply to let
one of the variables, X say, become the real time (clock-reading)
€ but this method is basically inappropriate : as a source of infor-
mation, every signal emitted by the clock after its first two ticks
1s wholly redundant ! A more promising method seems to be as
follows,

Lvery sustained observation of a real dynamic system gives, at
first, a primary protocol recording what values the variables took,
at what times. Thus, if the variables are X,, X,, ... X, and the
3ysi€m, as n-tuple, was observed at times indicated by superscripts,
the srotocol will consist of an actual value given to each symbol in -

Time State of system
0 °

o <X oo X, >

1 <, x>

i S x{. >

..................

[ ——

MEASURING THE INTERNAL INFORMATIONAL EXCHANGE

A most important case occurs when the system is state-determined
i.e. when the n-tuple x/+! is the same function of ¥/ whatever the
value of j- The protocol can then be represented equivalently by

the single function f
ot = flxh), or ¥ = f(x)
When this is so, an important new set of variables, 2x in number,
LKL Xa o X, Xy, Xy, .l Xh >

represents the transitions, i.e. the behaviour iq real time, one state
of the new system (of 2n variables) corresponding to one transition
of the old. '

Between these new 2n variables all the various measures of entropy,
transmission, and interaction may be computec! exactly as over any
other set of variables, but they can now be interpreted by their
relations with real time. Thus, T(X..:X;)' measures h‘ow much
X;'s next value is dependent on its immediately precedlng value.
Again, T(X, : X;) measures something very close to our naive con-
cept of ¢ cause and effect ”, for it measures how much the lat'er
value at X; is dependent on the prior value at X,. If tne transmis-
sion between the same two is also found when all of X, ... X,
are constant (except for X,), then this new number measures the
degree to which X, is directly affected by X,.

If larger sets are studied

. 1 i g
o oxdoaxd oxh xS

such a transmission as T(X,? :X}) would measure how much Fhe
variable X, shows j steps later in time, the effect 9f its value earlier.
The measure thus catches something essential in the concept of
X/’s * memory *. This method thus treats communications across
gaps in space (between two of the » vanablgs) and across gap;
in time (““ memory * effects) by wholly uniform concepts an

methods.

The subject has yet to be extensively developed, but there seems
to be good reason for believing that these measures may offer'a
method for getting a deep insight into such really complicated sys-
tems as the brain, the biochemistry of the cell, and the economics
of modern society. The reader will have noticed that most of the
labor is niere routine, and is thus eminently suitable for delegation
to the modern computer.
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SAMPLING VARIATIONS

It is clear that any use of these methods on actual data must be
undertaken only when one is prepared with some knowledge of
what may occur under the vagaries of random sampling. The sub-
ject has been discussed by MILLER [6].

CONCLUSION

Information theory started by studying the relation between
two variables — sender and receiver — but it can readily be gene-
ralised to study the relations between any number of variables.
Such a generalisation would be useful for studying the total inter-
nal exchanges of information between the parts of a large computer,
or between the cells of a brain, or between the members of a large
society.

The method is outlined and some basic equations given. When
the systems are of mostly similar parts, average values become
applicable and have special properties, some of which are tabula-
ted.
A particularly attractive feature of the method is its ready
separation of what is simple from what is intrinsically complicated
in the system. Thus if the system has hidden simplicities, the
method provides a possible way of finding them.
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Shannon’s onginal presentation of communication
theory dealt with only two variables: Sender and Receiver,
with Noise, perhaps, as an occasional third. Since then:
however, following McGill /!/, and Gamer (2], the
extension 1o n vanables has been made by Ashby /3/
Powefs /4/. and Conant /5/. The extension has been foumi
?specnﬂy useful in treaung questions of the flows of
information withun a system when {he system, large and
confplex. is undertaking acuwities that require, between the
vanous parts, a major degre: of coordination. One exampie
.would be the coourdination of traffic during rush-hour,
:n:;::x would be the actvities in the brain of 2 tight-rope
rio Sucf: studies frequently call for the mampulation of
various !denulm that must hold over the various
}nfomtnonal quantiies -  entropies, transmissions,
dmel:‘a:::;ns. Asa nlfmber of such identities have now been
e ;1 collection of all the major forms is given, in
Wotkeu‘,x at the collection may be of use to other
comidl.l::dse“ qf ym'ables considered may, of course, bg
¥ refene 3s existing separately: they may also be regarded
variably z to ’the values taken, by one or more basic
‘consi.dem;a::;,m times during 2 sequence. Conant /5/
it 2wy case, and has shown the importance of
i deﬁnitely.s[:, ':'alues as the sequence is extended
) (de,ﬁnedl bl :; ;:omv:;, that every .idem.ity inH, T,and

an identity in HL,K TL, and

. York on which th,
ifi B IS 1eport 1s based was
'ee of Scientific Research under Gu;‘:px?-'l-%(?;kmféélu

i 5C Communications

¥ 1969 . vor ] . No. 2

. The stud)} of mfor!mm}n flows in large dynamic systems (during
of identi
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TWO TABLES OF IDENTITIES GOVERNING
INFORMATION FLOWS WITHIN LARGE SYSTEMS

W. Ross ASHBY
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Unwersity of Illinois, Urbana, Illinois

Abstract

d action, for

has led to the

i pment of 2 useful i '
presented in the hope that other workers in the mb;:c'?m“:n{!mm'::nf(:‘:" Two tables of those now avaable are

QL (the limiting averages) of identical form. Thus the Tables
given here give also, if the reader cares to imagine an L
supersc.npt throughout, an equalsized set applicable to
:::;e gt::‘g‘ :l\;nges. Though different 1n interpretation,
wo S e L
oy soem hardly rth printing twice; so the extension is
Notation
It has been selected with care, to be as informative
and suggestive as possible; but what swts one research well
may conflict with another. A reader in the latter
predicament may find a rewriting of the identities
advantageous. The attempt to classify these identities has
shown that every arrangement, no matter how obvious
from one point of view, is absurd from some other. I have
chosen the arrangement chiefly for ease of reference.
Capital letters have been used to represent variables,
as each variadie is essentially 2 ser (of posuble values) Tlns
approach emphasizes that the vanables :m these iden;ities
though able to be the usual real numbers, are in nowa'
restricted to them. They need not in fact have either mem'z
or order. This freedom is specially desirabie in mathematics
hav.ing applications in biology /6/. for many important
variables in biology are naturally of classificatory type:
wt;lj:h sp;::zi:: of bacterium?~in which type of nemog}:j
ce .—oxj Py . N o .
celr-ox g which substrate?—after gving  which
Definitions
(Given here to exclude any posabibty of ambigui
311 start with either a set of ptobabnimn: of a ::;“Zr)
Observed frequencies (according to whethes one is analyzin,
the information flow to be expected o6 some theory of
analyzing events that have been observed = an experiment).




If the variable X takes its values x;, x3, ... with
probabilities P, P,,. . . (summing to 1) then by definition:

H(X) = I, P, log —Pli—.

If one works with observed frequencies, so that the values
X1, X2, .. .occurred ky, k3, . . . times, (summing to k) then,
by definition: .

H(X)= - (k log k - Zikilog ki),

(If the ratios ky/k, etc., are regarded as corresponding to
the probabilities Py, etc., then the same numerical value for
H(X) is given by both expressions.)

If the two variables X and Y take their conjoint
alues < x;, yj > with probabilities Pij. with TP = 1, then
)y definitiun:

H(X,Y)= Z,iP;j log 1.
P,
Vith (requencies, if the event < Xis yj > occurred k;;
imes, with Z,k,; = k, then by definition:

!
H(X.Y)= T(k log k - E;jk;; log kyj) -

he extension to n variables A, B, ..., N, is immediate. If
he event <a;, bj, . .., oy > has probability P,
ummung (o |), then by definition:

‘ .
Pi;. ..m
the same event occurred with frequency k;j. .. .m»and
i...m Kij. .m =K. then, by definition:

H(A, B, .. -Ny=Zy ..m Py . mlog

AB N = L(KIBK-Ty mky | mlogky. . m)

If the loganithms are to base 2, the entropies will be
bits per singie event.

From these basic quantities all the others may be
fined:

Hx(Y) = H(X.Y) - H(X)

Hxyz(D.E.F.G) = H(X.Y Z.D.E.F.G) - H(X.Y.Z) etc.
e transmissions T:

T(X:Y) = H(X) + H(Y) - H(X.Y)

T(X:Y:Z) = H(X) + H(Y) + H(Z) - H(X.Y Z)

etc. (repeated for c ience in the Tables at (2).)
e condition J :ransmissions such as Tz(X:Y)- the average
1smission Fetween X and Y when Z is kept constant-are
nd similarly, using conditional entropies, e.g., by
inition:

Tz(X.Y) = Hz(X) + Hz(Y) - Hz(X.Y).

A variable such as X may itself be a vector,

X = <EF > say; then one must keep distinct the
transmissions T( < E,F >:Y)and T(E:F:Y), for they have
different properties and interpretations.

In the Tables I have used commas to separate the
components of a vector, and colons otherwise (and often
overdining, A,B,C, to make the distinction unmistakable.
The entropies H do not require the distinction ).

The interactions Q are defined in the Table at (23)
and (26). Here, too, the notation must show ‘whether two
or more variables are entering as a vector or not. As with
the T's, commas separate the components of a vector.

In my earlier work, | followed Garner {2/ in writing
U for Uncertainty. However, I became so tired of writing U
before every term that I fell into the more convenient habit
of writing one U at the left of the Line to do duty for all of
them. This usage, however, showed that the letter was
doing no work. { then changed to the more suggestive
notation of using H for entropies (continuing Shannon'’s
usage), with T for transmissions, and Q for interactions (as
they are so different from the others). [n five years | have
found the notation to work well, so it is used here.

In regard to the details, the set of variables

{ AB, .. ..G } isrepresented as an unordered set by 4. 4
will represent a vector, with components <AB,. . .G> in
that order, only when over-lined: A. A has g vaniables. The
set A-A has the g-1 vanables (B,.. .G}, etc. 1. are
dummy vanables used only for summing. a is any
unordered subset of A; 1t is to be interpretated as a vector,
&8, < BCG > . only when over-lined: @.The frequently
wanted total transmission T(A:B: ... :G) aan
unambiguously be represented by T(4), - a transmussion
with one variable would be meaningless. Similarly for
T(A-A), which is T(B:C: . . . :G), and similarly for Q.

Table of Identities

{ Entropies
[ 1. H(AB.....G) =H(A) + Ha(B) + Hap(C)
+ ..+Hy (G
Transmisstons

+. ...+ T(A, ... FG).

4 = T(A:G) + TA(B:G) + . ..
+Ta. D(EG)+ Ty g(FG)

1 =T(A:Z)+ ...+ T(G.2)
+Tz(A: ... :G)

Transmission berween vectors

12: T(Ap,..,,As: By.....By:Cy,..

2 T(AB:....G) =H(A)+. .+ H(G) - H(A, . .. G).

3: = T(A:B) + T(A.B:C) + T(AB.C:.D)

A3 TRTTE 2) = s Taipe = Q1:1:2)
led 1

+ T(A:F) + TA(B:F) + . . .
+Ta .. p(E:F)+...
+ T(A:C) + TA(B:C) + T(A:B).

=T(F:G) + TR(E:G) + . .. .
+Tc...F(B:G)+ Tg ,  F(A:G)
+ T(E:F) + Tg(D:F) + . . .
+Tp.. g(AF)+...

+ T(B:C) + Tg(A:C) + T(A:B),
(with many other forms possible).

= T TIhH+ = 1:J:K
IJGA( ) IJKCAQ‘ )

+ Z LIK:L)+ . .
IJKLEAQ( )

25 ¢

LhK:L)- ...
2 IJKLMO( )

9: T(Ap:... Ag:Byi. . ‘Bg)=T(Ay: ... ‘Ag)
*};"T(A"...’A‘.Bi)
i=

* TAl. .. agB1 .. 8y

10: T(A:B:...:G:Z)=T(A:B: . . .G)
+T(A.... G 2)

2 T Taai:)) la 3 1:3:
Ued -1 )'TIJKEAQ( K)’

= I T(P,:Ry)  (all pairs, but no two with the same

capital letter)

+ ZQ(Ly:MyNy) (alt triples, but no three all
with the same capital letter)

. C,' :etc.) ‘
|

i
As a speciaf case: ’
Jed
+ T LIK:Z)+ ..
lJKeAQ(

+QA: ... G:2).
14: = . R
lEA T(1:Z) + Q(A:B:2)
+ QAB:.C:2) + QA,BC:D:2)
ot QA JF:G:2).
15: = T(A:Z) + TA(B:Z) + Top(C:2)
Yoot Ta | R(G:2).
l6: = I Tq401:2).- J:
i 4-1(1:2) l“.-‘:‘Q(I.J.Z)
.2 JK-7) .
l‘“{:MQ(I..I.K.Z) ce
- @NA: . .. :G:2),
17: T(A,...,GU:...:2) =T(U:...:2)
+ ZTT(LU,.. 2)
» -1
‘u‘EA Q11U 72
*lJEMQ(I:J:K:U, T 2)
f...oo(A:U.....Z).
As a special case:
18: T(ABwU: ... 2Z)=T(U:...:2)+ AT, . 2)
+ T(B:T, . .. Z)
+ A:B:T, 2.
190 T(Ar,...Ag:By.... .By) =
g8 h
I.r; ’E’ Tay, ..., Ai1.By, ... .B,‘.l(Ai:Bi)~
As a special case:

20: T(A1.A; ByBy)=T(A:B))+ Ta; (A2:By)
+ TB| (A1:B2)+ TA|B| (A2:B2).

Conditional transmissions
2l Tz4) = T(AVUX“Q(Z:I:J)# UEMQ(Z:I:J:K)
t... +QZ: A, :G).

20 TaY:D=T(Y:2)+ T QlY:2)+ T QU:1:Y:2)
lea tled
ot QAL .G:Y:2).

Interactions
23: Q(A:B:C) = To(B:C) - T(B:C) - as definition,



If the variable X takes its values xy, X, ... with
probabilities Py, Py, . . . (summing to 1) then by definition:

H(X) = Z; P, log 5.
1

If one works with observed frequencies, so that the values
X1, X2, . . .occurred kg, kj, . . . times, (summing to k) then,
by definition: ’

H(X)= —— (k log k - Zikjlog ki),

(If the ratios k/k, etc., are regarded as corresponding to
the probabilities Py, etc., then the same numerical value for
H(X) is given by both expressions.)

If the two variables X and Y take their conjoint
values < x;, yj > with probabilities Pj;, with ZiiPij = 1, then
by definitiun:

H(X,Y) = Z,;P;; log _I-
Py

With frequencies, if the event < x;, yj > occurred k;;
umes, with Z,k; = k, then by definition:

_d
H(X.Y) = -k—(k log k - Zijkij log kij) -
The extension to n variables A, B, ..., N, is immediate. I

the event <a;, by, . , Nm > has probabnlxty Py .
(summung to 1), then by det‘ nition:

H(A,B.... . N)=Zy Py . qmlog
Pi;. .m
If the same event occurred with frequency Kij. . .m.and
Zii...mkyj. . .m = k. then, by definition:
!
H(A,B.... .N)= M (klogk-Zy mky, . mlog Kiy. ..m)-

If the loganthms are to base 2,
in bits per single event.

From these basic quantities all the others may be
defined:

Hx(Y) = H(X.Y) - H(X)

Hxyz(D.E.F.G) = H(X.Y.ZD.EF.G) - H(XY,Z) etc.
The transmissions T:

T(X:Y) = H(X) + H(Y) - H(X.Y)

T(X:Y:Z) = H(X) + H(Y) + H(Z) - H(X.Y Z)

etc. (repeared for convenience in the Tables at (2).)
The condition .| :ransmissions such as Tz(X:Y) - the average
-transmission Ferween X and Y when Z is kept constant-are
found similariy, using conditional entropies, e.g., by
definition:

Tz(X.Y) = Hz(X) + Hz(Y) - Hz(X.Y).

the entropies will be
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A variable such as X may itself be a vector,
X = <E,F > say; then one must keep distinct the
transmissions T( < E.,F >:Y)and T(E:F:Y), for they have
different properties and interpretations.

In the Tables 1 have used commas to separate the
components of a vector, and colons otherwise (and often
overining, A,B,C, to make the distinction unmistakable.
The entropies H do not require the distinction).

The interactions Q are defined in the Table at (23)
and (26). Here, too, the notation must show ‘whether two
or more variables are entering as a vector or not. As with
the T°s, commas separate the components of a vector.

In my earlier work, | followed Garner /2/ in writing
U for Uncertainty. However, I became so tired of writing U
before every term that I fell into the more convenient habit
of writing one U at the left of the line to do duty for all of
them. This usage, however, showed that the letter was
doing no work. { then changed to the more suggestive
notation of using H for entropies (continuing Shannon's
usage), with T for transmissions, and Q for interactions (as
they are so different from the others). In five years | have
found the notation to work well, 5o it is used here.

In regard to the details, the set of variables
{ A.B, . .. G } isrepresented as an unordered set by 4. A
will represent a vector, with components <AB,... .G> in
that order, only when over-lined: A. A4 has g vanables. The
set A-A has the g-1 vanables {B,...,G},etc. 1.1, . .are
dummy vanables used only for summing. a is any
unordered subset of A; 1t is to be interpretated as a vector.
&8, < BCG>. only when over-lined: a,The frequently
wanted total transmission T(A:B:...:G) «<an
unambiguously be tepresented by T(4), ~ a transmussion
with one variable would be meaningless. Similarly for
T(A-A), which is T(B:C: . . . :G), and similarly for Q.

Table of Identities

Entropies
1. H(AB....,G) =H(A) + Ha(B) + Hpog(C)
+ ..+Hsa F(G).
Transmissions
20 T(A:B:...:G) =H(A)+...+H(G)- H(A, ....G).
3: = T(A B) + T(A_B (A,B:C) + T(A,BC:D)
4+ T(A . .F:G).
4: =T(A:G) + TA(B:G) + . ..
+Ta. . p(EG)+ Ty g(FG)

+ T(AF) + TA(B:F) + . .
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+QA: ... G:
+Ta .. p(EF)+... « .
+ T(A:C) + To(B:C) + T(A:B). 14: = 2 T(1:Z) + Q(A:B:2)
=T(F:G) + TRE:G) +... +Q(‘“’CZ)*Q(A BC:D:Z)
+Tc.. F(B:G)+ Ty . F(AG) -+ QAL FG).
+ T(E:F) + Te(D:F) + . . . .
+Tp.. . g(AF)+... 15: =TA:Z) + TA(B:Z) + Tpp(C:2)
+ T(B:C) + Tg(A:C) + T(A:B), Yoot Tal RG2).
(with many other forms possible). 16: = L Tqq(k2)- I QU:):Z
S TU ne - QEIK) < uea )
= : ik -2 JK:Z)-
14 QKD -
l““-MQ(I J K L)+. @A ... :G:2),
* QA G) 17 TAL . GU:..Z) = T(U: .. Z)
=2 T Taq:d) 14 :J
AL 1€ ),__ Q(IJ»K)i + zmu 2)
2.5 . !
ry um.uo(' J K L) o ; ... Q11U L2
s-l)(x*z) QA: ... :G). !
+ 2 0. 2
IJKGAQ(' Sk
T(A:...:DE:....G)= T(A...,;D) AR
+TAA. .. D: E:...:G) As a special case:
18: T(AB:U:...:Z)=T(U:...: i — )
TA):...: Ag:By: ... Bg)=T(Ay: . .. ‘Ag) TAB: ) *(T(B.U__Z_)é')l‘(:\
+IET(AL - AgBy +QABT D).
*TAL . AgB By e TR A B B -
, 8 h
: T(AB: ... :G:Z)= T(A:B: ... .G) Z ,§. TAL . Au1ByL . By (AVBY).
+TA... G 2.
As a special case:
=T(A:Z)+ ...+ T(C.2) 20: T(ArAz - By.Bz) = T(A1:By) + Ta, (A2:By)
+Tz(A: ... :G). +Tg, (A1:B2) + Ta B, (A2:B2
Transmission between vectors
A 12; T(A',...,Ag' By.....By:Cj.. -.Cjetc) Conditional transmissions
= Z T(Py:Ry) (all pairs, but no two withthesame | 21: Tz(4) = T+ T QZ:1:N+ T QZ:1:5:K)
capital letter) i Hed 1IKed
* TQ(Ly:My.Ny) (all triples, but no three all | vt QZEAL G

with the same capital letter)

As a special case:
TATTTGS

AN T(I Z)* I Q(IJZ)
P I.J,K.
eAQ( D+

220 T4YD)=T(Y:2)+ 2 0. (R ¢¥4]
led

Q:Y:2)+ T
! Iiea
QAL

:G:Y:2).

Interactions
13: Q(A:B:C) = To(B:C) - T(B:C) - as definition,




24:

25:

26:

27

28:

29:

30:

31:

32:

33:

34:

= T(A:B:C) - T(A:B) - T(B:C) - T(C:A)
(in symmetrical form).

Q(A:B:C:D) = T(AB:CD) - TA(B:D) - Tg(A:C)
-Tc(A:D) - Tp(B:C)
(and other symmetrical forms).

as definition,
= H(4) + T HAD - T HA-L)
ed 1Jed
e e G T OHAD)
le4
+ (-1 T H(D).
leA

sTA)- T TA-)+ £ T(4-1))
le4 Hed
oLt (18 T T

. 1le4

QA: ... GZ)=He (D) + IEAHA.I(Z)
uzu 4.13(2) +
+ (-18*1H(2).
aT(A:Z)- T T(A1:2)
_le_A
+ T TAD)-. ..
liea

+ (18} T T(:2).a special case of:
lea

QA: ... GU:. ... 2)= I (1)*T@).
acA

‘C > LS o
$cZ

where Z = {U, ... 2}, and a and { are all subsets of
A and Z, as vectors. k 15 the number of elements of
{A,....GU,....Z}notoccurnngin T's parentheses.]

QA:...:G:Y:Z)=Ty(Y:2)- IE‘TA.l(Y:Z)# ..
e 4L (GDST(Y:2).
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=QA:Y:Z)- T QA:Y:2)
le4

+ I QATY:Z)-. ..
lied
+ (18! lf" Qt:Y:Z). Table of Compact Forms
Interaction with vectors . TA) = MSAQ(G)- ( ‘c “Is :}: ‘;} 15

35: Q(AB:Y:Z)= Q(A:B:Y:Z) + (A:Y:Z) + Q(B:Y:2),
. TA:2)= T Qa:Z).
a special case of: acA

36: QA,...GY:2)= TQLY:Z)+ T QI:):Y:2)
ied lJea
+...+QA:...:GY:Z).

1D =T@)+ £ Q02 (Z dak, a e

. T4(Y:2)= 2 Qa:Y:2)
37 =Q(A:Y:Z) + Qa(B:Y:2Z) acA
+Qa(C:Y:Z)+... ) = T (1™ 1H().
+Qu.. F(GY:2). A
Conditional iteractions = aEA -1)y™T(a).

S QD)= T M H(2).
+I;£uQ(I:J:U:...:Z)+... D) am( y Ha(2)

+QA:...:G:U:...:2) = ai (-1)™T(a:2).

Qe g 1KT@T). (Z dal., & aet)

(€74

= I (-1/Qa(2). (didte)
acA

Compact Forms
A number of the equations can be written in a form D QAY:Z)= T (1MTa(Y:2)
suggesting a uscful algebra. a takes as its values all the 28 acd
subsets of A4, though with some values ignored as giving V.
obviously meaningless terms. Q(a) and Q(a:Z), when : ai‘ 1YmQ@:Y:2).

reduced to two variables (by a having two or one element 3
respectively), may be interpreted as T(a) or T(a:2)
respectively. When a becomes the empty set { . the
interpretations of such expressions as H { } (X) and
Q({ }:Y:Z) are most simply found by companson with |
the form written explicitly in its fewest variables.
m below is the number of variables in 4 - a, i.c., the -
number missing from 4. !
Many of these forms clearly fall into pairs, e.g.,
T(4)=ZaQ(a)

QUU)=Z4a(-DH™ T (a) i

Similarly paired are 13 and 30, 36 and 34, 22 and 33, 38
and 32. By treating (e.g., in 6c) IEA T(A-1) as analogous 10
® T8 Z, TA-1) as analogous o (§)TSE. |
Blissard-type calculus (¢.g., Riordan/ 7/)is possibie, enabling
one 1o use the well known rule in the calculus of finite §
differences relating powers of A + | and of E-1, and the
inversion of each to give the other. This calculus may give
interesting developments in the future; here it is useful
chiefly as a check on the accuracy of the Tables, where the
identities were first found independently.) ]

D QA:Y:2)= £ Qa:Y:2)
. ac4

k= D)

6¢c

Proofs

The indications given below will be sufficient. Many
. Of the identities are denvable from the others: the routes of
deduction have been examined to make sure that no
Citcularities have been included.

11 By repeated use of the definition of Hy(Y).
By difinttion.
By repeated use of (10).
By (3) and then (15).
As (4), using another sequence. Yet further sequences
are, of course. possible.

V1969 . Vol 1 . No. 2

(2 dal.,ased)) 5

163

Given by McGill {1/ and also by Fano /8/. Or it can
be proved by reduction of both sides to H's through
(2)and (27).

In (6), replace each T(1:J) by T(I:J) subscripted,

using (22).

By reduction to H's through (2).

By reduction to H’s through (2).

A speaial case of (8).

By reduction to H’s through (2).

By induction from (13).

By induction from .
T(X,Y:2) = T(X:Z) + T(Y:2) + Q(X:Y:Z)
(which can be venfied by reduction to H's).
Then make X a vector and use (36).

Expand the terms of (15) by using (23) repeatedly

with A a vector.

By reduction to H's through (2), adding subscnpts

throughout where necessary.

Expand the terms of (13) by (23)as
T(1:2) = T4.1(1:2) - QA-1:1:Z); then use (36)
on each of these Q’s.

By (10) the left side equals T(A. .. G.U. ..Z)+

T(U:....Z). with (10)s Z here represenung

A,....C.then use (13) 10 expand the first term.

A special case of (17).

By using (15) repeatedly.

A special case of (19).

From (6) subscnipted throughout with Z, subtract (6)

unsubscripted.

1t s T(Y:Z) + Q(A:Y:Z). Then use (36).

By definiuon.

By reduction to H's through (2).

By (26) and then reduction to H's through (2).

By definition.

By reduction to H's, through (26) (subscripted as

requared), (23), and (2).

By induction from (24).

By reduction to H's, using Hx (YV's definition.

A special case of (31).

By reduction to H's through (27).

Bv induction on (26).

From (23), re-wntten as QA:Y Z), subuact (23)

subscripted with B. Repeat with C, etc.

From (33), subtract the zero quanuty (1-1) 8T(Y:2),

written out as 3 binomial expansion. and use (23).

By reduction to H's through (27).

By induction on (35). _

(35) and (26) gve QAB:Y:Z) = QAY:Z) +

QA(B:Y:2). Then use induction.

By induction from (26), wntten as Qg(A: . .. Fy =

QA: .. F)+ Q(A: .. F:G).
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INFORMATIONAL LIMITS




INFORMATIONAL LIMITS

INTRODUCTION

One kind of informational limit is mentioned briefly in many of
Ashby's papers and most explicitly in "Some Consequences of Bremermann's
Limit..." It is the limit on practical computability imposed by physical
laws, which has as a consequence that question-answering procedures requir-~
ing more than about 107° bits are in fact unanswerable. Ashby shows by
illustration that apparently simple and harmless questions, usually of a
combinatorial nature, can far exceed this limit. More important, he shows
that the limit has philosophical implications - for one, "our achieved sci-
ence will always be one of the world in its simpler intaractions. If thare
are complex natural laws, we shall never know them."”

Especially in later papers Ashby stressed this theme repeatedly.
There is, however, a common interpretation of Bremermanns Limit which is
unnecessarily pessimistic, to wit: "If a question involves selection of an
element out of a set of 2 elements or more, then to answer it requires
10™ bits of information and thus Bremermanns Limit tells us that the ques-
tion is unanswerable." This interpretation is wrong [105]. It is indeed
impossible if the method used is 1079 dichotomies (at 1 bit apiece), but
there may be other methods to maks the selsction.

A second kind of informational limit is that imposed on a decision-
maker who is limited in the amount of available information. In "Chance
Favors the Mind Prepared” (a letter to the editor of Science magazins), and
more elaborately in 'Computers and Decision Making,” Ashby points out
forcefully that the process of selection is limited by the informstion
available. This is one statement of his famous Law of Requisite Variety,
but the articles are included ip this section rather than the next bacause
they so clearly show how the decision-maker is constrained by an informa-
tional limit. The basic rule, says Ashby, is: Use what you know to narrow
the field as much as possible; then do as you please. When the limit of
information has been reached, chance is as rational as any other method for
making decisions.
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2: An artificial retina has a million sensitjve units, each of which can
only be excited or not-excited, It acts through a net that produces, as
output, only a I-bit move or not-move. Suppose we ask “what is the
relation between input and output?™ The question asks, essentially,
for the mapping from the set of input states (2!.900.000 in number) to the

particular mapping from the 2¢2'.2°°.20) demands (unless other restrictions
intervene) no less than 1(309.000 bits. Again, an a parently simple ques-
:4 p q
tion has demanded a uantity of information- rocessing that goes far
q y P g 4
beyond the limit.

information processing.

The consequences of this limit are various. Here [ shall mention only
a few that seem to me to be outstanding in the context of bionics.

As “regulation and control™ are of the highest practical importance,
let us first apply the limit here. A simple example may help to get the
basic ideas clear. [ et us suppose that a fleet, just as it js about to leave
port on active service, discovers that its communication devices for
ship-to-ship coordination have failed; as a result, it has to put to sea
with only some human signallers equipped with hand-operated flash
lamps. Here we have 4 dynamic system, with a goal clearly defined (by
current naval strategy), and that is subject to a limit on the amount of

the cnemy admiral may well notice after a time. .
“Achieving coordination in maneuver“ means that the total set of
all possible combinations of movement (including those that lead at
once to collision) are to be restricted to a special subset of the combi-
nations (those combinations approved by naval strategy.) Achieving the
restriction demands the corresponding quant'ty of transmission (by
Shannon’s tenth theorem or by the law of requisite variety.) Thus, to be

Bremermann’s Limit for lnfarmtion-proces:ing Systems

more definite, suppose that there are 100 ships, that the only requirement
in maneuver is that all ships shall turn in the same direction, and that
the signaller’s total capacity as a channel provides 200 bits per course.
setting. Such a fleet can coordinate its directions to the degree of choosing
between port, starboard, and ahead (for 99 log, 3 is less than 200) but
no distribution of signallers or arrangement of coding can refine the
selection of direction to adding half-to-port and half-to-starboard (for
these would require 99 log, 5 bits, which is grecter than the 200 birs
available). Thus, the existence of a limit on the total quantity of informa-
tion transmissible puts an absolute limit 10 the amount of regulation or

“control achievable.

The arithmetic of this example shows that Bremermann’s limit is no
immediate threat in the case of regulations that are direct. A million
ships, all having to move correctly to one part in a million would only
demand 10° log, 10° bits per course-setting, i.e. about 2 x 107 bits—
nowhere near the limit. But this smallness does not mean that the limit
can be forgotten when we change to the bionic sciences. Here the regu-
lation and control is often directed at some complexly patterned event,
with strong intera :tions between the parts (or all statements highly con-
ditiona!). In such cases the quantities of information tend to increase
(when the number of components is increased) at the explosive expo-
nential rate rather than at the moderate multiplicative.

A well-known example of the effect of a complex goal is given by the
mechantcal chess-player. The goal (*achieve mate ") looks simple, but
at the present time the only sure method known for specifying what this
means in individual plays is to write out all possible plays and to label
each as “good” or “bad". Since the number of plays is at least 10129,
Bremermann’s limit is an impassable barrier. Since the game of chess is
simpler than the battle of life, we may expect that his limit, far from being
4 mere numerical curiosity, will impose itself frequently in real and
Practical situations.

The reason for the sudden jump from the moderate quantity of in-
formation used by the fleet to the immoderate quantity demanded by
chess is, of course, due to the combinatorial quality of chess. Whether
a piece’s position s good or bad is conditional on where the other pieces
are. The conditionality makes the variety grow combinatorially (often
¢Xponentially), where the simpler forms grow only additively or at a simple
Multiplicative rate. Since in bionics, and in advanced computing, we are
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specially concerned with these combinatorial processes, it is particularly in
our science that we are likely to encounter the limit early in our work. The
topics that are specially likely to imply a major degree of interaciion
between the parts are especially those involving the concepts of :

System Order
Organization Subset
Pattern Property
Net Relation
Automaton Constraint

all of them highly relevant to “advanced information processing”’ and
*‘the mechanical brain ",

We are thus likely to encounter the limit at an early stage in our
researches, especially in bionics and artificial intelligence. But the theme
has much wider implications in philosophy, at which I would like to
glance,

The most obvious fact is that we, and our brains, are themselves
made of matter, and are thus absolutely subject to the limit. Not only
are we subject as individuals, but the whole cooperative organization
of World Science is also made of matter, and is therefore subject to it.
Thus both the total information that I can use personally, and the in-
formation that World Science can use, are limited, on any ordinary
scale, to about 10%° bits. Whatever our science will become in the future,
all will lie below this ceiling.

We cannot claim any special advantage because of our pre-eminent
position in the world of organisms. We have been shaped, and selected
to be what we are, by the process of natural selection. As a selection,
this process can be measured by an information-measure: it is therefore
subject to its limits. In any type of selection, under any planetary con-
ditions, a planetary surface made of matter cannot produce adaptation
faster than the rate of the limit. However good we may think we ae,
197° measures something that we do not exceed. The science of the future
will be built by brains that cannot have had more than 1089 bits usec in
their preparations, and they themselves will advance only by something
short of 1089, This is our informational universe: what lies beyond is
unknowable.

We can see something of what will be unknowable. Sometimes nature's
laws have a simple informational structure. The law of gravity, for in-

Bremermann’s Limit for Information-processing S, ystems

stance, has been found to relate the attractions between two particles,
i and j say; and this relation is uncond:tional on the positions of other
particles, k, I, m, ... etc. This unconditionality eans that the complexities
go up, as more particles are added, in a more or less additive way (the
;;otemials do, in fact, combine simply by addition). Contrast this case
with (say) a social system, in which the relation between two variables
and j may itself depend on other vaniahles. This would be as though, in
gravity, the law of attraction between i and J were altered by the position
of k. Here the complexity goes up in some manner approximately ex-
ponentially. Thus the existence of the limit tells us that our achieved
science will always be one of the world in its simpler interactions. If there
are complex natural laws, we shall never know them.

The limit is thus likely to be specially obstructive in the sciences of the
complex. One of these is sociology, just referred to as an example. The
other is our own science of bionics, especially when we attack the prob-
lems of artificial intelligence. What should we do?

One reaction to the limit is simply to ignore it, noticing it only when we
must. But the history of science has shown repeatedly that when an
ewkwarc limitation appears the science tends to become sterile until
it has dctually made the limitation a part of its working conceptual
structure. The early microscopists, for instance,greated the limitations
imposed by light’s finite wave-length as a mere nuisance. Seeing was
believing, until Abbe and Helmholtz developed the new microscopy,
in whica the wave features of diffraction and interference became intrinsic
working parts of the theory. Atomic physics. too, ran into evergrowing
troubles until it recast its basic ideas and constructed a new theory with
the basic limitations, due to quantum restrictions and indeterminancy,
built into it. Thus, there seems good reason to suggest that our best way,
in the face of this limit, is to study it and to make it an integral part of
our working ideas. ..

How is this integration to be achieved? | can here offer only a slight
sugg=stion, in the hope that it will be found useful. Most of this work
lies in the researches of the future.

First, we knpow that the mathematicians and engineers have derived
great advantage from their development of the **linear" processes:
matrix algebra, the Laplace transform. etc. With these processes they
can work extensively in the linear world without the danger of bfeaking,
at each operation, into the far more complex world of the non-linear.
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This example shows that an extensive set of operations can be developed
such that a great deal of worthwhile work can be done within the set,
with the operations themselves automatically preventing the worker from
wandering into the *“‘forbidden " regions. Bremermann’s limit specifies
Just such a regjon.

Now Minsky (1963) has summarized the essence of the problem of
“artificial intelligence” in words with which [ entirely agree: ““The real
problem is to find methods which significantly delay the apparently in-
evitable exponential growth of search trees.” So far as the system studied
is genuinely combinatorial, so far is the exponential growth inevitable,
and Bremermann's limit acts with maximal intensity. But a large pro-
portion of our problems in bionics are in fact subject to strong internal
constraints, (most of them derived ultimately from the intense redundancy
and repetitiveness shown at the atomic level.) One of the most general
and wide spread constraints js that the system is to some degree reducible,
l.e. capable of being studied piecemeal. When it is so, a System that seems
to demand excessive information-proccssing may in fact allow its studv
to be achieved with less. (The essential reason js that if a quantity that
increases exponentially, as a", can be treated in k& stages, the branches
fall to the order of ka"*. When n is large, the effect of & on the exponent,
by dividing it, is far more powerful than its effect as 3 multiplier.) The
method *“consider the problem a piece at a time " is so widespread and so
powerful that it may well be worthwhile to attempt the development of
all those operations that do not destroy reducibility. When we know the
set, the operations in it will form a calculus like those of the linear
systems—such that we may do what we like within the set without fear
of converting the problem from one solvable under the limit to one no
longer solvable under 1t. A start in this direction has been made by the
formulation of “cylindrance”, (Ashby, 1965) which measures, for any
relation between » variables, the degree to which it can be treated as if
made of sub-relations, each on only some subset of the variables. It treats
not only the fairly obvious case in which the relation consists of k wholly
independent sub-relations but also the much more interesting case in
which the whole relation has something of the simplicity of a k-fold
division while being in fact still connected. (An elementary example is
given by a country's telephonic communications, in that although all
subscribers are joined potentially to all, the actual communications are
almost all by pairs.)
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The limit (of about 1080 bits) implies that we can never study the fully
general relation between more than about 270 variables. (108° bits allows
us to pick one arbitrary subset from 10%° elements; 270 binary variables
provide this number.) Since the cylindrance (a2 measure of intrinsic com-
plexity) cannot exceed the number of variables, the limit implies that we
can never study the fully general relation whose Intrinsic complexity
(if measured by cylindrance) exceeds 270.

If therefore we intend to study a system (a living brain perhaps) in
which the relations do not have a cylindrance exceeding 270 we pave
a system that is potentially studiable. If now we unwisely ask questions
or perform operations that raise the cylindrance above this number our
very method of study has rendered it unstudiable. It is now known that
cylindrance is safe under the operation of intersection (when the relations
are treated as subsets of a product space) but that it may readily be
raised by union.

This work is still in progress, but it already shows that there may exist
methods, specially suited to the study of the complex system, whose
vperations do not lead us to the humiliating situation in which we dis-
cover that it is our own methods that have turned a potentially studiable
system into one that, under the limit, is now essentially unstudiable.

>
03

SUMMARY

That nothing made of matter can transmit or process information
faster than 10*7 bits Per g per sec may seem of small practical importance.
In fact, many of the processes that have been proposed for machines
with artifical inteliigence require transmissions far in excess of this limit.
Examples are given to show that large-scale processes of combinatorial
richness run into the limit only too easily. .

Not only are our machines so restricted, but the scientist’s brain,
made of matter, is also so restricted. Thus our personal knowledges,
our philosophies, and our science are also limited to the same degree.

Some of its consequences in science are discussed. If our science is to
be realistic, our theories must be structured so that this limit becgmes an
integral part of them. A suggestion is made of one way in which this
incorporation might be achieved.



W. Ross Ashby
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LETTERS

Chance Favors the Mind Prepared

... Let us assume that the problem is essentially one of selection: of a few
students from many applicants, of a draft from a much larger body, or, very gen-
erally, of a good decision from a great number of possible decisions. The funda-
mental discovery of the last 20 years is that all such selection processes are subject
to the laws of information theory. The first is that appropriate selection can
be based only on information in the requisite quantity, and the second is that
information is measurable and finite. It follows that in any real life situation
the amount of appropriate selection that can be achieved is also finite. At any
given moment, a would-be selection will have available a certain quantity of
information and no more. With this quantity he can execute a corresponding
quantity of rational, appropriate, meaningful selection. When the information
is exhausted, no further rational grounds exist.

Selection, then, to be rational and defénsible, must be based on informa-
tion. But it often happens in real life that the quantity of information avail-
able falls short of the necessary. A thousand students may rationally be re-
duced to 500 by the information that the college accepts men only, but what
are we to do if the college can accept only 50? One would not forget, of course,
that more information may be available, perhaps sufficient for the whole selec-
tion to be rational; but what if the required information is either not available
or could be obtained only at cost that is prohibitive? The fundamental principle
of decision on a finite quantity of information may be expressed thus: Use al/
that you know to shrink the range of possibilities to their minimum; after

that, do as you please.

With this rule in mind, we can see why the editorial was unsatisfactory.

Its very title: ‘Chance, or Human Judgment?” tended to set the reader think-
ing of the two competitors, mutually exclusive, while the truth is that they

are natural complements. In arriving at a decision, human judgment first

should prevail; then chance should be used as the necessary supplement to

bring the decision to uniqueness . . . Modern methods of decision-making use
both, chance and human judgment. From this point of view the use of chance

is in no way a “denial of rationality.” On the contrary, chance /s the intelligent
man’s method of selection when he knows that the quantity of information

vailable to him as selector is less than the quantity of selection demanded from
him,
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Computers and Decision Making

Sir, -- The recent correspondence on this topic has shown that there
are still many misunderstandings current, and some failures to keep abreast
of modern knowledge. Since today we have a clear and coberent theory of
the matter, I would like to help the growth of clarity and simplicity by
sketching its essentials.

The processes that interest us, and about which dispute has raged, are
those (whether carried out by brain or digital computer) in which the end-
product shows evidence of high selection. For instance, of all the ways in
which a bookful of letters might be arranged, one set was actually produced
by one Shakespeare showing evidence of very intense selection. And a com-
puter has emitted a string of digits corresponding exactly with the first
thousand digits of w. Most practical activities show this aspect of selec-
tion as an essential component (as Sommerhoff has shown extensively in his
Analytical Biology, 1950). Roughly, getting right answers implies selec-
tion.

We now arrive at the simple postulate, valid for all systems, living
or mechanical: Any system that achieves appropriate selection (to a degree
better than chance) does so as a consequence of information received.

For what is the alternative? Are we to accept as natural the examina-
tion candidate who starts 8iving the appropriate answers before he has been
told the questions? Or the man who sends off his claim to the insurance
company before the fire has broken out? Or the computer that starts print-
ing the appropriate answer before the programme tape has been run in? Sci-
ence knows nothing of such things; wuntil such a phenomenon is clearly
demonstrated the postulate must stand.

The argument for the postulate can be given deeper and more rigorous
formulation. The law of requisite variety [1] expresses the theme
rigorously. It is closely related to Shannon's Tenth Theorem (2}, which
says that the selection by which various "noisy" versions of a message are
reduced to the correct version cannot be achieved unless a correction chan-
nel (or whatever agent performs the correction) transmits a certain quanti-
ty of information to the site of correction. Human beings and computers
alike are bound by the fact that if they would achieve appropriate selec-
tions they must work either subject to the postulate -- or by pure magic.

Once the postulate has been accepted, the strategy for decision-making
follows inescapably: In simple and general terms it is as follows:

"(1) The would-be selector, whether living or mechanical, must first receive

Some quantity of information. This information is then to be used to
narrow the field of uncertainty (among the various possible answers or
outputs) to its minimum. The amount of narrowing is bounded by the
amount of information.

(2) After the information has been used.up in reducing the field to its
minimum, what remains is the "field of ignorance". Lacking further




Before he plays chess, for instance, he learns a lot about three-
dimensional geometry by just moving about in the world; rows, columns, angd
diagonals can be indicated to him on the chessboard with a flick of the
ginger. The computer, however, must have this particular three-dimensional
geometry specified in detail. But let the chess become five-dimensional,
say, SO that both are equally void of primary igformation, and the human
being's  thought processes become as laborxous. and detailed as the
computer's. In the same way, the average humﬂn being has accumulated a
reat deal of information about continuity”; so, if the problem has this
peculiarity, he has a flying start over the computer. The facts thus sug-
gest that the human being comes to his work with a far greater store of
information (as "pre-programming”) than the computer.

information, no further selection is justifiable. No arbitrary selec-
tion within it can claim superiority over any other method ("the random
is as good as any other").

In other words, the basic formula for decision-making is: Use what
you know to narrow the field as far as possible; after that, do as you
please.

Sometimes it happens that there is still a demand for selection even
within the field of ignorance. Some selection can always be performed (for
example, by using a table of random numbers as determinant), but such
selection has no better than a chance possibility of being appropriate.
Sometimes the selection can be carried further by the provision of more
information, and sometimes this new information can be obtained by the pro-
cess of "making trials"; for a “trial" is not merely a shot at Success --
it may be a process that progressively wins more information, and so makes
possible a further appropriate selection.

If this difference be taken fully into account, both their activities,
successes and failures, will be found to be in accord with the basic postu-
late. And so both are bound to follow the same basic strategy for decision

making.
W. Ross Ashby.

Burden Neurological Institute,
Bristol.

Thus (still under the iron rule of the pPostulate) it may happen that
the selection is achjieved in stages: first the Primary information is used
to narrow the field of ignorance; then extra information is won by trials
until the total information has reached the quantity necessary for the com-
plete selection. 1. An Introduction to Cybernetics. By W. Ross Ashby. (Chapman and Hall,
London, 1956.)

2. The Mathematical Theory of Communication. by C. E. Shannon and W.
Weaver. (University of Illinois Press, Urbana, 1949.)
3. These more complex cases are discussed in Chapters 17 and 18 of the new

edition of Design for a Brain. (Chapman and Hall, London. (1960.)

The "despair" mentioned by Mr. C. Strachey ( Letters, 3 March) can now
be seen in its Proper proportion. Within the field of ignorance it is jus-
tified, for (by hypothesis) the pPrimary information is exhausted and every-
thing must be tried. But the "everything" is only "everything within the
field of ignorance", and this may be only a small, perhaps an exceedingly
small, fraction of the whole.

The principles given above hold over both brain and computer, and over
both the simple and complex cases. The complex case often breaks up into
4 sequence of selections, over each of which the postulate holds. A part
of the selection now often becomes a selection of an appropriate "way of
breaking up"; the postulate holds with equal force over this particular
case (3}.

In conclusion it may be of interest to glance at the reason why these
simple principles have so long eluded us. I think the reason is that we
have hitherto quite mis-estimated the quantitites of information that go
respectively to the computer and to the human being before they start their
selective processes. In Programming a computer we are acutely aware of how
much labour it costs us, and we think the amount of information is very
large; in fact it is small. The Programmer, as a human being, however, is
apt to be almost unaware of how auch processing the human being has gone
through -- in evolution and in childhood -- and he is apt to think the
amount is small; in fact it is extremely large. After two thousand million
years of evolutionary selection, followed by all the experiences of child-
hood and later training, he has accumulated a great store of information;
with it he can perform feats of appropriate selection that far surpass
those of today's computers, provided the problem is of a type for which his
information is relevant. When this is so he can show to advantage.
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REGULATION AND CONTROL,
AND THEIR RELATION TO INFORMATION

INTRODUCTION

The Law of Requisite Variety is probably the result for which Ashby is
best known. It is discussed in his Introduction to Cybernetics but is
included here in "Requisite Variety and its Implications..." for complete-
ness and because of the very interesting comments in the discussion section
of the paper. The Law itself states that in the attempt to force desirable
outcomes in a situation over which it has only partial control, any regula-
tor is numerically limited by the information it has available. Addition-
ally, the capacity of a regulator to regulate is bounded by its capacity as
an informstion channel. There are some important qualifications (often
overlooked) on the Law, but even in its simplest form it has been influen-
tial in illuminating the deep rslation betwaen information and regulation.
Since regulation is a form of appropriate selection (of the "right" action
out of the sat of possible actions), and since Ashby argues that intellj-~
gence is basically appropriate selection, he would have been interested in
recent research in which it has been found that human IQ's are correlated
with the speed at which the humans can perform certain information-transfer
tasks (such as quickly hitting a key when a light comes on). These results
saem to verify Ashby's implied suggestion of a link between channel capaci-
ty and intelligence.

It should be pointed out that the term "channel capacity" used here
and elsewhers by Ashby is not identical with the term as used by Shannon
and others in the more technical version of information theory. In that
context it has a somewhat elaborate definition invelving limits and res-
trictive assumptions. Ashby uses it to mean the @maximum amount of informa-
tion which can be conveyed from input to output in one step, unconstrained
by and without regard for what has gone befors. This is a technical point
which need not bother most readers.

" The brief lettsr, "The Brain as Regulator,” emphasizes a point umpli-
¢it in the derivation of the Law of Requisite Variety but often overlooked
there, that the best regulator is necessarily detemministic . The final
paper, "Every Good Regulator of a System is a Model of the System,"” carries
this conclusion still further by showing that under certain broad condi-
tions, any regulator which is both maximally successful and simple must be
isomorphic with the system being regulated (or homomorphic under especially
favorable conditions.) The regulator can be viewed as succeeding by using
an  internal model of the system to "predict” what the system will do, then
deterministically selecting an appropristely matched "countermove." If tha
regulacor successfully develops its strategy by trial and error, the pro-
Cess will evolve an equivalent of a model of the sSystem. Ashby was quite
keen on this Paper; he viewed the theorem in it as the basis of a "theoret-
ical neurology," since it seems to show how the brain must act in its exer-
cise of appropriate selection.



'REQUISITE VARIETY AND ITS IMPLICATIONS
FOR THE CONTROL OF COMPLEX SYSTEMS

By W. ROSS ASHBY,
Director of Research, Barnwood House (Gloucester)

Recent work on the fundamental processes of regulation in biology (Ashby,
1956) has shown the importance of a certain quantitative relation called the law
of requisite variety*. After this relation has been found, we appreciated that it
was related to a theorem in a world far removed from the biological — that of
Shannon on the quantity of noise or error that could be removed through a
correction-channel (Shannon and Weaver, 1959; theorem 10). In this paper |
propose to show the relationship between the two theorems, and to indicate
something of their implications for regulation, in the cybernetic sense, when
the system to be regulated is extremely complex.

Since the law of requisite variety uses concepts more primitive than those
used by entropy, | will start by giving an account of that law.

Variety.

Given a set of elements, its variety is the number of elements that can be
distinguished. Thus the set

{ gbcgg c=}
has a variety of three letters. (If two observers differ in the distinctions they
can make, then they will differ in their estimates of the variety. Thus if the
set it

{bcaaCaBa}

its variety in shapes is five, but its variety in letters is three. We shall not, how-
ever, have to treat this complication.)

For many purposes the variety may more conveniently be measured by
the logarithm of this number. If the logarithm is taken to base 2, the unit is
the bit. The context will make clear whether the number or its logarithm is
being used as measure. '

Regulation and the pay-off matrix.

Regulation achieves a “goal” agaiést a set of disturbances. The
\—-—-ﬂ-——

* Traduction francaise: loi de la variete indispensable.




disturbances may be actively hostile, as are those coming from an enemy, or merely
irregular, as are those coming from the weather. The relations may be shown in the

most general way by the formalism that is already well known in the theory of
games (Neumann and Morgenstern, 1947),

A set D of disturbances d; can be met by a set R of responses r.. The

. . /
outcomes provide a table or matrix
R

r 7, 74 e
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in which each cell shows an element z; from the set Z of possible outcomes.

It is not implied that the elements must be numbers (though the possibil-
ity is not excluded). The form is thus general enough to include the case in
which the events d; and r; are themselves vectors, and have a complex internal
structure. Thus the disturbances D might be all the attacks that can be made by
a hostile army, and the responses A all the counter-measures that might be
taken. What is required at this stage is that the sets are sufficiently well de-
fined so that the facts determine a single-valued mapping of the product set
D x R into the set Z of possible outcomes. (| use here the concepts as de-
fined by Bourbaki, 1951).

The “outcomes” so far are simple events, without any implication of de-
sirability. In any real regulation, for the benefit of some defined person or
organism or organization, the facts usually determine a further mapping of
the set Z of outcomes into a set £ of values. £ may be as simple as the 2-
element set (good, bad), and is commonly an ordered set, representing the
preferences of the organism. Some subset of £ is then defined as the “goal”,
The set of values, with perhaps a scale of preference, is often obvious in human
affairs; but in the biological world, and in the logic of the subject, it must
have explicit mention. Thus if the outcome is “get into deep water”’, the valua-
tion is uncertain until we know whether the organism is a cat or a fish.

In the living organisms, the scale of values is usually related to thejr

o7

“‘essential variables” — those fundamental variables that must be kept within

certain “physiological” limits if the organism is to survive. Other organizations

also often have their essential variables: in an economic system, a firm's profits

is of this nature, for only if this variable keeps positive can the firm survive,
Given the goal — the “good” or “acceptable” elements in £ — the inverse

mapping of this subset will define, over Z, the subset of “acceptable outcomes”,

Their occurrence in the body of the table or matrix will thus mark a subset

of the product set D x R. Thus is defined a binary relation S between 0 and

R in which ‘‘the elements d; and o have the relation S is equivalent to “’i’

as response to d,., gives an acceptable outcome”.

Control,

In this formulation we have considered the case in which the regulator
acts so as to limit the outcome to a particular subset, or to keep some variables
within certain limits, or even to hold some variables constant. This reduction
to constancy must be understood to include all those cases, much more numer-
ous, that can be reduced to this form. Thus if a gun is to follow a moving
target, the regulation implied by accuracy of aim may be represented by a
keeping at zero of the difference between the gun’s aim and the target’s posi-
tion. The same remark is clearly applicable to all cases where an unchanging
(constant) relation is to be maintained between one variable that is independent
and another variable that is controlled by the regulator.

Thus, as a special instance, if a variable y {which may be a vector) is to be
controlled by a variable a, and if distrubance D has access to the system so that
y is a function of both the control a and the value of disturbance D, then a
suitable regulator that has access to the disturbance may be able to counter its
effects, remove its effect from y, and thus leave y wholly under the control of
a. In this case, successful regulation by A is the necessary and sufficient condi-
tion for successful control by a

Requisite variety.

Consider now the case which, given the table of outcomes (the pay-off
matrix), the regulator & has the best opportunities for success. (The other
cases occur as degenerate forms of this case, and need not be considered now
in detail.)

Given the table, R's opportunity is best if R can respond knowing D'’s
value. Thus, suppose that D must first declare his (or its) selection d;; apar-
ticular row in the table is thereby selected. When this has been done, and know-
ing D’s selection, R selects a value Tis and thus selects a particular column. The



outcome is the value of Z at the intersection, Such a table might be:

R
L4 7, T3
d ¢ a d
d, b d a
D dy ¢ d c
.d4 a a b
d d b b

If outcomes a, b count as Good, and ¢, o as Bad, then if D selects di'

R must select ry for only thus can & score Good. If D selects d,, R may
choose r,orr,. If D selects d3, then R cannot avoid a Bad outcome; and
so on.

Nature, and other sources of such tables, provides them in many forms,
ranging from the extreme at which every one of R's responses results in Good
(these are distinctly rare!), to those hopeless situations in which every one of
R’s responses leads to Bad. Let us set aside these less interesting cases, and
consider the case, of central importance, in which each column has all its
elements different. (Nothing is assumed here about the relation between the
contents of one column and those of another.) What this implies is that if
the set D had a certain variety, the outcomes in any one column will have the
same variety. In this case, if R is inactive in responding to D (i.e., if R ad-
heres to one value r, for all values of D), then the variety in the outcomes will
be as large as that in D, Thus in this case, and if R stays constant, D can be
said to be exerting full control over the outcomes.

R, however, aims at confining the actual outcomes to some subset of the
possible outcomes Z [t is necessary, therefore, that R acts so as to lessen the
variety in the outcomes. If B does so act, then there is a quantitative relation
between the variety in D, the variety in R, and the smallest variety that can be
achieved in the set of actual outcomes; namely, the /atter cannot be less than
the quotient of the number of rows divided by the number of columns (Ashby,
1956; S.11/5).

If the varieties are measured logarithmically,
ties of D, R, and actual outcomes are respectively
minimal value of Vo is Vg~ V,. If now Vd

this means that if the varie-
Vg V.. and Vo then the
is given, V,'s minimum can be

F gsenecf only by a corresponding increase in V,. This is the law of requisite
variety. What it means is that restriction of the outcomes to the subset that
is valued as Good demands a certain variety in A.

We can see the relation from another point of view, R, by depending
on D for its value, can be regarded as a channel of communication between D
and the outcomes (though A, by acting as a regulator, is using its variety sub-
tractively from that of D). The law of requisite variety says that R's capacity
as a regulator cannot exceed its capacity as a channel for variety.

The functional dependencies can be represented as in Fig. 1. (This dia-
gram is necessary for comparison with Figs. 2 and 3)

Dr===-mmmme 5,
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The value at D threatens to transmit, via the table T to the outcomes Z, the
full variety that occurs at D. For regulation, another channel goes through R,
which takes a value so paired to that of O that T gives values at Z with re-

duced variety.

Nature of the limitation.

The statement that some limit cannot be exceeded may seem rash, for
Nature is full of surprises. What, then, would we say if a case were demon-
strated in which objective measurements shows that the limit was being ex-
ceeded? Here we would be facing the case in which appropriate effects were
occurring without the occurrence of the corresponding causes. We would face
the case of the examination candidate who gives the appropriate answers be-
fore he has been given the corresponding questions! When such things have
happened in the past we have always looked for, and found, a channel of com-
Munication which has accounted for the phenomenon, and which has shown that
the normal laws of cause and effect do apply. We may leave the future to deal
similarly with such cases if they arise. Meanwhile, few doubt that we may pro-
ceed on the assumption that genuine overstepping of the limitation does not
occur,

Examples in biology.
In the biological world, examples that approximate to this form are




e S —— e wraTmamematical precision. This inex-
actness of correspondence does not matter in our present context, for we shall
not be concerned with questions involving high accuracy, but only with the
existence of this particular limitation,

An approximate example occurs when an organism is subject to attacks
by bacteria (of species d,.) so that, if the organism is to survive, it must pro-
duce the appropriate anti-toxin r;. If the bacterial species are all different, and
if each species demands a different anti-toxin, then clearly the organism, for
survival, must have at least as many anti-toxins in its repertoire of responses
as there are bacterial species.

Again, if a fencer faces an opponent who has various modes of attack
available, the fencer must be provided with at least an equal number of modes
of defence if the outcome is to have the single value: attack parried.

Analysis of Sommeroff.

Sommerhoff (1950) has conducted an analysis in these matters that bears
closely on the present topic. He did not develop the quantitative relation be-
tween the varieties, but he described the basic phenomenon of regulation in
biological systems with a Penetrating insight and with a wealth of examples.

He recognizes that the concept of “‘regulation” demands variety in the
disturbances D. His “‘coenetic variable” is whatever is responsible for the values
of D. He also considers the environmental conditions that the organism must
take into account (but as, in his words, these are “epistemically dependent”
on the values of the coenetic variable, our symbol D can represent both, since
his two do not vary independently). His work shows, irrefutably in my opinion,
how the concepts of coordination, integration, and regulation are properly rep-
resented in abstract form by a relation between the coenetic variable and the
response, such that the outcome of the two is the achievement of some “‘focal
condition” (referred to as “goal” here). From our point of view, what is im-
portant is the recognition that without the regulatory response the values at
the focal condition would be more widely scattered,

Sommerhoff’s diagram (Fig. 2) is clearly similar. (I have modified it
slightly, so as to make it uniform with Figs. 1 and 3).

His analysis is valuable as he takes a great many biological examples and
shows how, in each case, his abstract formulation exactly catches what is essen-
tial while omitting the irrelevant and merely special. Unfortunately, in stating
the thesis, he did what | did in 1952 — used the mathematical language of
analysis and continuous functions. This language now seems unnecessarily
clumsy and artificial; for it has been found (Ashby, 1956) that the concepts
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of set theory, especially as expounded by Bourbaki (1952) are incomparably
clearer and simpler, while losing nothing in rigor. By the change to set theory,
nothing in fact is lost, for nothing prevents the elements in a set from being
numbers, or the functions from being continuous, and the gain in generality is
tremendous. The gain is specially marked with biological material, in which
non-numerical states and discontinuous functions are ubiquitous.

Let me summarise what has been said about “regulation”. The concept
of regulation is applicable when there is a set D of disturbances, to which the
organism has a set R of responses, of which on any occasion it produces some
one, r;say. The physico-chemical or other nature of the whole system then
deterr:;inas the outcome. This will have some value for the organism, either
Good or Bad say. If the organism is well adapted, or has the know-how, its
feésponse r;, as a variable, will be such a function of the disturbance d; that
the outcome will always lie in the subset marked as Good, The law of requisite
variety then says that such regulation cannot be achieved unless the regulator R,
as a channel of communication, has more than a certain capacity. Thus, if D
threatens to introduce a variety of 10 bits into the outcomes, and if survival
demands that the outcomes be restricted to 2 bits, then at each action & must
provide variety of at least 8 bits.

Ergodicity.

Before these ideas can be related to those of the communication theory
of Shannon, we must notice that the concepts used so far have not assumed
ergodicity, and have not even used the concept of probability.
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The fact that communication theory, during the past decade, has tended
to specialize in the ergodic case is not surprising when we consider that its
application has been chiefly to telephonic and other communications in which
the processes go on incessantly and are usually stationary statistically. This
fact should not, however, blind us to the fact that many important communi-
cations are non-ergodic, their occurrence being specially frequent in the biolo-
gical world. Thus we frequently study a complex biological system by isolat-
ing it, giving it a stimulus, and then observing the complex trajectory that
results. Thus the entomologist takes an ant colony, places a piece of meat
nearby, and then observes what happens over the next 24 hours, without dis-
turbing it further. Or the social psychologist observes how a gang of juvenile
criminals forms, becomes active, and then breaks up. In such cases, even a
single trajectory can provide abundant information by the comparison of part
with part, but the only ergodic portion of the trajectory is that which occurs
ultimately, when the whole has arrived at some equilibrium, in which nothing
further of interest is happening. Thus the ergodic part is degenerate. |t is to
be hoped that the extension of the basic concepts of Shannon and Wiener to
the non-ergodic case will be as fruitful in biology as the ergodic case has been
in commercial communication. It seems likely that the more primitive concept
of “variety” will have to be used, instead of probability; for in the biological
cases, systems are seldom isolated long enough, or completely enough, for the
relative frequencies to have a stationary limit.

Among the ergodic cases there is one, however, that is obviously related
to the law of requisite variety. It is as follows.

Let D, R, and E be three variables, such that we may properly observe
or calculate certain entropies over them. Our first assumption is that if R is
constant, all the entropy at D will be transmitted to, and appear at, £. This
is equivalent to

HIE) = H (D)

By writing H (D,R) in two forms we have
HID) + H (R} = H(R) + H, (D)

Use of (1) gives

HID) + H R) = H(R) + H (E)
= H(RE)
< H(R) + HIE)
ie. HIE)ZHID)  + HIR)_ H(R) (2)
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The entrophy of £ thus has a certain minimum — the expression on the
right of (2). If H(E) is the entropy of the actual outcomes, then, for regulation,
it may have to be reduced to a certain valye, Equation (2) shows what can re-
duce it; it can be reduced:

(i) by making H (R) =0, i.e. by making R a determinate function
of D,

(i) by making H(R) larger.

If Hy(R) = 0, and H(R) the only variable on the right of (2), then a decrease in
H(E) demands at least an equal increase in H(R). This conclusion is clearly sim-
ilar to that of the law of requisite variety.

A simple generalization has been given (Ashby, 1956) in which, when R
remains constant, only a certain fraction of D's variety or entropy shows in the
outcomes or in H(E). The result is still that each decrease in H(E) demands at
least an equal increase in H(R).

With this purely algebraic result we can now see exactly how these ideas
join on to Shannon’s. His theorem 10 uses a diagram which can be modified
to Figure 3 (to match the two preceding Figures).
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Our “disturbance D", which threatens to get through to the outcome, clearly
corresponds to the noise; and his theorem says that the amount of noise that
can be prevented from appearing in the outcomes is limited to the entropy
that can be transmitted through the correction channel.

The message of zero entropy.

What of the “message’”? In regulation, the “message” to be transmitted
is a constant, i.e. has zero entropy. Since this matter is fundamental, let us
consider some examples. The ordinary thermostat is set at, say, 70°F. “Noise”,
in the form of various disturbances, providing heat or cold, threatens to drive
the output from this value. If the thermostat is completely efficient, this
variation will be completely removed, and an observer who watches the temp-
erature will see continuously only the value that the initial controller has set.
The “message” is here the constant value 70.




Similarly, the homeostatic mechanism that keeps our bodies, in health,
about 98°F s set at birth to maintain this value, The control comes from the
gene-pattern and has zero entropy, for the selected vajue is unchanging

The same argument applies similarly to all the regulations that occur in
other systems, such as the sociological and economic. Thus an attempt to
stabilize the selling price of wheat is an attempt to transmit, to the farmers, a
“message” of zero entropy; for this is what the farmer would receive if he
were to ask daily “‘what is the price of wheat today”? The stabilization, so
far as it is successful, frees the message from the effects of those factors that
might drive the price from the selected value.

Thus, all acts of regulation can be related to the concepts of communica-
tion theory by our noticing that the “goal” is a message of zero entropy; and
that the “disturbances” correspond to noise.

The errorcontrolled regulator,

A case in which this limitation acts with peculiar force is the very common
one in which the regulator is “‘error-controlled”, In this case the regulator’s
channel for information about the disturbances has to pass through a variable
(the “‘error”) which is kept as constant as possible (at zero) by the regulator R
itself. Because of this route for the information, the more successful the regula-
tor, the less will be the range of the error, and therefore the less will be the
capacity of the channel from D 1o R. To go to the extreme: if the regulator
is totally successful, the error will be zero unvaryingly, and the regulator will
thus be cut off totally from the information (about D’s value) that alone can
make it successful — which is absurd. The error-controlled regulator is thus
fundamentally incapable of being 100 percent efficient.

Living organisms encountered this fact long ago, and natural selection and
evolution have since forced the development of channels of information,
through eyes and ears for instance, that supply them with information about
D before the chain of cause and effect goes so far as to cause actual error. At
the present time, control by error is widely used in industry, in servomechan-
isms and elsewhere, as a means to regulation. Some of these regulations by
error-control are quite difficult to achieve. Immersed in the intricacies of
Nyquist’s theorem, transfer functions, and other technical details, the design
engineer may sometimes forget that there js another way to regulation. May
I suggest that he would do well to bear in mind what has been found so ad-

vantageous in the biological world, and to consider whether a regulation which
is excessively difficult to design when it is controlled by error may not be
easier to design if it js controlled not by the error but by what gives rise to

E the error.
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This is a first application to cybernetics of the law of requisite variety
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The team as regulator.

It should be noticed that the limitation on “‘the capacity of Man” is
grossly ambiguous, according to whether we refer to a single person, to a team,
or to the whole of organized society. Obviously, that one man has a limited
capacity does not impose a limitation on a team of n men, if n may be increased
without limit. Thus the limitation that holds over a team of » men may be much
higher, possibly n times as high, as that holding over the individual man.

To make use of the higher limitation, however, the team must be effi-
ciently organized; and until recently our understanding of organization has
been pitifully small. Consider, for instance, the repeated attempts that used
to be made (especially in the last century) in which some large Chess Club
played the World Champion. Usually the Club had no better way of using its
combined intellectual resources than either to take a simple majority vote on
what move to make next (which gave a game both planiess and mediocre), or
to follow the recommendation of the Club’s best player (which left all members
but one practically useless). Both these methods are grossly inefficient. Today
we know a good deal more about organization, and the higher degrees of effi-
ciency should soon become readily accessible. But | do not want to consider
this question now. | want to emphasize the limitation. Let us therefore con-
sider the would-be regulator, of some capacity that cannot be increased, facing
a system of great complexity. Such is the psychologist, facing a mentally sick
person who is a complexly interacting mass of hopes, fears, memories, loves,
hates, endocrines, and so on. Such is the sociologist, facing a society of mixed
races, religions, trades, traditions, and so on. | want to ask: given‘his limitation,
and the complexity of the system to be regulated, what scientific strategies
should he use?

In such a case, the scientist should beware of accepting the classical
methods without scrutiny. The classical methods have come to us chiefly from
physics and chemistry, and these branches of science, far from being all-embrac.
ing, are actually much specialized and by no means typical. They have two
peculiarities. The first is that their systems are composed of parts that show an
extreme degree of homogeneity: contrast the similarity between atoms of
carbon with the dissimilarity between persons. The second is that the systems
studied by the physicist and chemist have nothing like the richness of internal
interaction that have the systems studied by the sociologist and psychologist.

Or take the case of the scientist who would study the brain. Here again
is a system of high complexity, with much heterogeneity in the parts, and great
richness of connection and internal interaction. Here too the quantities of in-
formation involved may well go beyond the capacity of the scientist as a

transducer.

199

Both of these qualities of the complex system — heterogeneity in the

parts, and richness of interaction between them — have the same implication: the
quantities of information that flow, either from system to observer or from part
to part, are much larger than those that flow when the scientist is physicist or
chemist. And it is because the quantities are large that the limitation is likely

to become dominant in the selection of the appropriate scientific strategy.

As | have said, we must beware of taking our strategies slavishly from
physics and chemistry. They gained their triumphs chiefly against systems whose
parts are homogeneous and interacting only slightly. Because their systems
were so specialized, they have developed specialized strategies. We who face
the complex system must beware of accepting their strategies as universally
valid. It is instructive to notice that their strategies have already broken down
in one case, which is worth a moment’s attention. Until about 1925, the rule
“vary only one factor at a time” was regarded as the very touchstone of the
scientific method. Then R.A. Fisher, experimenting with the yields of crops
from argicultural soils, realized that the system he faced was so dynamic, so
alive, that any alteration of one variable would lead to changes in an uncount-
able number of other variables long before the crop was harvested and the
experiment finished. So he proposed formally to vary whole sets of variables
simultaneously — not without peril to his scientific reputation. At first his
method was ridiculed, but he insisted that his method was the truly scientific
and appropriate one. Today we realize that the rule “‘vary only one factor at
a time” is appropriate only to certain special types of systems, not valid uni-
versally. Thus we have already taken one step in breaking away from the
classical methods.

Another strategy that deserves scrutiny is that of collecting facts “in
case they should come in useful sometime” — the collecting of truth “for
truth’s sake”. This method may be efficient in the systems of physics and
chemistry, in which the truth is often invariant with time; but it may be quite
inappropriate in the systems of sociology and economics, whose surrounding con-
ditions are usually undergoing secular changes, so that the parameters to the
system are undergoing changes — which is equivalent to saying that the systems
are undergoing secular changes. Thus, it may be worth while finding the density
of pure hafnium, for if the value is wanted years later it will not be changed.
But of what use today, to a sociologist studying juvenile delinquency, would a
survey be that was conducted, however carefully, a century ago? It might be
relevant and helpful; but we could know whether it was relevant or not only
after a comparison of it with the facts of today; and when we know these,
there would be no need for the old knowledge. Thus the rule “‘collect truth



for truth’s sake” may be justified when the truth is unchanging; but when the
System is not completely isolated from its surroundings, and is undergoing secy-
lar changes, the collection of truth is futile, for it will not keep,

There is little doubt, then, that when the system is complex, the scientist
should beware of taking, without question, the time-honored strategies that have
come to him from physics and chemistry, for the systems commonly treated
there are specialized, not typical of those that face him when they are complex.

Another common aim that will have to be given up is that of attempting to

“understand” the complex system; for if “understanding" a system means hay-
ing available a model that is isomorphic with it, perhaps in one’s head, then
when the complexity of the system exceeds the finite capacity of the scientist,
the scientist can no longer understand the system — not in the sense in which
he understands, say, the plumbing of his house, or some of the simple models
that used to be described in elementary economics,

Operational research,

It will now be obvious that the strategies appropriate to the complex sys-
tem are those already getting well known under the title of “operational re-
search”. Scientists, guided doubtless by an intuitive sense of what is reasonable,
are already breaking away from the classical methods, and are developing methods
specially suitable for the complex system. Let me review briefly the chief charac-
teristics of “‘operational research’,

Its first characteristic is that its ultimate aim is not understanding but the
purely practical one of control. If a system is too complex to be understood, it
may nevertheless still be controllable. For to achieve this, all that the controller
wants to find is some action that gives an acceptable resuit; he js concerned
only with what happens, not with why it happens. Often, no matter how com-
plex the system, what the controller wants is comparatively simple: has the
patient recovered? — have the profits gone up or down? — has the number of

strikes gone up or down?

A second characteristic of operational research is that it does not collect
more information than s hecessary for the job. 1t does not attempt to trace
the whole chain of causes and effects in all its richness, byt attempts only to
relate controllable causes with ultimate effects,

A third characteristic js that it does not assume the system to be absolutely
unchanging. The research solves the problems of today, and does not assume that
its solutions are valid for all time. It accepts frankly that its solutions are valid
merely until such times as they become obsolete,

The philosopher of science is apt to look somewhat askance at such

s

methOdS, but the practical scientist knows that they often achieve succefs

'r when the classical methods bog down in complexities. HO\.V to n?ake edible
pread, for instance, was not found by the methods of classical science — had we
waited for that we still would not have an edible loaf — but by‘ n'fethods analog-
ous to those of operational research: if a variation works', exploit it further; ask
not why it works, only /if it works. We must be carefu!, .llil fa'ct, not to exagger-
ate the part played by classical science in present-day cmhza'txon and technology.
Consider, for instance, how much empirical and purely practical knowledge

plays a part in our knowledge of metallurgy, of lubricants, of house-building,

of pottery, and so on.

What | suggest is that measurement of the quantity of information, even
if it can be done only approximately, will tell the investigator Wh?fe. a complex'
system falls in relation to his lin?itation. If it is well belm\.' fhe hmtt‘, thfe classic
methods may be appropriate; but should it be above the limit, then if {ns work
is to be realistic and successful, he must alter his strategy to one more like that
of operational research. ‘

My emphasis on the investigator’s limitation may seem merely dcpres,smg.
That is not at all my intention. The law of requisite variety, and. Shannon’s
theorem 10, in setting a limit to what can be done, may mark this era as the
law of conservation of energy marked its era a century ago. When the law of
conservation of energy was first pronounced, it seemed at first to‘be n?erely
negative, merely an obstruction; it seemed to say only that certain thmg', .such
as getting perpetual motion, could not be done. Nevertheless, thc'z .recognmc.)n
of that limitation was of the greatest value to engineers and physnc;:r.ts: arfd it has
not yet exhausted its usefulness. | suggest that recognition of the limitation
implied by the laws of requisite variety may, in time, also prove useful, by ?n-
suring that our scientific strategies for the complex system shall be,‘ not slavish
and inappropriate copies of the strategies used in physics and chemistry, but new
strategies, genuinely adapted to the special peculiarities of the complex system.
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THE BRAIN AS REGULATOR

There has been some debate whether the brain is determinate or probabilis-
i in its behavior. As a contribution to this question, the following argument
shows that from one point of view the determinate system is demonstrably of
greater efficiency than the probabilistic. The physiologist may therefore expect
to find that natural selection has made the brain as determinate as possible.

If the brain is regarded as basically a means to survival, then a necessary
condition for survival is that against the (moderately well-defined) set of dis-
turbances that threaten the organism'’s existence the brain must so respond that
the outcome of the combined action of disturbance and response keeps the
* organism’s essential variables within normal limits'-2-3, The brain must, in other
words, act as a regulator, homeostatic in the general sense. The sequence of dis-
turbances that comes to the organism can then often be treated (algebraicaily at
least) as an information source (in Shannon’s sense?) having an entropy, H(D)
say. Similarly, the sequence of responses will have an entropy HfR) and so
will the sequence of values at the essential variables, H(E). It is necessary for
survival (though no sufficient) that H(E) be kept small.

The most interesting case is that in which, if the organism does nothing,
all the changes at D produce changes at £ (that is, the organism is passively
buffeted to full degree). In this case H,(E} =H (D), and it then follows?
that H(E)'s minimum is given by H(D) + Hd(R} — H(R). So far as Hdlﬁl is
concerned, the expression will be least if H4(R) = 0. This relation gives a neces-
sary condition that the brain must satisfy if it is to have maximal efficiency in
generalized homeostasis.

The meaning of Hd{R) = 0 is readily specified. Of any source, A, H(A) = 0
implies that the Markov chain must be such that when it reaches equilibrium
the transitions that still occur are determinate (that is, have probabilities all 0 or
1. H d{R) = 0 implies that this tendency to determinatedness must hold for
each value of D.

Thus, if the brain is survival-promoting by acts of regulation, it has maxi-
mal efficiency (other things being equal) if, under constant external conditions,
it tends towards the deterministic way of behaving.
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The design of a complex regulator often includes the making of a model of
the system to be regulated. The making of such a model has hitherto been re-
garded as optional, as merely one of many possible ways.

In this Paper a theorem is presented which shows, under very broad con-
ditions, that any reguiator that s maximally both successful and simple must
be isomorphic with the system being regulated. (The exact assumptions are
given.) Making a model is thus necessary.

The theorem has the interesting corollary that the living brain, so far as
it is to be successful and efficient as a regulator for survival, must proceed,
in learning, by the formation of 2 model (or models) of its environment.

l. Introduction

Today, as a step towards the control of complex dynamic systems, models
are being used ubiquitously. Being modelled, for instance, are the air traffic
flows around New York, the endocrine balances of the pregnant sheep, and the
flows of money among the banking centers.

So far, these models have been made mostly with the idea that the model
might help, but the possibility remained that the cybernetician (or the Sponsor)
might think that some other way was better, and that making a model (whether
digital, analogue, mathematical, or other) was a waste of time, Recent work
(Conant 1969), however, has suggested that the relation between regulation
and modelling might be much closer, that modelling might in fact be a necessary
part of regulation. In this article we address ourselves to this question.

* Communicated by Dr. W. Ross Ashby. This work was in part supported by the Air
Force Otfice of Scientific Research under Grant AF-OSR 70-1865.

b Now at University College, Cardiff, Wales.



The answer is likely to be of interest in several ways. First, there is the would-

be designer of a regulator (of traffic round an airport say) who is bullding, as a first
stage, a model of the flows and other events around the airport. If making a model
is necessary, he may proceed relieved of the nagging fear that at any moment his
work will be judged useless. Similarly, before any design is started, the question:
How shall we start? may be answered by: A model will be needed; let's build
one.

Quite another way in which the answer would be of interest is in the brain
and its relation to behavior. The suggestion has been made many times that per-
haps the brain operates by building a mode! (or models) of its environment; but
the suggestion has (so far as we know) been offered only as a possibility. A
proof that model-making is necessary would give neurophysiology a theoretical
basis, and would predict modes of brain operation that the experimenter could
seek. The proof would tell us what the brain, as a complex regulator for its
owner’s survival, must do. We could have the basis for a theoretical neurology.

The title will already have told this paper’s conclusion, but to it some quali-
fications are essential. To make these clear, and to avoid vaguenesses and ambigui-
ties (only too ready to occur in a paper with our range of subject) we propose to
consider exactly what is required for the proof, and just how the general ideas of
regulation, model, and system are to be made both rigorous and objective.

2. Regulation

Several approaches are possible. Perhaps the most general is that given by
Sommerhoff (1950) who specifies five variables (each a vector or n-tuple perhaps)
that must be identified by the part they play in the whole process.

Fig. 1
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(1) There s the total set Z of events that may occur, the regulated and the
unreguiated; e.g. all the possible events at an airport, good and bad. (SetZ in
Ashby’s (1967) reformulation in terms of set theory.)

(2) ThesetG, asubsetofZ, consisting of the “‘good” events, those en-
sured by effective regulation.

PAVY A

(3) Theset R of events in the regulator R; (e.g. in the control tower). [We
have found clarity helped by distinguishing the regulator as an object from the set
of events, the values of the variables that compose the regulator. Here we use
italic and Roman capitals respectively.]

(4) ThesetS of events in the rest of the system S (e.g. positions of air-
craft, amounts of fuel left in their tanks) [with italic and Roman capitals similarly].

(5) The set D of primary disturbers (Sommerhoff’s “coenetic” variable);
those that, by causing the events in the system S, tend to drive the outcomes out
of G; (e.g. snow, varying demands, mechanical emergencies).

(Figure 1 may help to clarify the relations, but the arrows are to be under-
stood for the moment as merely suggestive.) A typical act of regulation would
be given by a hunter firing at a pheasant that flies past. D would consist of all
those factors that introduce disturbance by the bird’s coming sometimes at one
angle, sometimes another; by the hunter being, at the moment, in various pos-
tures; by the local wind biowing in various directions; by the lighting being from
various directions. S consists of all those variables concerned in the dynamics of
bird and gun other than those in the hunter's brain. A would be those variables in
his brain. G wouid be the set of events in which shot does hit bird. R is now a
“good"’ regulator (is achieving “regulation”) if and only if, for all values of D, R
is so related to S that their interaction gives an event in G.

This formulation has withstood 20 years’ scrutiny and undoubtedly covers
the great majority of cases of accepted regulation. That it is also rigorous may be
shown (Ashby 1967) by the fact that if we represent the three mappings by which
each value (Fig. 1) evokes the next:

¢: D*S
p: >R
¥:S x R3Z
then “R is a good regulator (for goal G, given D, etc., ¢ and )" is equivalent to
PG $. m

to which we must add the obvious condiction that

ppic 1cptp,
to ensure that o is an actual mapping, and not, say, the empty set! (We represent
composition by adjacency, by a dot, or by parenthesis according to which best
gives the meaning.)

it should be noticed that in this formulation there is no restriction to

linearity, to continuity, or even to the existence of a metric for the sets,
though these are in no way excluded. The variables, too, may be partly func-
tions of earlier real time; so the formulation is equally valid for regulations that



involve “‘memory”, provided the sets D, etc., are defined suitably.

Any concept of “regulation” must include such entities as the regulator
R, the regulated system S, and the set of possible outcomes 2, Sometimes, how.
ever, the criterion of success is not whether the outcome, after each interaction
of S and R, is within a goal-set G, but is whether the outcomes, on some
numerical scale, have a root-mean-square sufficiently small,

A third criterion for success is to consider whether the entropy H(Z) is
sufficiently small. When Z can be measured on an additive scale they tend to
be similar: complete constancy of outcome ¢ H(Z) = 0 & r.m.s = 0, (though
the mathematician can devise examples to show that they are essentially inde-
pendent). But the entropy measure of scatter has the advantage that it can be
applied when the outcome can only be classified, not measured (e.g. species of
fish caught in trawling, amino-acid chain produced by a ribosome). In this paper
we shall use the last measure, H(Z), and we define “successful regulation” as
equivalent to “H(Z) is minimal”,

3. Error-, and cause-, controlled regulation
The reader may be wondering why error-controlled regulation has been

omitted, but there has been no omission. Everything said so far is equally true
of this case; for if the cause-effect linkages are as in Fig. 2, & is still receiving

Fig. 2
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information about D’s values, as in Fig. 1, but is receiving it after a coding
through S. The matter has been discussed fully by Conant (1969). There he
showed that the general formulation of F i8. 1 (which represents only that R
must receive information from D by some route) falls into two essentially dis-
tinct classes according to whether the flow of information from D to Z is con-
served or lossy. Regulation by error-control is essentially information-conserving,
and the entropy of Z cannot fall to zero (there must be some residual variation).
When, however, the regulator R draws its information directly from D (the cause
of the disturbance) there need be no residual variation: the regulation may, in
principle, be made perfect.

The distinction may be illustrated by a simple example. The cow is homeo-
static for blood-temperature, and in its brain is an error-controlled center that,

if the blood-temperature falls, increases the generation of heat in the muscles
and liver — but the blood-temperature must fall first. If, however, a sensitive
temperature-recorder be inserted in the brain and then a stream of ice-cold air
driven past the animal, the temperature rises without any preliminary fall.

The error-controlled reflex acts, in fact, only as reserve: ordinarily, the nervous
system senses, at the skin, that the cause of a fall has occurred, and reacts to
regulate before the “error” actually occurs. Error-controlled regulation is in
fact a primitive and demonstrably inferior method of regulation. It is inferior
because with it the entropy of the outcomes Z cannot be reduced to zero; its
success can only be partial. The regulations used by the higher organisms evolve
progressively to types more effective in using information about the causes (at D)
as the source and determiner of their regulatory actions. From here on, in this
paper, we shall consider "regulation of this more advanced, cause-controlled
type (though much of what we say will still be true of the error-controlled).

4. Models

Defining “regulation”, as we have seen, is easy in that one is led rapidly
to one of a few forms, closely related and easily distinguished in practical use.
The attempt to define a “model”, however, leads to no such focus. We shall
obtain a definition suitable for this paper, but first let us notice what happens
when one attempts precision. We can start with such an unexceptional “mode!’’
as a table-top replica of Chartres cathedral. The transformation is of the type,
in three dimensions:

h=kx
Ya=kz,
Yy=kz,

with k about 10~2. But this example, so clear and simple, can be modified a
little at a time to forms that are very different. A model of Switzerland, for
instance, might well have the vertical heights exaggerated (so that the three

k’s are no longer equal). In two dimensions, a (proportional) photograph from
the air may be followed by a Mercator’s projection with distortion, that no
longer leaves the variables separable. So we can go through a map of a subway
system, with only the points of connection valid, to “maps"” of a type describ-
able only mathematically.

In dynamic systems, if the transformation converts the real time ¢t to a
model time ¢ also in real time we have a “working’”” model. An unquestionable
“model” here would be a flow of electrons through a net of conducting sheets
that accurately models, in real time, the flow of underground water in Arizona.
But the model sailing-boat no longer behaves proportionately, so that a complex



relation is necessary to relate the model and the full-sized boat, Thus, in the

. working models, as in the static, we can readily obtain examples that deviate

more and more from the obvious model to the most extreme types of trans-
form, without the appearance of any natural boundary dividing model from
non-model. N

Can we follow the mathematician and use the concept of “isomorphism'?
It seems that we cannot. The reason is that though the concept of isomorphism
is unique in the branch where it started (in the finite groups) its extension to
other branches leads to so many new meanings that the unicity is lost.

As example, suppose we attempt to apply it to the universe of binary
relations. R, a subset of E x E, and S, a subset of F x F, are naturally regarded
as “isomorphic” if there exists a one-one mapping 0 of E into F such that
S = oRo™ ! (Riguet 1948, 1951, Bourbaki 1958). But'S and R are still closely
related, and able to claim some “model” relationship if the definition is weakened
to

Jo.7: N=oRr-!

(with T also one—one). Then it can be weakened further by allowing ¢ (and 7)
to be a mapping generally or even a binary relation. The sign of equality simi-
larly can be weakened to “s contained in”. We have now arrived at the relation
given earlier (1) under “regulation’’):

ped . ¢
which evidently implies some “-morphic” relation between p and ¢ (with A
assumed given).

In this paper we shall be concerned chiefly with isomorphism between two
dynamic systems (S and R in F ig. 1). We can therefore try using the modern
abstract definition of “machine with input” as a rigorous basis.

To discuss iso-, and homo-, morphism of machines, it is convenient first to
obtain a standard representation of these ideas in the theory of groups, where
they originated. The relation can be stated thus:

Let the two groups be, one of the set E of elements e with group opera-
tion (multiplication) §, so that & (e; ¥, = €, and other similarly of §' on ele-
ments F. Then the second is a homomorph of the first if and only if there exists
a mapping h, from E to F, so that, for all e, & € E:

6’[’1((’g)y ;I(l}” = }PIS(Ei, e,-)]. (2)

If h is one—one onto F, they are isomorphic. This basic equation form will en-
able us to relate the other possible definitions.

Hartmanis and Stearns’ (1966) definition of Machine M’ being a homo-
morphism of M follows naturally. Let machine M have a set S of internal states,
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a set | of input-values (symbols), a set O of output-values (symbols), and let it
operaté according to 8, a mapping of S X 1 t0 S, and A, a mapping of S X | to
O. Let machine M’ be represented similarly by S’, I, 0’6", A’ Then M’
is a homomorphism of M if and only if there exist three mappings:

hy. of S to &

ho.of I to 17
hy. of O to O

such that, foralls Sand/ |I:

hy[8(s.1)] =8 h(s). hz(;:)],]

hafA(s,8)] = X[ hy(8), ho(2)).] @3)

This definition corresponds to the natural case in which corresponding in-
puts (to the two machines) will lead, through corresponding internal states, to
corresponding outputs. But, unfortunately for our present purpose, there are
many variations, some trivial and some gross, that also represent some sort of
“similarity”. Thus, a more general form, representing a more complex form of

relation, would be given if the mappings

h,, of Sto §’, and h,, of I to I,
were replaced by one mapping

hy, of IxStoI'xN'".
(More general because h 4 May or may not be separable into h, and hz)' Then
the criterion would be,

Vi, s 8 h(s.)] = hy[8(s.i)), (4)
a form not identical with that at (3).

There are yet more. The “Black Box” case ignores the internal states S,
and treas.two Black Boxes as identical if equal inputs given equal outputs.

Formally, if wand u' are the mappings from input to output, then the second
Box is a2 homomorphism of the first if and only if there exists a mapping A,

of | to I, such that:

Viel : u'[h(i)]=h[u(s)). (5)
Here it should be rembered that equality of outputs is only a special case of
correspondence. Also closely related are two Black Boxes such that the second
is “‘de-coder’’ to the first: the second, given the first’s output, will take this as
input and emit the original input:

Viel . p'u (i)=1. (6)

This is aﬁ“isomorphism. In the homomorphic relation, the input / and the final
output uu(i) would both be mapped by A to the same-class:



Viel: hu'p (&)=h(@). (7)

These examples may be sufficient to show the wide range of abstract
“similarities” that might claim to be “isomorphisms”. There seem, in short, to
be as many definitions possible to isomorphism as to model. It might seem that
one could make practically any assertion one likes (such as that in our title) and
then ensure its truth simply by adjusting the definitions. We believe, however,
that we can mark out one case that is sufficiently a whole to be worth special
statement.

We consider the regulatory situation described earlier, in which the set of
regulatory events R and the set of events S in the rest of the system (i.e., in
the “reguland” S, which we view as R's opponent) jointly determine, thought a
mapping ¥/, the outcome events Z. By an optimal regulator we will mean a
regulator which produces regulatory events in such a way that H(Z) is minimal.
Then under very broad conditions stated in the proof below, the following
theorem holds:

Theorem: The simplest optimal regulator R of a reguland § produces
events R which are related to the events S by a mapping h: S*R.

Restated somewhat less rigorously, the theorem says that the best regula-
tor of a system is one which is a model of that system in the sense that the
regulator’s actions are merely the system’s actions as seen through a mapping
h. The type of isomorphism here is that expressed (in the form used above) by

3h: Wi p(i) = h|a(i)] (8)
where p and @ are the mappings that & and § impose on their common input |.
This form is essentially that of (5) above.

Proof: The sets R, S, and Z are the mapping Y: R XS * Z are presumed
given. We will assume that over the set S there exists a probability distribution
p(S) which gives the relative frequencies of the events in S, We will further as-
sume that the behavior of any particular regulator R is specified by a conditional
distribution p(RIS) giving, for each event in S, a distribution on the regulatory
events in R. Now p(S) and P(RIS) jointly determine p(R,S) and hence p(S) and
H(Z), the entropy in the set of outcomes. (H(Z) =- 3 p(zy ) log p(z; ).) With
p(S) fixed, the class of optimal regulators therefore corresponds to the class of
optimal distributions p(R | S) for which H(Z) is minimal. We will call this class
of optimal distributions .

It is possible for there to be very different distributions p(Z) all having the
same minimal entropy H(Z). To consider that possibility would merely compli-
cate this proof without affecting it in any essential way, so we will suppose
that every p(RIS) in 7 determines, with p(S) and ¥, the same (unique) p(2).

e ——

We now select for examination an arbitrary p(RIS) from 7.

The heart of the proof is the following lemma:

Lemma: Vs/- €S, the set : lll(ri,s/-) >0 f has only one element. That is,
for every 5; inS, p(Rlsl.} is such that all r; with positive probability map, with
s; under Y, to the same 2, inZ

Proof of lemma: Suppose, to the contrary, that p(rlis/.} >0, p{(zls/, )>0,
Ylry8;) =z, and Yfr,s.) = z, #2z,. Now »’7(”1511 and pfr,.s:) contribute to
plz, ) and p(22) respectively, and by varying these probabiljties (by subtracting A
from p(rT,s;.) and adding A to pir,. s.) we could vary plz,) and Plz,) and there-
by vary H(Z). We could make A either positive or negative, whichever would
make pfz,) and P(z,) more unequal. One of the useful and fundamental prop-
erties of the entropy function is that any such increase in imbalance in p(Z)
necessarily increases H(Z). Consequently, we could start with a p(RIS) resulting
in a lower H(Z); this contradiction proves the lemma.

Returning to the proof of the theorem, we see that for any number of 7
and any S in S, the values of R for which p(Rls.) is positive all give the same
Z, . Without affecting H(Z), we can arbitrarily select one of those values of R
and set its conditional probability to unity and the others to zero. When this
process is repeated for all s/. in S, the result must be a member of 7 with
p(RIS) consisting entirely of ones and zeroes. In an obvious sense this is the
simplest optimal p(RIS) since it is in fact a mapping h from S into R, Given
the correspondence between optimal distributions p(RIS) and optimal regulators
r, this proves the theorem.

The Theorem calls for several comments. First, it leaves open the possibil-
ity that there are regulators which are just as successful (just as “optimal”’) as
the simplest optimal regulator(s) but which are unnecessarily complex. In this
regard, the theorem can be interpreted as saying that although not all optimal
regulators are models of their regulands, the ones which are not are all unneces-
sarily complex.

Second, it shows clearly that the search for the best regulator is essentially
a search among the mappings from S into R; only regulators for which there is
such a mapping need be considered.

Third, the proof of the theorem, by avoiding all mention of the inputs
to the regulator R and its opponent S, leaves open the question of how R, §
and Z are interrelated. The theorem applies equally well to the configurations
of Fig. 1 and Fig. 2, the chief difference being that in Fig. 2 R is a model of
$ in the sense that the events R are mapped versions of the events S, whereas in

Fig. 1 the modelling is stronger; AR must be a homo- or isomorph of S (since it

has the same input as S and a mapping-related output),
Last, the assumption that p(S) must exist (and beconstant) can be



weakened; if the statistics of S change slowly with time, the theorem holds over
any period throughout which p(S) is essentially constant. As p(S) changes, the
mapping A will change appropriately, so that the best regulator in such a situa-
tion will still be a model of the reguland, but a time-varying model will be needed
to regulate the time-varying reguland.

5. Discussion

The first effect of this theorem is to change the status of model-making
from optional to compuisory. As we said earlier, model-making has hitherto
largely been suggested (for regulating complex dynamic systems) as a possibility:
the theorem shows that, in a very wide class (specified in the proof of the theorem),
success in regulation implies that a sufficiently similar mode! must have been
built, whether it was done explicitly, or simply developed as the regulator was
improved. Thus the would-be model-maker now has a rigorous theorem to jus-
tify his work.

To those who study the brain, the theorem founds a “theoretical neurology”,
For centuries, the study of the brain has been guided by the idea that as the
brain is the organ of thinking, whatever it does is right. But this was the view
held two centuries ago about the human heart as a pump; today's hydraulic
engineers know too much about pumping to follow the heart’s method slavishly:
they know what the heart ought to do, and they measure its efficiency. The
developing knowledge of regulation, information-processing, and control is build-
ing similar criteria for the brain. Now that we know that any regulator (if it
conforms to the qualifications given) must model what it regulates, we can
proceed to measure how efficiently the brain carries out this process. There
can no longer be question about whether the brain models its environment:
it must.
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THE ANALYSIS OF CONSTRAINTS
INTRODUCTION

By now the reader must be fully aware of the importance Ashby placed
on constraints. He pointed out that they are the essense of organization
and hence of structure in multivariable Systems; he showed that they can be
measured with information theory; further, he showed that when a dynamic
deterministic system is allowed to run to equilibrium, constraints will
appear which ultimately explain such phenomena 4s adaptive behavior and
intelligence. In this section are several key papers concerned with the
analysis of constraints. The first paper, "General Systems Theory as a New
Discipline,” is included here because it discusses, along with other
matters of interest, the deduction of the structure of a "black box," i.e.
4 mechanism whose laws are hidden from the investigator. The only course
open to the investigator is to search for constraints in the behavior and
responses of the box, and this search is nicely characterized by Ashby as a
communication process between box and investigator. Being a process of
information transfer it is of course subject to the laws of information
mentioned in the previous chapters.

"The Constraint Analysis of Many-dimensional Relations" has been an
influential paper in that {t inspired the subsequent interest in structure
modelling or reconstructability analysis. It is based on the observatijon
that most systems of many variables contain a hidden simplicity, in that
they are not "fully connected" (each variable interacting with every other)
but are "locally connected" (each variable interacting with only a few oth-
ers). Indeed from other Ashby works the inference may be drawn that fully
connected systems must be extremely rare, because of their tendency to be
unstable and hence self-destructive. Where a constraint exists (in this
case, a limit on connections), some advantage may generally be taken of it,
and the discovery of this type of simplicity in an apparently complex sys-
tem is extremely valuable and important in system studies.

The paper introduces the notions of cylindrical closure and of cylin-
drance of a relatfon. If an n-variable relation R has a cylindrance of p,
it may be expressed as an aggregate of the CQ implicit relations (projec~
tions of R) each involving exactly p variables, and if p is much smaller
than n this can be an immensely important simplification. Since the writ-

first by expressing an n-variable relationship as an aggregate of lower-
order subrelations not necessarily all of the same order P, and secondly by
applying similar methods to probabilistic relationships, but Ashby's paper
is the intellectual ancestor of all such efforts.

The most mathematically sophisticated Paper in this collection is "The
Identification of Many-dimensional Relations,"” written with Robert Madden
and to a large extent representing Madden's doctoral work carried out under
Ashby's direction. It deals with the problem of identifying an n-
dimensional relation R from the collection of its p-dimensional projections
and thus is relevant to the question of determining a relation from partial
information, reminiscent of the fable of the seven blind men and the
¢lephant. A major conclusion of the paper is that in general there is not
enough information in the lower-order projections to determine R unambigu-
ously.



GENERAL SYSTEMS THEORY AS A NEW DISCIPLINE*

The emergency of general system theory is symptomatic of a new movement
that has been developing in science during the past decade: Science is at Jast
giving serious attention to systems that are intrinsically complex. This statement
may seem somewhat surprising. Are not chemical molecules complex? |s not
the living organism complex? And has not science studied them from its earliest
days? Let me explain what | mean,

Science has, of course, long been interested in the living organism; but
for 200 years it has tried primarily to find, within the organism, whatever is
simple. Thus, from the whole complexity of spinal action, Sherrington isolated
the stretch reflex, a small portion of the whole, simple within itself and capable
of being studied in functional isolation. From the whole complexity of diges-
tion, the biochemist distinguished the action of pepsin or protein, which could
be studied in isolation. And avoiding the whole complexity of cerebral action,
Pavlov investigated the salivary conditioned reflex — an essential simple func-
tion, only a fragment of the whole, that could be studied in isolation.

The same strategy — of looking for the simple part — has been used in-
cessantly in physics and chemistry. Their triumphs have been chiefly those of
identifying the units out of which the complex structures are made. The tri-
umph has been in analysis, not in synthesis. Thus today the biochemist knows
more about the amino-acids of which egg-protein is composed than he does
about the white of egg from which they have been obtained. And the physiolo-
gist knows more about the individual nerve cell in the brain than he does about
the action of the great mass of them in integration.

Thus until recently the strategy of the sciences has been largely that of
analysis. The units have been found, their properties studied, and then, somewhat
as an after-thought, some attempt has been made to study them in combined
action. But this study of synthesis has often made little progress and does not
usually occupy a prominent place in scientific knowledge.

Even when a study of synthesis seems to be made, the synthesis is often
found, on closer examination, to be that in which the interaction between the
parts is as slight as possible. We notice for instance how often the combinations
that are treated in physics and chemistry occur under the operation of simple
addition. Thus two masses in the pan of a balance have a mass that is the simple

* Based on an address presented to the meeting of the Society for General Systems
Research at Atlanta, Georgia, December 27, 1955,



" 'Sum of the separate masses, Similarly two wave forms in an electrical net-

work are usually studied in the linear case — the case in which the two patterns
combine by simple addition,

Now combination by simple addition is the very next thing to no combina.

tion at all. Thus one penny combines with one penny to give just two, pre-
cisely because pennies do not in fact interact to any appreciable extent. Con-
trast this merely nominal combination with what happens when, say, acid is
brought together with alkali, or rabbit s brought together with rabbit. Here
there is real interaction, and the outcome cannot be represented as a simple
sum. Thus, for a century or more, science has advanced chiefly by analyzing
complex wholes into simple parts. Synthesis has, on the whole, been neglected.
The rule “analyze into parts, and study them one at a time” was so widely
followed that there was some danger of its degenerating into a dogma; and the
rule was often regarded as the touchstone of what was properly scientific.
Perhaps the first worker to face squarely up to the fact'that not all

systems allow this analysis into single parts was Sir Ronald Fisher, His problem
was to get information about how the complex system of soil and plants would
react to fertilizers by giving crops. One method of study is to analyze plant and
soil into a host of little physical and chemical subsystems, get to know each
subsystem individually, and then predict how the combined whole would re-
spond. He decided that this method would be far too slow, and that the infor-
mation he wanted could be obtained by treating soil and plant as a complex
whole. So he proceeded to conduct experiments in which the variables were
not altered one at a time, :

At first, scientists were shocked; but second thoughts have convinced
us that his methods were sound. Thus Fisher initiated a new scientific strategy.
Faced with a system of great complexity, he accepted the complexity as an
essential, a non-ignorable property; and showed how worthwhile information
could be obtained from it. He also showed that this could be done only if
the worker accepted the need for a new scientific strategy.

What I have said is, of course, equivalent to saying that whereas physics
and chemistry, given a system, promptly breaks it to pieces in order to study
the parts, there is arising a new discipline that studies the system without
breaking it to pieces. The internal interactions are left intact, and the system
is, in the well known words, studied as a whole. What methods are there for
the study of such intact systems? What general methods, in other words, can
general system theory follow?

Two main lines are readily distinguished. One, already well developed in
the hands of von Bertalanffy and his co-workers, takes the world as we find it
examines the various systems that occur in it — 2oological, physiological, and
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s0 on — and then draws up statements about the regularities that have been ob-
served to hold. This method is essentially empirical. .

The second method is to start at the other end. Instead of studying first
one system, then a second, then a third, and so on, it goes to the other ex-
treme, considers the set of “all conceivable systems” and then reduces t'he se‘t to
a more reasonable size. This is the method | have recently'followed. Slfuce it
may seem, at first sight to be somewhat recklessly speculative, | would like

i iefly its justification.

N °°'3:_;ie;:'t‘hog' of c’onsidering all possible systems, regardiess of.whether fhey
actually exist in the real world, has already been used., and shown .ItS value, in
many well established sciences. Crystallography, for mstan'ce, studies .on Fhe.
one hand those crystals that actually occur in nature; and'lt also studies, in its
mathematical branch, all forms that are conceptually possible. It.has been
found that the set of all conceivable crystals must still obe?' c‘ertam laws;

and mathematical crystallography can make confident predictions about what
will be found in certain cases.

Whence come these laws? Dare one dogmatize about what.nature ma}y
do? In this case one can, and the reason is that we have the. option of saying
what we mean by a “crystal”. When we define it as so.methmg that shows cer‘-
tain properties of symmetry, we can go on to say that it mu{st a}lso %how certain
other properties of symmetry because the latter are necessarily |mphed.by th'e
former — they are, as it were, the same properties seen from another viewpoint.

Mathematical crystallography thus forms a background or frarT\?work, '
more comprehensive than the empirical material, on which the err'npmcal material
— the real crystals — can find their natural places and be appropriately re‘lated to
one another. Few will deny the value of the mathematical theory, for without
i Id be a chaos of special cases.

" the';::zdym;::d of considering more than the actual has al.so lon.g been used,
to advantage, in physics. Much of its theory is concerned with objects that do
not exist and never have existed: particles with mass but no volume, pulley% .
with no friction, springs with no mass, and so on. But to say that these entities
do not exist does not mean that mathematical physics is me.re fantas)f. The :
massless spring, though it does not exist, in the real w.'orld, is a m?st 4mpor;a:;‘
concept; and a physicist who understands its theory is better equipped to

with, say the balance of a watch than one who has not mastered thfa theory.

1 would suggest that a similar logical framework would be desirable asl :om
part of general system theory. The forms occurring in the real world are Zehighe,
an orderly or a complete set. If they are to be related to one another, |an ;
relations and laws investigated, a rigorous logic of systems m?st be develop:S \
forming a structure on which all the real forms may find their natural plac



and their natural relations.

Can such a structure be developed? Can one reasonably start by consider-
ing the class of “all conceivable systems’? | suggest one can.

The first objection to be met is that the class is ridiculously wide. It
includes for instance the “system® that consists of the three variables: the
temperature of this room, its humidity, and the price of dollars in Singapore.
Most people will agree that this set of variables, as a “system”, is not reasonable,
though it certainly exists. How then do we praceed?

Consideration of many typical examples shows that the scientist is, in
fact, highly selective in his choice of systems for study. Large numbers of
possible aggregations of variables are dismissed by him as “‘not suitable for
study”. The criteria he uses are often well known to him intuitively, though
seldom stated explicitly. What is often also not recognized explicitly is the
intensity of the selection used. Eddington tells the story of the empirical
scientist who threw a net into the sea, examined the catch, and then announced
the empirical law “all sea creatures are more than two inches long.” In studying
systems we do not, one hopes, proceed quite as naively as this; but that there
are subtle laws that have an epistemological, rather than an empirical, basis,
can hardly be doubted. Thus while little can be said about “all possible”
systems, a good deal can be said about the very special sub-set of those sys-
tems that are accepted by the scientist as being “suitable for study”. | shall
give some examples a little later. )

What is the criterion that the scientist applies when he decides whether a
proposed set of variables does or does not form a “natural” system? We can
see something of what is necessary by first thinking of the parallel case in
energetics. For a system to be suitable for study by the physicist no energy
must enter or leave it except as the experimenter directs. Such a system is
usually described as “‘closed” to energy, but the adjective is not well chosen,
as often an important part of the investigation is the addition of, say, a measured
quantity of heat to it to provoke changes. | shali refer to such a system as
“energy-tight”.

In the same way, the systems suitable for study in the biological world,
while freely open to energy, must be closed to all sources of disturbance, or
variation, or entropy (in Shannon’s sense) except as directed by the experi-
menter. They must be, in the technical sense, “information-, or noise-tight".
This is the net that catches the systems that come to the empirical scientist for
study. It imposes a considerable degree of selection from the set of all con-
ceivable systems. And the selection imposes a number of special properties
on the systems that conform to it. Some of the properties are obvious — we
need not bother with them; but some are subtle and appear only in disguised

form: they have to be discovered, and their true origin identified. Thus we
can now ask: how can we identify those properties of a system that are direct
consequences of the scientist’s insistence that it shall be information-tight?

The Black Box

To answer this question there is, in my opinion, no finer approach than
that given by the so-called Problem of the Black Box. It arises in electrical
engineering, but its range is really far greater — perhaps as great as the range of
science itself,

We imagine that the Investigator has before him a Black Box that, for
any reason, cannot be opened. It has various inputs — switches that he may
move up or down, terminals to which he may apply potentials, photoelectric
cells on to which he may shine lights, and so on. Also available are various
outputs — terminals on which a potential may be measured, lights that may
flash, pointers that may move over a graduated scale, and so on. The Investi-
gator’s problem is do what he pleases to the inputs, and to make such observa-
tions on the outputs as he pleases, and to deduce what he can of the Box’s
contents.

In its original, specifically electrical, form, the problem was to deduce the
contents in terms of known elementary components. Our problem however is
somewhat wider. The questions we are interested in, in general system theory,
are such matters as:

What general rules of strategy should guide the exploration, when the Box
is not limited to the electrical but may be of any nature whatever?

When the raw data have been obtained from the outputs, what operations
should in general be applied to the data if the deductions made are to be
logically permissible?

Finally, the most basic question of all:

What can in principle be deduced from the Box's behavior, and what is
fundamentally not deducible? That is: given that the Investigator has certain
finite resources for exploration and observation, what limitations does this fi-
niteness impose on his knowledge of the Black Box?

At first, the questions may seem to be too general to be answerable, but
it is now clear that this is not so. The modern development of communication
theory can give substantial guidance in this matter, for what we are considering
can be viewed as a compound system, composed of Box and Investigator.

He acts on the Box when he stimulates it, and the Box acts on him when it
gives him a dial-reading as observation. Thus each acts on the othér. The
interactions that occur between them are as subject to the laws of communica-
tion as any other interaction between two sub-systems. (1 should,make it-clear



here that the communication theory involved is not the theory which is re-
stricted to the ergodic case.)

In practice, there are no absolute bounds given in relation to any particu-
lar Black Box. By however many ways we have tested it there are always further
ways at least conceivable. By however many senses or instruments we have ob-
served it, there are always further ways. For however long we have observed it,
we could always go on longer.- Eventually however the time will always come,
for practical reasons, when the exploration and observation must stop — at
least for the time being, when the scientist stops to think about the Box, and
to draw deductions from his data. | shal| assume that from now on the investi-
gation has reached this stage. Thus certain definite inputs have been used, cer-
tain variables observed, and a protocol of finite length recorded.

It is now axiomatic that whatever the interaction, it will eventually appear
as a protocol of events, stating in general the succession of states taken by
each part as they occurred in time. This protocol can now be regarded as a
message that contains information about the Box’s nature. It is axiomatic
that: the Investigator’s knowledge about the Box, in any of its aspects, must
be essentially a re-coding of what is in the protocol; he may not claim more.

From this point of view, to discover something about the Black Box —
something that has permanence — is to discover a constraint in the protocol.
The study of a system can thus be summed up in a few words: to discover
the constraints, the statistical structure, in the protocol. Should the Investi-
gator find none — should the protocol, as an information source, show maximal
entropy, and therefore no redundancy — then he will say, simply, *! can make
nothing of its behavior; it is totally chaotic.” Thus, any deduction about the
nature of the Black Box must be essentially a re<oding of the redundancies
(or constraints) in its protocol.”

Suppose now that the Investigator announces that he has discovered a
“property’’ of the Box — some characteristic of its behavior that holds all the
way through the protocol. If he describes the property in a suitably compact
statement, we can see that he is carrying out precisely the process so important
in communication: he is re-coding the protocol so as to pass on a simpler
message that still contains the important information but without redundancy;
for the redundant part is passed on once and for all by a compact statement
about this permanent “property”’.

Perhaps the most important property that is testable on the protocol
is that of whether the system is suitable for study at all! That is, whether it
is information-tight. What this means, in essence, is that the protocol should
be invariant in time, in regard to the constraints it shows. If this is so, the
Investigator may legitimately claim that the system, at least so far as this

property is concerned, is information-tight, that is, not subject to unpredictable
vagaries. In fact, at the level of fundamental concepts, such invariance may be
regarded as the operational definition of what is meant by “information-tight”,

The next fundamental property that can be deduced from the protocol
is whether the system is or is not behaving in a “machine-like” way, By that |
mean whether knowledge of its present state (as shown at the output) and of the
conditions within which it is working (that is, the state of its input) is sufficient
to determine what it will do next. Whether the Box is behaving in a machine-
like way does not require study of its internal details; by a straightforward,
operationally-defined process the question can be answered from the protocol.
Space does not allow me to describe the method at the moment. | will merely
remark that the method also allows the Investigator to establish whether the
system, though not strictly determinate, is determinate in the statistical sense
of behaving with an unvarying probability.

An important question that often arises in the investigation of any par-
ticular system is: what functional connections exist between the parts? (Here
I refer exclusively to the functional aspects, that is, of what affects what.)
When we know the connections between the parts we often draw a diagram
of the immediate, or direct effects. So we get the endocrinologist’s diagram
showing how the various glands, tissues, and nervous centers act on each other;
and the business administrator’s diagram showing how the various departments
are connected. Can such a diagram be obtained from a Black Box by deduction,
from the protocol?

It can, up to an isomorphism.

Let me ignore the qualification for a moment. The fact then is that
functional connections within a Black Box can be deduced from observations
made from without. Information in this respect is to be found in the protocol.
To find something of the connections does not demand the opening of the Box.

But not everything of the internal connections can be so deduced. The
protocol contains information about the connections that will enable us to
specify the connections only up to an isomorphism. No re-coding of the protocol
can go past this limit: the information necessary just does not exist in the
protocol.

To see what this limitation means, let me make clear what is meant by
two Black Boxes being ‘‘isomorphic.”

Suppose we have before us two Black Boxes. We are privileged to look
inside.

The first contains a heavy wheel, which can rotate, and a dial outside
showing its position. Attached to the wheel is a spring, and the input is a lever
attached to the spring’s other end. So moving the lever-distorts the spring and



applies a force to the wheel, making it turn, or perhaps to stop turning. If the
lever is given a complicated sequence of positions, the wheel will respond with
some complicated sequence of turning, which will show on the dial.

The second Box is electrical, and contains an inductance and a capacitance
in series. The input is a lever that controls a variable potential; it is under the
experimenter's control and can be varied in any arbitrary way. Recorded as out-
put on a dial is the total amount of current that passes round the circuit. If
now the experimenter moves the lever in some arbitrary way, the potential will
affect the components, causing a varying current, which will show as a complex
sequence of changes at the output.

Let us further suppose that the various constants — stiffness of spring,
mass of wheel, inductance, and capacitance — have been set once and for ali
50 as to impose a certain relationship between the two systems. (As this ex-
ample is for illustration only, | need not specify further.)

It will then be found that when the first Box is taken, and a particular
input applied to the spring, and the consequent movement of the wheel observed,
application to the second Box of the same values to its input will evoke the
same pattern of change at the output. In other words, equality of the two in-
puts is always followed by equality of the two outputs. In fact, through an
infinity of possibilities, whenever the two Boxes are given the same trajectory
of input, no matter how long or complex, the outputs, however long or com-
plex, will also be equal. Thus if the actual mechanisms are covered up, leaving
only inputs and outputs visible, the two Boxes become indistinguishable, for
they will respond similarly to all possible tests that can be applied. The two
machines are then said to be “isomorphic”.

Suppose now that a differential analyzer has been programmed to pre-
dict the behavior of one of the Boxes for all possible inputs. Since the analyzer,
when given an input, gives the same output as the Box, the analyzer is by defini-
tion isomorphic with the Box. Thus an analogue computer might correctly be
defined as a machine that can easily be made isomorphic with any of a wide
class of dynamic systems.

It has been shown, as | said, that the internal connections can be de-
duced from the protocol up to an isomorphism. It is also readily provable
that no deduction, on a given protocol, can go further. We thus encounter here
one of the fundamental limitations ‘that | spoke of earlier.

It must not be thought that this limitation is merely technical, to be swept
away by the invention of some new gimmick. What it means is that any finite
protocol can give only a certain amount of information about any particular
question of connection; and that for further questions the information in the
protocol does not exist.

Sar

Knowing that this limitation exists may sometimes be of value in saving
us from attempting the impossible. Thus suppose we have before us not only
the two Black Boxes just mentioned, and the differential analyzer suitably
programmed to copy them, but also an engineer, so well trained that, if told
the input he can predict wha_t the output will be, perhaps by drawing a graph
of the actual changes. If we regard him as a neuronic mechanism, then we have
said that this mechanism is itself isomorphic with the other three; for, given
the same input to all four, all four will produce identical outputs, |f now we
become neurophysiologists, and start to think about the engineer’s brain and
the neuronic connections within it, we are warned before we start that the pat-
tern of connections is not uniquely defined by the engineer’s behavior. Anything
we say can only be about a class of mechanisms. And this fact should be re-
flected in what we try to say about the mechanism. Some of our difficulties
in treating the theory of these neuronic mechanisms may be due to our tending
to forget this fact.

Degrees of freedom

Yet another characteristic of the Black Box that can be deduced rigorously
from the protocol is the number of its degrees of freedom. By this is meant the
number of variables that must be observed or specified if its behavior is to be.
come determinate, that is, unique, single-valued, not subject to random variations.
As example, take the simple pendulum of fixed length. It has a determinate
trajectory only if both its position and its velocity are specified; so it has two
degrees of freedom. And a desk calculator that multiplies eight figures by eight
has 16 degrees of freedom, for only when 16 figures have been specified does
the number that will appear as product become determined.

To return to the Black Box. We assume that its output is shown on a row
of dials. Now this row may show what is occurring internally either completely
or only partially. Thus, if the Box really contained a simple pendulum, the
output might tell us only its position at each moment. Study of this Box would
soon show that knowledge of its output was not sufficient to make the output’s
behavior predictable.

Now the number of degrees of freedom is an intrinsic property of a system
and can be deduced by finding how many observations have to be made if the
behavior is to become predictable. Thus suppose that some new Box has ac-
tually 20 degrees of freedom internally, and that five dials are reporting on the
events within. With 15 degrees of freedom unobserved, the Investigator will
find that the behavior of the Box, as shown on the dials, is not determinate.
(The apparent indeterminacy comes from the fact that 15 variables are not



being taken account of.) What is important is that the Investigator can restore
determinacy by taking account of earlier values of the variables he can see on
the dials. And as 15 degrees of freedom are not directly observable, the neces-
sary information can be obtained by making an extra 15 observations on the
same five dials (three on each, say).

Thus Black Box theory leads us naturally into the theory — most im-
portant for those who study the brain — of the mechanism that, for whatever
reason, is not wholly accessible to observation.

Thus we are led to a statement that can be proved rigorously (though for
simplicity | shall omit here the qualifications that are strictly necessary): — When
a system is really determinate, but cannot be observed at every significant point,
determinacy can be restored by the use of supplementary observations, at the
same points, that is, on the same dials, about what happened earlier. And the
total number of observations to be made must always equal the number of the
system’s degrees of freedom. In other words, we can find how many degrees of
freedom the Black Box has by finding how many observations on the dials are
necessary to make correct prediction possible.

Memory

I have just said that when the Box is not completely observable, the Inves-
tigator may restore predictability by taking account of what happened earlier.
Now this process of appealing to earlier events is also well known under another
name. Suppose, for instance, that | am at a friend’s house and, as a car goes past
outside, his dog runs to a corner of the room and cringes. To me the behavior
is causeless and inexplicable. Then my friend says “He was run over by a car a
month ago.” The behavior is now accounted for by my taking account of
what happened earlier,

The psychologist would say | was appealing to the concept of “memory”,
as shown by the dog. What we can now see is that the concept of “memory"’
arises most naturally in the Investigator’s mind when not all of the system is
accessible to observation, so that he must use information of what happened
earlier to take the place of what he cannot observe now. “Memory”, from this
point of view, is not an objective and intrinsic property of a system, but a
reflection of the Investigator’s limited powers of observation. Recognition of
this fact may help us to remove some of the paradoxes that have tended to col-
lect around the subject.

I referred earlier to the fact that when the scientist decides to include
only “natural” or “reasonable” systems in the set he studies, he selects somewhat
intensively, and may well impose peculiarities that are later discovered empirically,
just as the ichthyologist discovered that all sea creatures exceed two inches in

length.

We are not surprised, then, when study of the Black Box shows that cer-
tain properties, long known to be common in the real world, are necessary con-
sequences of our act in only accepting for study such systems as are informa-
tion- and noise-tight.

Space is running out, so | must pass over these properties somewhat
briefly. "

The first depends on the fact that every noise-tight system, if subjected
to no disturbance at its input, that is if “isolated",. cannot gain information.
Any change in the quantity of the information can then only be a decrease.
Every isolated system shows this decrease when it goes to a state of equili-
brium; for when many trajectories, from many distinct initial states, converge
to one state of equilibrium, the system, when at the equilibrium, has lost the
information about which initial state it came from. This is a first example of
the general principle that information about what happened earlier in the system
tends always to decay.

A more elaborate instance of what is essentially the same principle occurs
when a noise-tight system is subjected to a long sequence of events as inputs.
Let us regard the system’s state now as showing various traces of what has hap-
pened to it in the past. If, as is usually the case, the system’s capacity for
information is finite, information about what has happened to it in the remoter
past tends to be swamped and destroyed by information about what has hap-
pened recently. More formally: if a noise-tight system is subjected to a long
sequence of events as input, then the longer the sequence, the more will its
final state depend on which sequence was applied rather than upon which state
the system happened to start from.,

In psychology the phenomenon has long been known in various forms.
We know it from every day experience when we notice that a group of boys of
varied characteristics, if put through a uniform experience, such as being sent
to sea, becomes later more characterized by the fact that they are sailors than
by their previous idiosyncracies. The same phenomenon has also been encount-
ered in the laboratory as retroactive inhibition, which names the fact that later
learning tends to destroy earlier learning.

Various more or less complex mechanisms have been invented to explain
these well known phenomena. The possibility however exists that they may in
some cases be due to the fact that the Scientist will only investigate such sys-
tems as are information-tight. He thereby unwittingly selects such systems as
must show the phenomenon to some degree.

To conclude, let me offer some justification for the title of this paper,
which suggests that general system theory should be regarded as a new discipline.



~ You will have noticed that a good deal of what | have had to say has not
been concerned directly with the Black Box but rather with what the Investiga-
tor can or cannot achieve when faced with one. We, the system theorists, have
in fact been studying, not a Black Box, but a larger system composed of two
parts, the Black Box and the Investigator, each acting on the other. We have
used communication theory in its non- -ergodic form to deduce something of
the laws of their interacting. Thus if the Investigator is a scientist studying
the Box, we are meta-scientists, for we are studying both; we are working at
an essentially different level.

What | have been able to say cannot do more than to introduce the general
idea of a mathematical aspect of general system theory. | hope | have made
clear that it is possible and reasonable to work not upwards from the empirical
but downward from the abstract and general. | hope | have shown that such a

study promises worthwhile results, and that it may help to provide us with what

is urgently needed in our studies of such complex systems as the brain and
society, namely, a logic of mechanism.

CONSTRAINT ANALYSIS OF MANY-DIMENSIONAL
RELATIONS

W. ROSS ASHBY

University of Illinois, College of Engineering, Urbana, Ill. ( U.S. 4.,

That this article should be offered as a tribute to Norbert Wiener is specially
appropriate. for it takes as basis an observation of his that has not vet shown,
I feel sure, its full fertility. I refer to his original suggestion (Wiener, 1914)
that a ‘relation’. previously regarded as somewhat metaphysical, be identi-
fied. at least for operational purposes. with the set of those n-tuples that
satisfy the relation. At one stroke the “relation’ becomes an ordinary mathe-
matical object that can be subjected to the ordinary mathematical oper-

-ations, even when the relation is wholly arbitrary.

To the biologist, the freedom that allows it to be wholly arbitrary is most
welcome. for in his science. though relations are of the greatest importance.
they seldom have the tidiness common to more formal mathematics.

The attempt to apply Relation Theory to the biological sciences soon runs
into great difficulties however. As soon as the biologist attempts to deal
with realistically large numbers (e.g. with 1010 perve cells) or with re-
alistically intricate patterns of interaction (e.g. those between species in
the Amazon jungle) the combinatorial possibilities soon generate fantas-
tically large numbers; equally fantastic is the quantity of information-pro-
cessing demanded of any system (cerebral or elettronic) that would handle
the questions involved. Exponentials. factorials. or even more explosively
increasing functions appear. Bremermann (1962) has shown that no com--
puter made of matter. and therefore subject to the mass-energy relation
and to Heisenbergian uncertainty. can possibly process more than 1.4 - 1047
bits per g per sec:.so 1070, say, is certainly an absolute upper bound to what
is practical. Yet even the simplest prob!ems with more than a few variables
and more than infinitesimal interaction generate numbers vastly greater
than 1070, An example is given below. Any science. such as cvbernetics.
that would treat large systems with strong interactions, urgently needs
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methods by which the excessively complex can be reduced to complexitieg
that are within our resources. In this paper is described one such method.

The method 15 based on the common observation that when the number of
vartables s large — a thousand and over, say — many of the significan;
relations are not really intricate to the full degree, but are really built out of
simpler relations. In dynamics, for instance, the linear system, both commop
and important, has the peculiarity that the complicated output evoked by
« vomplicated input can be found by simply adding a number of simple
vutputs, each evoked by a simple input. Thus in this case the whole output-
mput relation is really composed of many simple relations that combine only
by adding. The parts of the system interact, but not the sub-relations.

Agamn., a camera lens with ten elements and fifteen surfaces at first seems
optically very complex; vet in fact the total effect, from incident ray to
emergent ray, can be obtained by merely repeating one ternary relation
tmerdent ray;surfuce/refracted ray) fifteen times in succession. Thus the lens
designer is able 1o avoid the fantastic combinatorial possibilities initially
presented by the [S-variable relation.

Not only the physical sciences but everyday life shows the same feature.
“The Law’, as it affects John Citizen, has hundreds, even thousands, of
vartables. Yet it can, in fact. be dealt with piecemeal: for it is built by the
miersection of such sub-relations as: Drivers of age x may drive only auto-
mabiles of class v: Stores selling goods p must be closed on days ¢.

Phesetofall events that are ‘legal’ is then obtained by simple compounding
ot all the sub-relations, each of which uses only a tiny fraction of the totality
o variables.

\nmdication of what threatens may emphasize the point here. If there are

variables, and each variable can take & values, the number of relations
possible (e.g. of Laws that J. C. may face), as subsets of the product set, is

2™y

\-u function of n, it is an exponential of an €xponential, a rate of increase
-ty more *explosive’ than those <commonly encountered in other branches
elscrence. If & is merely 10, for instance, by the time # has risen to five (well
~eiow the 15 of the *optical’ example) the number of relations has risen to
“out 1030900 4 number that shows how intensely restrictive Bremermann’s
st really is. Let us then consider how one complex n-ary relation may be
wduced o aset of simpler relations,
Voxen the dimensions are 2. the relation. as 4 subset of a product-set
X I has only the simplifving possibility that it is itself a product set,
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A X B say, with A C E and B C F. This simplification is too extreme to
interest us here, for it reduces the relation to the mere conjunction of two
properties, for (x,y) € R is here everywhere equivalent to € priR and
y € przR. (I shall use throughout the notation of Bourbaki.) Here there is
not really a relation between E and F: only two properties (priR in E, and
przR in F) that happen to be mentioned in the same sentence.

The case of 3 dimensions is more interesting and more suitable as a starting
point. To dispose of the two extremes first: the subset R may t?e arbitrarily
irregular, or it may be a product set. There is, however, an intermediate
case. This occurs when

(x,y) € pri2R
(x)2) eR : is equivalent to and (y,2) € praaR
and (x,2) €prisR .

The possibility is illustrated by the model in Fig. 1. It was easy tq make, for
just as a product set may be modelled in 3 dimensions by cuts with a hand-
saw, parallel to the axes, so this set may be modelled by cuts with a band-saw,
moving in any direction provided its edge stays parallel to the axes. The
model may be helpful as illustration, but the reader should notice that the
theory given in this article nowhere assumes any metric over the sets.
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That this set has some constraint is intuitively evident. We will NOW proceeq
to treat the subject rigorously. '

We start with a total set £ of elements, the product of the set 7 of n sets
E:E= IIEYl E,. The typical element is the n-tuple (a)), ¢, composed of one

element a, from each set £ .- No order is assumed in the set /, nor any metric
over the sets E. By X — Y will be meant the set of elements that is jp X
but not in Y.

If Jis a subset of 7, by pr, will be meant the mapping ofigl E.into /7 E

igy
such that
pl-J (al)cel = (ai)iEJ (l)

The following propositions will be required later; they are easily proved:

IfsCkci, (a‘)‘,eK €pr.d> (a‘)'e_, €pr A )
AC BaprJA C prJB (&)]
Pr,(4 1 B)C (pr, 4) A (pr,B) (4)

By the definition of an inverse, pr",' acting on (a‘)‘,EJ will give all those

elements in £ that have (al.)‘eJ as their components in J; thus

prJ“ (a»):e./ = {(an)ie.l} X‘GI,T_JE; &)
Similarly, if Z C /T E,
ies *
pr;‘Z:Z*«' 1 E 6)
(€r-g *
If Bis a subset ofl]JEi, the set B - [/j £ is the ‘cylindrical’ set on B as
1€ wei-J !

‘base’. Thus, pr‘J' , acting on Z, has the effect of forming the cylindrical set
on Z as base.
The following propositions will be required later; they are easily proved:

ACB > pr;tac pryiB 7

IfICKkCl, pr;\,‘erRc pr;'pr R 8)

We now reach the main working tool of the method. Given a set R, (a subset
of £), its ‘cylindrical closure of order p'is also a subset of E. formed by taking
R’s projections on all the subspaces of p dimensions, forming all cylinders
in £ on these projections as bases, and then taking the intersection of all
the cylinders. Thus, if # =3, R’s cylindrical closure of order 3 is the set, in £:
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mk?et pr.',; P rw‘ R,

wherei, j, k runs through all triples in /. We will write it as CpR. By definition,
we will make CyR = E, and C.R=R

The most important property of these closures is that they form a nested
set, only losing elements as they shrink down from Eto R. A formal proof
is advisable here.

Proposition: For any Rin E, if p > q, then CpR CC,R

Proof: The proposition is equivalent, in the same conditions, to

Nopritpr, RCN prg! pry R,

where P runs through all subsets (of I') with p elements; and similarly for Q.
Write the intersecting left-hand sets in a column on the left, and those of
the right-hand sets on the right, arranging the items in each column so that
each subset P is opposite a subset Q that is contained in it. (Residual blank
spaces may be filled with selected repetitions of those already in.) Between
any horizontal pair we now have the relation, by (8) above,

left set C right set.

So the intersection of the left column must be contained in the intersection
of the right.

(Corollary: Every set is contained in all its cylindrical closures.)s

Thus, given a total set £ and some subset R of it, a sequence of sets — the
‘cylindrical closures’ — can be formed. the first of which equals E, the last
of which equals R. and such that each is contained in the set preceding it in
order. Each is associated with the number of dimensions necessary for its
formation. Somewhere in the sequence the closure must first become equal
to R; the set of smallest order equal to R gives the number that measures
what we shall call R’s ‘cylindrance’. Thus the set in Fig. | has its constraint
concisely specified by the fact that its cylindrance is 2.

We can now approach the matter from another point of view. Earlier we
referred to the ‘Law’ as built up of many simple relations. and it seemed in-
tuitively likely that the whole Law thereby was in some way restricted in
complexity. We can in fact establish the matter rigorously with the follow-
ing theorem.

Theorem: If a set R is the intersection of cylinders whose bases are all of m
dimensions or fewer. then R’s cylindrance cannot exceed m.

Proof: The difficuity is mostly notational: one way is as follows. From /.
form all subsets having m elements. Call this new set M, and let u be any
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element in it. Let B, represent any base in /T E,, where u now represents the
ieu

corresponding subset of /. By hypothesis, R = ue w pr‘l B,. The theorem

is proved, and R’s cylindrance cannot exceed m, if and only |f

-1
ueM prlpr, R = R.

Lemma: IfB C HE and if veM,
iep

-1
pr, ("sw pr B) C B
By (4) above, the left side is contained in
n -1
vEM pru Dl" Br'

Now
pr pr"B =pr, (B x IT E).
n ’

€1y !
The set in the parentheses is just a subset of £, and pr , acting on it, will act
according to whether each component in it is in x or not. Thus,
(a) components not in u are ignored completely:
(b) components in u but not in » will provide factors Ej;
(c) components in u« and in v will act to form that projection.
More precisely, the u-projection will be .
(Pr“n B) x ( HF)

1€ -v

The intersection of these sets. with » taking all values in .M, may be found

as follows:
D -1
(ai)neu vGMpr pr B

= yvEM: (a‘)‘e“ e(pr“ B) X (Ien E)
-y

= yreM: (a) €pr ., B, and (a‘)ie“ e IT E/

v i€u j€u~y

= yYreM: (a‘_)‘_e“ €pr o, B', (for the second part adds or excludes nothing).

The equivalence is possible only if u N » = u, i.e. if ¥ C u. As they have ihe

same number of elements, v = u.

= (ai)leu € pl‘“ Ba (= B“) .
Thus the intersection must be contained in B,,; which proves the Lemma;
If now both sides (of the expression in the Lemma) are operated on by pry
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and ‘then the intersection taken for all values of 4. we obtain

”p“pr " pctB) C O pr‘x B. pr-t pr R C R

u€dM " rEAM rEN /lE M

But R is always contained in its cylindrical closure, so the two sets must bhe
equal. Thus, R’s cylindrance is at most m. and the theorem is proved.

(The cylindrance may be less than m: the intersection of the arbitrarily
given cylinders may be void. Equally one can see that as only the inter-
secting regions of the cylinders matter, the other regions may be of unlimited
cylindrance without raising that of the intersection above m).

CONSTRAINT ANALYSIS

Given a set E, the ‘constraint’ introduced by a relation R is most naturally
identified with the set £ — R. When R = E the constraint is zero: as R
shrinks, so does the constraint become more intense. With the cvlindrance as
scale, we can compare relations otherwise incomparable. In particular, by
forming the sequence of the cylindrical closures of a relation. and by seeing
how fast, and at what stage, it shrinks, we can locate the relation’s intrinsic
complexities.

The amount by which it shrinks at each stage is shown by the size of the set
Cm-1R — CnR. By an analogy that will be developed later. it may be called
the ‘interaction of order m’. Call it Dn. Its properties reflect certain essential
characteristics of R.

Dy, for instance, is CoR — CiR. Since C,R is easilv shown to be the
smallest product set that contains R, Dy is £ minus this product set. It thue
shows how much of R's constraint is due simply to the fact that R's variables
have domains that do not use all that is offered by the sets £;. This constraint
Dy is thus that due to the properties that R imposes on the variables in-
dividually.

D» shows the extent of R's constraint by binary relations. D,'s effect has
been removed, so Dz shows how much of R's constraint is due to the variables
as unique pairs. D3 shows how much of R's constraint is due to ‘ariables
acting in triples, over and above the effects due to their actions in pairs.
and so on.

The total constraint can thus be partitioned into sets of different degrees
As example, consider the case in which n = 5. £, = {0.1} for all 7. and R
is the set of quintuples corresponding, in binary notation. to the seventeen
denaries: 0. 1. 4,5, 6.8, 10, 11,17, 19, 20, 22.24. 26, 29. 30. }1 It 1s casth
found that the cylindrical closures are:
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CoR = Eand has 32 elements
CiR = Eand has 32 elements
C:R = Eand has 32 elements
GR ........... has 28 elements
CiR = R and has 17 elements
CsR = Rand has 17 elements

CoR = CIR=F and has 32 elements
C:R = C3R = CGiR = C5R = R and has 16 elements.

Thus R’s cylindrance s 2, and R, for its five dimensions, is shown to be

really a collection of sub-relations, no one of which is more complex than
a binary.

Discussion

We have found that we can make rigorous our in

tuitive idea that ‘The Law’,
being composed of Acts or Para

graphs no one of which relates more than &

T,‘=/}(x;,...,x.,,) (=1, m

shows that the whole 2m-ary
not exceeding 1m + L, for it is buj]t from sub-r
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havior of the whole must have the constraint correspm'lding toa
thgn e af h + 1. Since the 1019 nerve cells of the human brain are by
lindrance ;)l onne:cted each to each, the behavior of the living man must
e e g ytchis uantitative and objectively demonstrable constraint.
be subject to le theqdemonstration might be very difficult, but in simpler
o th:s ‘:’l‘;nc;zmonstration might be found easier, especially as the nature of
syste is i i ses of automatic computation.
e an?lztsz;sti:a::i: S:;:zfil;‘:dpzﬁcf;is article was originally' undertakfen.lto
The‘d': a clear framework for studies of similar type, {eadmg toa sl;ml ar
‘p l.onvsltraint analysis’, with quantitative methods based on mfonn:tuz: tt h?:::
;: idea being that the total entropy H(xy, ... };’n) ;2:‘:;!:05’;55, and the
jation R, the maXim:I ‘endt'r;‘ p);n[:gltl Zle ;:c;t:trai(:t" E — R. The éxtcnsion
ission (their differ
:;’t?li:: ?::;s?n thi(s direction cannot, however, be undertaken here.
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SUMMARY

i lex as
Relations between large numbers of variables are often not aslcqmi >
ela : ’
they seem, for they are often constructed from simpler sub-relation
i nethi ir simplicity, .
retain something of their simp . i
The idea is here treated rigorously, and a ma?tpod is deyelc?g;d 1“<l)rr :kmon 5
and measuring the degree of essential simplicity. The indivi lua relation 1
made to generate a sequence of progressively snmgler relauons; where ¥
Comes in the sequence determines and measures its degree o
‘ ici ’ . . . Aor
Sl';'rlllphcnythod may be useful when one wishes to consider relatxf)ns :n !
sy f variables, retain so
ile i ing very large numbers o
Systems) that, while involving ’ .
simplicity derived from the sub-relations that formed them
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Any system, no matter how general or complex, can be described by a re-
lationship amongst nominal variables. In this paper we investigate the problem
of identifying such a relationship, and the properties of the system correspond.
ing to it, when the data descriptive of the system have been gathered from di-
verse and uncorrelated sources. We represent this problem theoretically as one
of reconstructing and identifying an n-dimensional relation from its projections,
and discuss the practical implications of this representation. We show that such
reconstruction and identification is possible only if certain basic features of
the corresponding system are constrained in a very definite manner. For ex-
ample, if the relation is to be identifiable, ie., if the set of relevant variables
is to be “perfectly constrained”, then the system must contain no more than a
certain number of functionally determined variables, and no more than a cer-
tain number of independent variables. Furthermore. as the number of variables
becomes large then, in theory at least, only a vanishingly small fraction of re-
lations are identifiable. The treaoment throughout is confined to nominal vari-
ables, and is intended to contribute to the constraint analysis of large and com-

plex systems.

1. Introduction

Vast and diverse collections of data are often available to the investigator
of large and complex systems such as the social, biological, or economic systems.
These data may not be explicitly related in that they may have been collected
neither to test specific hypotheses nor with any presumption of relevance to
the objectives of the investigator. For example a sociologist (Lang and Lang
1961) may want to “reconstruct underlying patterns out of the partial and di-
vergent perspectives of a multiplicity of observers” as recorded from newspaper
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and radio reports, television and film tapes, and in answers to questionnaires;
or an economist (Morgenstern 1954) may want to design new experiments
without specific guidance from theory, using data which are a mere by-product
of administrative acts and government or business operations.

Such an investigator may not be immediately concerned with detailed
statistical techniques, for example multiple regression or factor analysis, but
may instead seek to distinguish in the data such basic features as consistencies
and inconsistencies, or functional dependencies of some variables on others. For
this purpose the data must be expressed in a form suitable for computer proces-
sing, a program must be composed to search for the above features, and, finally,
the search must be carried out, probably in stages so that the investigator can
intervene and interpret results after each stage. Even a partial execution of these
tasks may prove to be immensely costly and difficult for large and complex
systems. In such investigations there is a pressing need for what Tukey (1962)
has called “procedures to extract indications rather than conclusions.”

We shall be concerned in this paper with some general system properties
and the indications which they can provide concerning the above mentioned
basic features of a system.

We consider the case in which the system under investigation is defined
by a set of n variables, representing those selected by the investigator, and
the overall relationship holding between these variables. The overall relation-
ship between the variables is yet unknown to the investigator to whom only
the collections of data are available. Each collection of data is assumed to
define a relationship among a subset of at most say, p, variables. By combin-
ing these relationships the investigator can attempt to reconstruct the overall
n-variable relationship and thus determine all the properties and characteristics
of the system.

If the data are not contradictory, such reconstruction is possible in prin-
ciple. It may result in the identification of the overall relationship, and thus in
exhaustive knowledge of the system, or, alternatively, it may result in an approxi-
mation to the overall relationship. The relationship describing the system can

then be either identified or approximated to by combining p-variable relationships.

The possibility of such identification or approximation, for a given p and n, cor-
responds to certain constraints on the basic features of a system,

To determine these constraints we proceed as follows: A mathematical
representation of the problem is obtained by making one fundamental assump-
tion concerning the available data. We then consider the reconstruction and iden-
tification of the original relationship. Finally, we examine the system properties
implied by the possibility of such reconstruction and identification.

2. The data

In investigations such as those indicated above many a variable may have
no natural mathematical structure, and different mathematical structures may
be appropriate to different viarables. For example, a ratio scale is appropriate
to the variable “density” and to the variable “resistance”, an interval scale is
appropriate to “temperature” and “energy” (Stevens 1951), and such variables
as “cloud formation”, “weather condition”, or “type of disease” have no natural
mathematical structure. A variable without mathematical structure we call a
“nominal” variable. This paper concerns nominal variables, and consequently
all results are applicable to a system which has variables of different types.

The variables under investigation are denoted by ) SR SRR X, and
the variable X; takes its value from the set E,i=1,2,...,n; where any set
E_ is called a “dimension”. The total space under investigation will thus be the
c:::tesian product £ of the sets E.E, ... E . Ifacolletion, ¢, of data de-
fines a relationship among the variables X, Xi’ -+« » X, say, then the relation-
ship defined by ¢ can be represented (Ashby 1964) as a subset R, of the pro-
duct set £, x 51 X...xE_. Al of the data available to the investigator will
therefore be represented by a finite collection, D, of such subsets. The overall
relationship defining the system under investigation will be represented by the
subset § of E.

Our fundamental assumption concerning the collections of data and the
relations in D is as follows: each collection of data is assumed to define com-
pletely the values adopted by the set of variables to which it refers. Conse-
quently, each relation in D can be assumed to be a projection from the subset
S;thus R, for example would be the projection of § into Xj x Xix...xXe.
This amounts to representing the “‘partial perspective” of each of a multiplicity
of observers in terms of a product set of variables, and the values adopted by
those variables. With this assumption the relations in O need only be combined
by intersection to obtain a reconstruction of S.

When dealing with actual data some preliminary organization will now be
required in an effort to make the corresponding relations qualify as projections
from a single set S. For example, the collections of data must be so chosen
that if a variable X; is relevant to two different collections 4 and 8, then
every value of X, which occurs in A must also occur in 8. If this cannot be
arranged then, in our scheme, the variable X must be redefined or temporarily
dropped from consideration. This assumption also means that a variable having
relative frequencies as its values cannot easily be taken into account; conse-
quently, we will ignore the shape of any frequency distributions associated with
& N
As an illustration of some of the above notions let us suppose that an




investigation concerns the effects of an industrial environment on leguminous
plant life. This may involve many hundreds of such disparate variables as

“indigenous fauna” or “sulphur production”. Suppose there are available some

items of data resulting from a previous study of, say, the migration or non-

migration (X ) of an avian species (X;y) from rural or urban areas (X ,) under
various weather conditions (X 1)- The dimensions E.EyE, E i correspond-

ing to the variables X, X,, Xy, X, respectively, might be as follows:

‘weather’: E,={r,,, Zyy Ta};

. ath '. _ 1.
location 1 E,=ixy,, 7,,) ;

“behaviour : E;={zy), 24} ;

¢ species ' : Em = {xmv xmt}'

Two items of data concerning species x my and x_ . might be as represented
in tabular form in Fig. 1. Both of these items must be assigned to one collection.
If this collection contained no other items it would define a relation such as that

x,, =clear,

2,, = precipitation,
x,53=cold,

Z, =urban,
rog=rural,

Zy, = migration,
X3¢0 =NO migration,

in Fig, 2 '
Fig. 1
ITEM 1 ITEM 2
Xm =Ty, Xm= me
X, X, X, ! X, X, X, f
xy, Zgy 231 Y , In Zy Iy 0
zy, zy Z3q 0-2 Th Ty Z3q 0-3
Zy Tqp z3, ol In Zag Zg 01
Iy, Ty T3e " zy, Zyy Z3g 0
Zyy Loy Z31 "'E Zys Z34 zg 0
%2 Zay L32 0-2 Zyg Za Z3e 01
Zye Zo2 I 01 12 ZTag T3 0-1
Ty2 T2 T32 0-1 Zy2 Zae T3z 0
Z13 2 Zy: 0 T3 T T3 0-1
Zyg Z3) Zsgp v , Zy3 T Z3e 0
Zy3 Zag Z3 0-2 Zy3 Ty Z3 0
Xy Zyy Z39 o Z)3 Zos Z39 0-3
1-0 1-0

Example of two items of data.

Fig. 2
‘\m ‘Yl X‘.' Xs
Ly I I z3,
Lmt Iy Loz T3y
Lo Ty2 In T3y
Tt Tya T2y T3
T 237} T2z Z3
Timi L2 Tag T3z
L Ty Lag 31
) Ty 21 T3z
T2 i Zaa 3
Tz L2 T Z32
Tz T12 Ta2 31
Tn2 13 21 Z3;
Tz Ti3 || Tas Z32
i

Relation corresponding to data items in Fig. 1.

Mathematical expressions must be represented as a subset of some appro-
priate product set. For instance, if we are interested in variables X. and X 2
and no boundary condition is specified for a previously known relationship ex-
pressed as dX,|dX, = k, then both this expression, and the expression X, =
kX, * X, represent the same four-dimensional subset of the product set
E, xE, x E, x (k) where E, is a set of boundary conditions.

Following the above assumption we are now concerned with the problem
of identifying, or approximating to, an n-dimensional relation S from a set D of
relations obtained by projection from .

3. Previous work

In 1964 Ashby (1964) considered how the sequence of its cylindrical
closures approximates to an n-dimensional relation, where a relation was defined,
following Wiener (1914), to be the set of n-tuples that satisfy it. The pth
cylindrical closure of a relation will be defined theoretically in section 5. Its
relevance to our concern is as follows. If a physical process, or a set of activities
or behavior patterns is observable as the set of values adopted by a set of n
variables, then an investigator can reconstruct from such p-dimensional data only
the pth cylindrical closure of the original n-dimensional relation. The approxi-
mation referred to in the preceding paragraph is therefore an approximation
by cylindrical closures.

If a relation can be only approximated to by its pth cylindrical closures
then the set of n variables is under-constrained by p-dimensional relations. We



are, therefore, concerned with problems of under-constraint. A series of papers
by Friedman and Leondes in 1969 (1969 a, b) treated in a fundamental way of
the well-posed or constraint problem. The emphasis in these papers was on the
problem of variables being over-constrained by sets of relations. What follows
is, for the most part, complementary to, and is in some cases a development of,
the approach of Friedman and Leondes. We do, however, confine our attention
to nominal variables and will not be concerned with different representations

of relations.

4. Notations and conventions

Variables and dimensions will usually be referred to by their indices.
Thus, instead of ‘variable X ; or ‘dimension £ we will write ‘variable 7 or
dimension j*. The set of all variables or dimensions under investigatior; will
be denoted by /, / = ’ 1,2,3,...,n} The cardinality of any set A will be de-
noted by #fA). Thus #(¢) = 0 and #Ql, 2, 3’)= 3. We assume that for every
I €1, #(E)>2.

If all the elements in a set A are contained in a set B we write AC B;
and if also some elements of B are not contained in A we denote this by Ag B.
We denote the complement of a subset by a superscript ¢ when the set
containing it is understood; thus the set £ — § is denoted by $€ and / — K by
K®. 1f KC/ the cartesian product of the variables K and the dimensions K
will be denoted by X, and £, respectively, so that £ X =llg KEi . fACE,
and BCE,., by the ‘intersection’ of A and 8, ANB,
we mean the subset (4 x EKMJC)Q(B x E Kc).

If #(K) = p and BCEKc then the suﬁ&t 8 x EK will be called 2 p-
dimensional cylinder’, or a ‘cylinder having p dimensions’ , on the ‘fn-p)-
dimensional base’ 8.

We use the following two basic set operators:

(1) The projection operator: Pry.

If A = pr B then A consists of all those elements of £ x Which appear
in 8.

(2) The spreading operator: V "

IfA = VJB, and ifBCEK then A = {er_JB) X EJ, where JCK,
and ACE, . Thus V, “spreads” each element of B along the dimensions J.

5. Reconstructing and identifying S

The cylindrical closure of order p, of the set S, denoted by CPS, is formed
by projecting S onto all p-dimensional subspaces of £, and intersecting all cylin-
ders into £ having these projections as bases (Ashby 1964).

AR

Definition 1
For p=1,2,3,.
C.S=(NV,S: J<=l and #(J)=n-p).
J

..onm—=1: and anv Sck:

We define COS =F and CnS =S8.
The set (C S:p=1,2,3,...,n) formsa nested set of “approximations”
o

to S as follows:

Propasition 1 (Ashby 1964)

E=CS2(C820,8>..2C,,8§2(,5=5.

The set C pS, therefore, contracts from £ to S as p increases. One quantity
which measures the sharpness of- this contraction is the minimum value of p for
which Cps = §. This quantity has been termed the cylindrance of S (Ashby
1964), and is denoted in the following by “cyl §”.

Definition 2

evlS=min(p: C,8S=9).

If S describes a physical process, or a set of activities, and the values
adopted by the variables X,. X,, X,,. .., X are recorded by a sufficiently
numerous set of observers, each of whom records the values adopted by p of
the variables, then S can be reconstructed from these records only on the con-
dition that cyl § <p.

If cyl $ > p the relation reconstructed from the data, S will, according
to Proposition 1, contain some n-tuples which are not contained in S. The
variables / are then under-constrained by p-dimensional relations.

If § is such that C pS = E, then, since each subset of p variables will adopt
all possible values, the data provided by our hypothetical group of observers
give no information whatever conc<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>