The Direction of Evolution
Principia Cybernetica Web

The Direction of Evolution

although evolution is chaotic and unpredictable, it moves preferentially in the direction of increasing fitness


A fundamental criticism of the idea of increasing complexity, formulated among others by Stephen Jay Gould (1994), is that such an increase implies a preferred direction for evolution, a continuing "progress" or advance towards more sophisticated forms. Recent advances in evolutionary theory (such as the theory of punctuated equilibrium) and observation of evolutionary phenomena seem to indicate that evolution is a largely unpredictable, chaotic and contingent series of events, where small fluctuations may lead to major catastrophes that change the future course of development. At first sight, this seems inconsistent with any constant "direction". Yet, an example will show that there is no necessary contradiction.

Consider a rock that rolls down from the top of a steep mountain. Given that the slightest irregularity in the terrain may be sufficient to make the rock fall either into the one or the other of a host of downward slopes or valleys, the exact path of the rock will be virtually impossible to predict. Repeated experiments are likely to produce final resting positions that are miles apart. Yet, one thing will be certain: the final position will be lower than the initial position at the top. Although we cannot know the direction of movement in the horizontal dimensions, we do know that there is only one possible sense in which it can move along the vertical dimension: downward.

To apply this metaphor to evolution, we need to discover the equivalent of the "vertical" dimension, in other words we need to define a variable that can only increase during evolution (like vertical distance from the top). Entropy plays the role of such a variable for thermodynamic systems, but this seems hardly useful to describe complexification. Fisher's (1958) fundamental theorem of natural selection has shown that another such variable exists for populations of living systems: average fitness. This follows straightforwardly from the fact that fit individuals by definition will become more numerous, while the proportion of less fit individuals will decrease. This reasoning can be generalized to cover non-biological systems too (cf. the principle of asymmetric transitions).

It might be objected that fitness is a relative notion: what is fit in one type of environment may no longer be fit in another environment. Thus, the inexorable increase of fitness only holds in invariant environments (which seem wholly atypical if one takes into account co-evolution). Gould proposes the following example: the evolution from hairless elephant to woolly mammoth is due merely to a cooling down of the climate. If the climate becomes warmer again the woolly variant will lose its fitness relative to the hairless one, and the trend will be reversed.

Yet, there are ways to increase "absolute" fitness. First, the system may increase its internal or intrinsic fitness, by adding or strenghtening bonds or linkages between its components. This is typically accompanied by the increase of structural complexity. Second, the system may increase its fitness relative to its environment by increasing the variety of environmental perturbations that it can cope with, and thus its functional complexity.

This may be illustrated through the climate change example: though the warm-blooded, woolly mammoth is only relatively fitter than its hairless cousin, it is absolutely fitter than a cold-blooded reptile, which would never have been able to adapt to a cold climate, with or without hair. Warm-bloodedness means temperature control, i.e. the capacity to internally compensate a variety of fluctuations in outside temperature. The appearance of control is the essence of a metasystem transition, which can be seen as a discrete unit of evolutionary progress towards higher functional complexity.

All other things being equal, a system that can survive situations A, B and C, is absolutely fitter than a system that can only survive A and B. Such an increase in absolute fitness is necessarily accompanied by an increase in functional complexity. Thus, evolution will tend to irreversibly produce increases of functional complexity.

This preferred direction must not be mistaken for a preordained course that evolution has to follow. Though systems can be absolutely ordered by their functional complexity, the resulting relation is not a linear order but a partial order: in general, it is not possible to determine which of two arbitrarily chosen systems is most functionally complex. For example, there is no absolute way in which one can decide whether a system that can survive situations A, B and C is more or less complex or fit than a system that can survive C, D and E. Yet, one can state that both systems are absolutely less fit than a system that can survive all A, B, C, D and E. Mathematically, such a partial order can be defined by the inclusion relation operating on the set of all sets of situations or perturbations that the system can survive. This also implies that there are many, mutually incomparable ways in which a system can increase its absolute fitness. For example, the first mentioned system might add either D or E to the set of situations it can cope with. The number of possibilities is infinite. This leaves evolution wholly unpredictable and open-ended.

For example, though humans are in all likeliness absolutely more functionally complex than snails or frogs, evolution might well have produced a species that is very different from humans, yet is similarly at a much higher functional complexity level compared to the other species. In perhaps slightly different circumstances, the Earth might have seen the emergence of a civilisation of intelligent dogs, dolphins or octopuses. It is likely that analogous evolutions are taking place or have taken place on other planets. Though humanity seems to have reached the highest level of functional complexity in the part of evolution that we know, more intelligent and complex species may well exist elsewhere in the universe, or may appear after us on Earth. The conclusion is that a preferred direction for evolution in the present, generalized sense does not in any way support the ideology of anthropocentrism.

References:


Copyright© 1997 Principia Cybernetica - Referencing this page

Author
F. Heylighen,

Date
Jun 13, 1997 (modified)
Aug 6, 1996 (created)

Home

Metasystem Transition Theory

Evolutionary Theory

Direction and Speed of Evolution

Up
Prev. Next
Down



Discussion

Add comment...